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The Physical Origin of Covalent Bonding
Michael W. Schmidt, Joseph Ivanic, and Klaus Ruedenberg

‘‘I believe the chemical bond is not so simple as some people seem to think.’’
Robert S. Mulliken as quoted approvingly by Charles A. Coulson

Reviews Modern Physics 32 , 177 (1960)

1.1
The Quest for a Physical Model of Covalent Bonding

Up to about the seventeenth century atomists believed that there were mechanical
hookups between atoms. Toward the end of that century Isaac Newton surmised
that, analogous to the gravitational forces between masses, there are additional
forces between atoms that are attractive at large distances and repulsive at short
distances. Around 1810 Berzelius, involved in the development of electrolysis
using Volta’s recently discovered direct current, conjectured bonding to be due to
electrostatic forces by virtue of the same permanent positive or negative charge
being distributed on each atom of an element (e.g., H+, O−). However, in 1811
Avogadro proposed molecules like H2 and O2 to account for volume relationships
in gas reactions, a hypothesis that implied the existence of other kinds of bonding
forces between atoms. His view was confirmed by the mid-nineteenth century
through the development of organic chemistry, which established what is now
called covalent bonding [1]. In 1881 Helmholtz raised the question of how long-
range electrostatic interactions could give rise to short-range bonding forces [2].
After Thomson’s discovery of the electron in 1897, it was widely assumed that
electrons were involved in bonding. On the basis of chemical evidence, Abegg
[3] identified in 1904 what are now called positive and negative oxidation states
and deduced that their maximal positive and negative values add up to 8 for each
element in the second and third row of the periodic table. He inferred essentially
that a special stability must be associated with an electron octet around an atom.
Presuming this stability to be a driving force, in 1916 Kossel [4] rationalized ionic
bonding by electron transfer whereas, also in 1916, Lewis [5] posited that covalent
bonds are achieved by electron sharing.
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In 1927, Heitler and London [6] showed that wave mechanics yields the covalent
bond in the hydrogen molecule whereas Burreau [7] obtained covalent binding
for the hydrogen molecule ion. In the subsequent years, these two systems were
calculated with increasing accuracy, culminating in the work of James and Coolidge
[8] who, in 1933, obtained the binding energy of H2 within 0.6 kcal mol−1. Today
we know that wave mechanics does indeed yield chemical bonding in all molecules
for which sufficiently accurate calculations have been made.

However, while the connection between calculation and conceptual physical
reasoning is direct and immediate in classical mechanics, this is no longer
the case in quantum mechanics. The question arose, therefore, how conceptual
physical reasoning can be associated with the bond formation that is found in wave
mechanical computations. Several intuitive answers to this question were proposed
in the thirties. From a rather formalistic point of view, bonding was attributed
to postulated ‘‘exchange forces.’’ By analogy with the coupling of pendulums,
‘‘resonance’’ effects were posited. The recognition that bonding is associated with
an accumulation of charge in the bond region led to the conjecture that the
electrostatic attraction between this accumulated charge and the adjacent nuclei
generates the lowering of the energy. This suggestion by Slater [9] seemed moreover
to be in accordance with the virial theorem, which states that the potential energy
decreases and the kinetic energy increases upon bond formation. Hellmann [10],
on the other hand, advanced the view that bonding is caused by the lowering of the
kinetic energy that results from electrons being able to roam over a larger area in
a molecule than in an atom, similar to the effect of increasing the box length for
a particle in a box. (He could not reconcile, however, the apparent inconsistency
of this explanation with the virial theorem.) None of these conceptual conjectures
were rigorously pursued in quantitative detail.

The present approach follows the theoretical tradition that, when a rigorous
fundamental mathematical formulation with verified quantitative implications
exists, then the choice of explanatory physical concepts is limited by having to
reflect closely the relationships that are inherent in the theoretical framework. For
the present problem, the challenge is to cast the exact energy expression, generated
by accurate electronic wave functions, in a form that allows a rigorous resolution
into physically interpretable parts and to find a fundamental principle that guides
their interactions. The first coherent analysis of this kind was advanced and applied
in the 1960s by one of the present authors and his coworkers [11]. It was based on
an energy decomposition analysis of general ab initio wave functions of electrons
in molecules and it identified the physical interactions that establish the bonds in
H2 and H2

+. This line of reasoning was subsequently pursued by a number of
authors [12]. Recent work by two of the present authors [13] as well as by Bacskay
and Nordholm [14] has shed additional light on the problem.

