Contents

Preface XI List of Contributors XV

 Dynamic Pressure and Temperature Responses of Porous Sedimentary Rocks by Simultaneous Resonant Ultrasound Spectroscopy and Neutron Time-of-Flight Measurements 1

v

- James A. TenCate, Timothy W. Darling, and Sven C. Vogel
- 1.1 Introduction and Background *1*
- 1.2 Macroscopic Measurements 3
- 1.2.1 Stress-Strain Measurements 3
- 1.2.2 Temperature Variations 4
- 1.2.3 Moisture Content Variations 5
- 1.2.4 Vibrational Excitation Variations 6
- 1.3 Motivation for Neutron Scattering Measurements 7
- 1.4 SMARTS: Simultaneous Stress–Strain and Neutron Diffraction Measurements 9
- 1.5 HIPPO: Simultaneous Step-Temperature Modulus/Sound Speed and Neutron Diffraction Measurements *12*
- 1.5.1 Sample 13
- 1.5.2 Sample Cell 14
- 1.5.3 Procedure 15
- 1.5.4 Results 16
- 1.5.5 Comparison/Reference Measurements 19
- Discussion and Conclusions 21
 Acknowledgments 23
 References 23
- 2 Adsorption, Cavitation, and Elasticity in Mesoporous Materials 27 Annie Grosman and Camille Ortega
- 2.1 Experimental Evidence of Collective Effects During Evaporation 28
- 2.1.1 Porous Vycor Glass 28
- 2.1.2 Porous Silicon 30
- 2.1.3 SBA-15 Silica *31*

VI Contents

2.2	Adsorption-Induced Strain 33
2.3	Thermodynamics of the Solid–Fluid Interface 34
2.3.1	The Solid – Vapor Interface 37
2.3.2	The Solid–Liquid Interface 40
2.4	Stress Effect on the Adsorption Process 43
2.4.1	Supported and Free Standing Porous Si Layers 43
2.4.2	Monitoring of the External Stress 45
2.5	Cavitation in Metastable Fluids Confined to Linear
	Mesopores 47
2.5.1	The Elemental Isotherms 47
2.5.2	Si/A/B and Si/B/A Configurations 48
2.5.2.1	Si/A/B Configuration 49
2.5.2.2	Si/B/A Configuration 50
2.5.3	Nature of the Nucleation Process 51
2.5.3.1	Homogeneous Nucleation 51
2.5.3.2	Heterogeneous Nucleation and Elastic Strain 52
2.0.0.2	References 55
3	Theoretical Modeling of Fluid–Solid Coupling in Porous Materials 57
•	Robert Alan Guver and Hyunsun Alicia Kim
31	Introduction 57
3.1	Systems and Models 57
2.2	Problems 60
331	Systems of Interest 62
222	$O_{\text{uantities of Interest}} = 62$
3.0.2	Machanical Posponsa to Applied External Forces 62
2.5	Fluid in the Skeleton 66
2.6	Fluid in the Data Space 72
5.0 2.7	Fluid III the Pole Space 75
3./	Summary and Conclusion 76
	References 79
4	Influence of Domogo and Maisture on the Nonlinear Hystoretic
4	
	len Germeliet
4.1	Jun Cumenet
4.1	Nonlinear, Hysteretic, and Damage Benavior of Quasi-Brittle
4.0	Materials 81
4.2	Macroscopic Damage Model for Quasi-Brittle Materials 85
4.3	Preisach-Mayergoyz (PM) Model for Nonlinear Hysteretic Elastic
	Behavior 88
4.4	Coupling the Macroscopic Damage Model and Damage-Dependent
	PM Model: Algorithmic Aspects 93
4.5	Moisture Dependence of Hysteretic and Damage Behavior
	of Quasi-Brittle Materials 94
4.5.1	Moisture-Dependent Mechanical Experiments 96
4.5.2	Moisture-Dependent Damage and PM Model 99