In the present chapter, this approach is developed further. It is then used to
examine the covalent bonds of H2

+ and H2 in detail and extended to the many-
electron molecules B2, C2, N2, O2, and F2. These analyses show that covalent
bonding involves a synergism between several interactions with quite differ-
ent physical attributes and quantitative characteristics. On the one hand, the
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lowering of the energy that establishes the bond is the result of a variational
competition between the kinetic energy and potential energy. On the other hand,
there occurs an intricate interplay between various intra-atomic and interatomic
interactions. These basic agents have, moreover, to accommodate electron corre-
lation. It emerges that, in all cases, the driving force of covalent bond formation
is the lowering of the kinetic energy gained by the delocalization of electronic
waves over more than one atom. This observation is only superficially discor-
dant with the virial theorem which, as mentioned earlier, requires the molecule
to have a higher total kinetic energy than the separated atoms. The in-depth
accounting of all interconnections between the various interactions shows that
the information disclosed by the actual total kinetic and potential energies per
se is insufficient for drawing any inferences regarding the origin of covalent
bonding.

1.2
Rigorous Basis for Conceptual Reasoning

The aim of the present analysis is to understand bonding features of potential
energy surfaces (PESs), that is, the Born–Oppenheimer separation is assumed.
Although the study is limited to ground states, the reasoning also applies to excited
states when the consequences of the additional constraints of orthogonality to the
lower states are accounted for.

1.2.1
Physical Origin of the Ground State

Bonding on a PES is a consequence of the geometry dependence of the electronic
energy, specifically that this energy is lower for the molecular equilibrium geometry
than for the separated atoms. Therefore, the first objective must be to develop a
conceptual understanding of the physical factors that determine the ground state energy
of a system of electrons in the electrostatic field generated by fixed nuclei.

A rigorous quantum mechanical basis for such an understanding is provided by
the variation principle which states that, for all possible normalized electronic wave
functions Ψ, the energy integral

𝐄(Ψ) = ∫ d𝜏ΨℋΨ = ∫ d𝜏Ψ𝒯 Ψ + ∫ d𝜏Ψ𝒱 Ψ = 𝐓(Ψ) + 𝐕(Ψ) (1.1)

assumes the lowest possible value when Ψ is the ground state Ψg. Here, 𝒯 and 𝒱
are the kinetic and potential energy operators. Hence:

The shape of Ψg is determined by the adjustments needed to minimize
T(Ψ)+V(Ψ).

The conceptual physical interpretation of V is self-evident: Its terms represent elec-
tron nuclear attractions, electron–electron repulsions and internuclear repulsions,
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all of which are classical electrostatic concepts. In systems with bound electrons
the electron nuclear attractions dominate the potential energy integral V, which is
therefore negative. Manifestly,

The negative potential energy V is lowered by localizing Ψ in regions of low
𝒱 , in particular by contracting Ψ towards the nuclei.

It is with regard to the kinetic energy T that quantum mechanics differs fundamentally
from classical mechanics and that a new type of concept has to be added to the
physical reasoning. To this end, it is advantageous to transform the kinetic energy
integral T into the form:

𝐓 = ∫ d𝜏Ψ𝒯 Ψ = −1
2

∑
k
∫ d𝜏Ψ(∇k)2Ψ = +1

2

∑
k
∫ d𝜏 (∇kΨ)2 (1.2)

where the sum
∑

k goes over all electrons k. (Atomic units are used.) If Ψ is
expressed in terms of its natural orbitals 𝜓n and occupation numbers Nn, then T
becomes

𝐓 = –
1
2

∑
n

Nn∫ d𝜏 (𝜓n∇2𝜓n) =
1
2

∑
n

Nn∫ d𝜏 (∇𝜓n)2 (1.3)

The general derivations and conclusions in the subsequent analyses do not depend
on whether the Laplacian or the gradient form of T is used because only the
invariant integrated expectation values are involved in the inferences. In the
equations, though, the gradient expression will be preferred for didactic reasons as
a positive kinetic energy term always appears with a positive sign in the formulas.
In some instances, the gradient expression will, moreover, prove elucidative for
understanding properties of certain kinetic energy integrals by relating them to
properties of the wave function. This is because, in the gradient expression of
Eq. (1.2), every electron k makes a positive contribution to every volume element
dτ, namely the square of the gradient of Ψ with respect to the individual electron
coordinates. Analogously, in the gradient expression of Eq. (1.3), every orbital
makes a positive contribution to every volume element. Most notably, the following
fundamental property of the kinetic energy is readily deduced from these attributes
of the gradient form.

Consider a single electron where Ψ=𝜓 and

𝐓 = 1
2∫ d𝜏 (∇𝜓)2 = 1

2∫ dx∫ dy∫ dz

[(
∂𝜓
∂x

)2

+
(
∂𝜓
∂y

)2

+
(
∂𝜓
∂z

)2
]

(1.4)

The following is manifest from this expression. When 𝜓 is squeezed into a smaller
space, then the normalization condition ∫ d𝜏 𝜓2 = 1 requires that the maximum
of 𝜓 increases and, consequently, that the average of the gradient of 𝜓 increases.
Hence, localizing 𝜓 will increase T. This inference is related to the uncertainty
relation, which is derived in quantum mechanics texts. By virtue of the additive
decomposition (Eq. (1.3)), this correlation is general and fundamental:
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Localizing an electronic wave function increases its positive kinetic energy.
In the context of the variation principle, electrons therefore possess an
innate drive towards delocalizing the wave function.

It is apparent that the kinetic energy and the potential energy place opposing
demands on the wave function with regard to the aim of minimizing the total
energy E=T+V: The kinetic energy would be minimized (viz→ 0) by ultimate
dilution ofΨ, and the potential energy would be minimized (viz→−∞) by complete
concentration onto the nuclear centers. Hence,

The variational energy minimum is reached by that wave function Ψg that
achieves the optimal compromise in the variational competition between
the electrostatic potential energy pull, which favors localizing contraction
towards the nuclei, and the kinetic energy pressure, which drives towards
delocalizing dilution.

The variational process can therefore be summarized as follows:

The ground state wave function is determined by the electrostatic attractions
pulling the electron cloud as close towards the nuclei as permitted by the
resistance of the kinetic energy.

An additional constraint exists in the case of many electrons in that the wave
function Ψ must then be antisymmetric with respect to the exchange of electrons,
which entails the restriction:

The simultaneous localization of several electrons in the same space is
curbed by the exclusion principle.

It should be appreciated that the quantum mechanical variation principle for the
energy, that is, (T+V), lends itself more easily to conceptual visualization than the
variation principle of least action, that is, ∫ dt(T−V), does in classical mechanics.
This vantage may be considered a compensation for the absence of the kind of direct
simple conceptual physical interpretation of calculations that classical mechanics
offers.

1.2.2
Physical Origin of Ground State Energy Differences

The prototype example for the described variational competition is the case of an
electron-like particle of mass m in the field of a nucleus of charge Z with the
Hamiltonian ℋ =− (1/2m)∇2 −Z/r. Consider the normalized trial wavefunction

𝜓 = 1s𝜁 =
(
𝜁3

π

) 1
2

exp(−𝜁𝑟) =
( 1
𝛼3π

) 1
2

exp
(−r
𝛼

)
(1.5)

Here, ℋ and 𝜓 are in atomic units. The parameter 𝛼 = 1/𝜁 is a measure of the
localization of the orbital in as much as the sphere with the radius R= 2𝛼 includes
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Figure 1.1 Variational competition between kinetic (blue)
and potential (green) energies, and the optimal compro-
mise for the total energy (red) that determines the ground
state of the hydrogen atom. Ordinate= energy in hartree.
Abscissa= orbital size as measured by the inverse orbital
exponent 𝛼 = 1/𝜁 in Eq. (1.5).

94% of the orbital density 𝜓2. The kinetic and potential energy integrals of 𝜓

become

𝐓 = 𝜁2

2m
= 1

2
m𝛼2 𝐕 = −𝜁𝑍 = −Z

𝛼
(1.6)

and they are plotted as functions of the localization parameter 𝛼 in Figure 1.1.
Indeed they exhibit the behavior discussed in the preceding section and the plot of
the total energy (T+V) exhibits the variational competition between T and V. The
minimum, that is, the optimal compromise between these two functions occurs
for

𝜁g = 𝑚𝑍, 𝐓g = 1
2

mZ2, 𝐕g = −mZ2, 𝐄g = −1
2

mZ2 (1.7)

For the hydrogen atom, where m= 1 au and Z = 1 au, Eq. (1.7) yields the ionization
potential 0.5 hartree. The physical origin of the magnitude of this fundamental
quantum chemical quantity is thus the variational compromise between T and V
in hydrogen.

Atomic energy units will be used in this chapter. The relation to units often
used in experimental work is: 1 millihartree= 1 mh= 2.6255 kJ mol−1 = 0.62750
kcal mol−1.

Consider now cases with a different nuclear charge Z and a different particle
mass m (note, e.g., that the pi-muon has the same charge as the electron but is
180 times heavier) and let us examine why such systems can have lower ground
state energies than the hydrogen atom. From the expression for Eg in Eq. (1.7)
it is apparent that there can be two different reasons: (i) The nuclear charge Z is
larger than the proton charge or (ii) the mass m of the particle is heavier than the
electron mass.