Acknowledgment 102 References 102

5	Modeling the Poromechanical Behavior of Microporous
	and Mesoporous Solids: Application to Coal 105
	Matthieu Vandamme, Patrick Dangla, Saeid Nikoosokhan,
	and Laurent Brochard
5.1	Modeling of Saturated Porous Media 107
5.1.1	Macroporous Media 108
5.1.2	Generic (and Potentially Microporous) Media 110
5.1.3	Mesoporous Media 112
5.2	Application to Coal Seams 114
5.2.1	Modeling of a Representative Elementary Volume
	of a Coal Seam 116
5.2.2	A Source of Hysteresis: The Kinetics of Transfer Between Cleats
	and Coal Matrix 119
5.2.3	Simulating an Injection of Carbon dioxide in a Coal Seam 122
5.3	Conclusions and Perspectives 124
	References 125
6	A Theoretical Approach to the Coupled Fluid-Solid Physical Response
	of Porous and Cellular Materials: Dynamics 127
	Mark W. Schraad
6.1	Introduction 127
6.1.1	Traditional Modeling Approaches 128
6.1.2	A Unifying Theoretical Approach 130
6.2	Theoretical Approach 131
6.2.1	Single-Field Equations and the Ensemble Averaging Process 133
6.2.2	Multifield Equations 134
6.3	Closure Models 135
6.3.1	Reynold's Stress and Body Forces 136
6.3.2	Material Stress Gradients 136
6.3.2.1	Momentum Exchange 137
6.3.2.2	Fluid-Field and Solid-Field Stresses 138
6.3.2.3	Solid Matrix Constitutive Models 139
6.4	Demonstration Simulations 139
6.5	Concluding Remarks 149
	References 150
7	Swelling of Wood Tissue: Interactions at the Cellular Scale 153
	Dominique Derome, Jan Carmeliet, Ahmad Rafsanjani, Alessandra Patera,
	and Robert Alan Guyer
7.1	Introduction 153
7.2	Description of Wood 154
7.3	Absorption of Moisture in Wood 155

VIII Contents

7.4	Swelling of Wood Tissue – Investigations by Phase Contrast
741	Behavior of Homogeneous Tissues 158
7.5	Parametric Investigation of Swelling of Honeycombs – Investigation
7.0	by Hygroelastic Modeling 161
751	Simulation Methodology 162
7.5.2	Lavered Cell Wall 163
753	Effects of Geometric Variations 165
7.5.5	Beyond Recoverable Swelling and Shrinkage: Moisture-Induced
7.0	Shape Memory 167
77	Discussion 168
771	On the Origin of Hysteresis of Sorption as a Function of Relative
/ •/ •1	Humidity 168
772	On the Effects on Moisture Sorption 168
7.7.2	Acknowledgment 169
	References 169
8	Hydro-Actuated Plant Devices 171
	, Khashayar Razghandi, Sebastien Turcaud, and Ingo Burgert
8.1	Introduction 171
8.2	General Aspects of Plant Material–Water Interactions 173
8.2.1	Principle Mechanics: Stress and Strain 173
8.2.2	Water as an Engine 174
8.2.2.1	Inflation 174
8.2.2.2	Swelling 176
8.2.3	Plant Cell Walls 177
8.2.4	Cell Wall–Water Interaction 179
8.2.4.1	Swelling/Shrinkage of Wood 180
8.2.5	Principles of Anisotropic Deformation 181
8.3	Systems Based on Inner Cell Pressure – Living Turgorized
	Cells 182
8.3.1	Cell Growth – Turgor: Plastic Deformation of the Cell Wall 182
8.3.2	Movement via Elastic Deformation of the Cell Wall 182
8.3.2.1	Stomatal Movement 183
8.3.2.2	Venus Flytrap: A Turgor-Based Rapid Movement 184
8.4	Systems Based on Water Uptake of Cell Walls 185
8.4.1	Bilayered Structures for Bending 185
8.4.1.1	Passive Hydro-Actuation in Pine Cones 186
8.4.1.2	Wheat Awns Hydro-Actuated Swimming Movement 187
8.4.2	Bilayered Structures for Twisting Movements 188
8.4.2.1	Curling of Erodium Awns 188
8.5	Systems Based on a Differential Swelling of Cell Wall Layer 190
8.5.1	Tension Wood Fibers 190
8.5.2	Contractile Roots 191
8.5.3	Ice Plant Seed Capsule 192

Contents IX

- 8.5.3.1 Ice Plant Capsule Opening as a Case Study for the Capacity of Water as a Plant Movement Actuator *194*
- 8.6 Biomimetic Potential 195 Acknowledgments 197 References 197

Index 201