This distinction exhibits an important aspect of the variational competition that
is relevant for the elucidation of energy differences between related systems. It is
illustrated in Figure 1.2, which shows the variational competition and the shift of
the optimal compromise for several systems of the kind described by Eq. (1.6). To
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Figure 1.2 Variational competition and opti-
mal compromise between kinetic and poten-
tial energies for hydrogen-like systems (see
Eq. (1.6)). The solid curves correspond to
the standard hydrogen atom, m= 1 for T
and Z = 1 for V. The dashed curves of T, V,
and E correspond to different choices of m

and Z, viz: Z = 2 for V in (a) and m= 4 for T
in (b). Abscissa= orbital exponent 𝜁 = 1/𝛼,
implying the inverse of the orbital size.
Ordinate= energy in hartree; note that −V/2
is plotted. Diamond markers indicate the
positions of the variational compromises.

display clearly the pertinent features, the energies E, T, and |V/2| are plotted and
the orbital exponent 𝜁 = 1/𝛼 is used as abscissa. Consequently, |V/2| is a straight
line and T is a quadratic. Note that, in Eq. (1.7), the minimum of the energy always
occurs at that value of 𝜁 where T = |V/2|, that is, where the straight line |V/2| intersects
the quadratic T . This is a general constraint whose rigorous origin will be discussed in
the next section.

Figure 1.2a shows the cases for {m= 1, Z = 1} and {m= 1, Z = 2}. Changing
the nuclear charge Z from 1 to 2 increases the slope of the line |V/2| so that
it intersects the quadratic T at a larger value of 𝜁 and a lower energy than in
hydrogen. The variational interpretation is as follows: Increasing Z strengthens
the nuclear electrostatic pull. In the presence of the same kinetic resistance as in
hydrogen, the orbital is pulled closer to the nucleus than in hydrogen and the energy
is thereby lowered.

Figure 1.2b shows the cases {m= 1, Z = 1} and {m= 4, Z = 1}. According to Eq.
(1.6), changing the mass m from 1 to 4 decreases the curvature of T so that the
intersection of |V/2| with T occurs again at a larger value of 𝜁 and a lower energy
than in hydrogen. The variational interpretation is now as follows: Increasing the
mass m weakens the kinetic resistance because the mass is in the denominator of the
expression for T. Because the nuclear pull is the same as in hydrogen, the orbital is
again pulled closer to the nucleus than in hydrogen and the energy is again lowered.
Thus:



8 1 The Physical Origin of Covalent Bonding

The difference between the ground state energies of two systems of bound
electrons can be due to a difference in the strength of the attraction towards
the regions of low potential energy or it can be due to a difference in the
strength of the kinetic resistance towards localization in the regions of low
potential energy.

It is of course possible that both factors are simultaneously operative.
Moreover, the discussed examples exhibit another important fact. According to

Eq. (1.7), the two systems {m= 1, Z = 2} and {m= 4, Z = 1} have the same values
of Eg =−2, Tg = 2 and Vg =−4 hartree. These equalities show that it is not possible
to tell why either of these systems has a lower energy than hydrogen when the only
information available are the values of Eg, Tg, and Vg. Thus,

An analysis of the physical origin of energy differences between systems
requires more information than is furnished by the values of Eg, Tg and Vg.

Indeed, the preceding variational analysis on the basis of Figure 1.2 made use
of the knowledge of comparison values for E, T, and V, in addition to those at the
variational minimum.

1.2.3
Relation between Kinetic and Potential Energies

As noted in the preceding section, the optimized kinetic and potential energies of
the ground states in these systems always stand in the constant ratio Vg/Tg =−2.
This relationship, which is known as the virial theorem, in fact, holds rigorously
for the many electron wave functions of any atom. It is a general theoretical
consequence of the fact that the kinetic energy scales as (inverse length)2 whereas
the potential energy scales as (inverse length). Furthermore, it is important that
this relationship is not only valid for the actual solution of the Schrödinger equation
(which is optimized with respect to all possible variations) but also for approximate
wave functions that are merely optimized with respect to a single scale parameter for
all electrons [15]. If a many-electron wave function is expressed as a superposition
of determinants of atomic orbitals (AOs), then individual scaling of the various
AO exponents will guarantee the virial relation a fortiori. When sufficiently large
basis sets with fixed exponents are employed in a calculation, then the exponential
optimization of AOs will be mimicked by the linear combination of atomic orbital
(LCAO) expansions of the molecular orbitals (MOs).

In a diatomic molecule, the virial relationship has the general distance-dependent
form [9]

2𝐓 + 𝐕 + R

(
d𝐄
𝑑𝑅

)
= 0 (1.8)

If an approximate molecular wave function is constructed from AOs, say
𝜒An[𝜁An(r −RA)], where 𝜒An denotes orbital n on atom A at the position RA with
orbital exponent 𝜁An, then the general virial theorem results from the following
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optimization [15]: Replace all orbital exponents by s𝜁An and optimize with respect to
the one global scale parameter s. Again, optimization with respect to all individual
orbital exponents, or a common scale parameter of groups of orbital exponents, will
guarantee the virial relation a fortiori. These kinds of scaling manifestly represent
simultaneous shrinking or swelling with respect to all atoms in the molecule. (Equation
(1.8) can be generalized to polyatomic systems.)

It follows from Eq. (1.8) that the relation found for atoms, viz

2𝐓 = −𝐕 = |𝐕| (1.9)

is in fact also valid at all points where the energy gradient vanishes, notably at
equilibrium geometries and transition states. A corollary is that the relation is also
valid for energy differences such as binding energies and activation energies. At these
critical points, the satisfaction of Eq. (1.9) is a simple indicator as to whether a
given wave function possesses the following property.

The virial theorem is evidence of the intrinsic balance between the intra-atomic
and the interatomic electronic density distributions that is required for the optimal
balance in the variational competition between the potential pull of the nuclei
and the kinetic resistance of the electron wave. It is a necessary attribute of
the actual wave function and thus represents a constraint that approximate wave
functions must satisfy if successive improvements are to lead to the exact solution.
Satisfaction of this constraint by an approximate wave function implies that the
optimal compromise between the potential pull and the kinetic resistance has been
achieved within the formal limitation of that wave function.

By virtue of the response of the kinetic and potential energies to orbital contrac-
tion, which was illustrated in Section 1.2.2, one readily infers that, at the critical
geometries, the following assessments of an approximate wave function Ψ can be
made:

If 2T(Ψ)< |V(Ψ)|, then the actual solution Ψg is in some way more localized
than Ψ.
If 2T(Ψ)> |V(Ψ)|, then the actual solution Ψg is in some way less localized
than Ψ.

These inequalities are helpful in understanding the changes induced by wave
function optimizations.

Because the energy increases quadratically near the variational minimum, certain
wave functions that do not satisfy the virial theorem can yield rough approximations
to the exact energy, as exemplified by the wave function of Heitler and London.
However, the flaws in the wave functions, as well as other expectation values, are
considerably more serious, as exemplified by the manifestly large error in the
expectation value of 1/r.

Notwithstanding its usefulness, it should be noted that – contrary to widespread
misconceptions – the virial theorem per se generates no clues whatsoever for answering
the question why one system is more stable than another. This inability is for instance
exhibited by the two isoenergetic systems {m= 1, Z = 2} and {m= 4, Z = 1}, which
were examined in Section 1.2.2. Both satisfy the virial theorem but, as discussed
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there, the two differ radically regarding their physical reasons for being more stable
than hydrogen, which also satisfies the virial theorem.

1.3
Atoms in Molecules

1.3.1
Quantitative Bonding Analyses Require Quasi-Atoms in a Molecule

The chemical notion that molecules consist of atoms held together by bonds implies
(i) that atoms occur not only as free entities but are also preserved in molecules,
albeit possibly deformed, and (ii) that there exist interactions between them that
establish the cohesion. To retrieve this model from accurate quantum mechanical
wave functions presents a nontrivial challenge because, in fact, chemical binding
results from electrons being shared between several atoms so that, for instance,
very compact wave functions are typically represented in terms of MOs that are
delocalized over many atoms, the simplest examples being canonical Hartree–Fock
determinants. To recover and identify ‘‘atoms’’ in an electronic wave function Ψ
requires therefore a transformation of its representation in such a way that Ψ becomes
constructed from subunits that exhibit atomic character. As in previous studies, we
denote such atom-like building blocks of Ψ in a molecule as quasi-atomic.

Important in the present context is that the expression of molecular electronic
wave functions in terms of quasi-atomic components not only gratifies the chemical
intuition but that it is in fact an indispensible prerequisite for developing a rigorous
quantitative analysis of the origin of covalent bonding. This is because the maxi-
mization of the interatomic energy lowering that creates bonding will be seen to entail
a deformation of atoms into quasi-atoms. Since, by virtue of the atomic variation
principle, such intra-atomic deformations are necessarily antibonding, there exists
a subtle competition between the intra-atomic and the bond-creating interatomic
energy changes, whose elucidation cannot be bypassed if one wishes to understand
the bonding mechanism.

1.3.2
Primary and Secondary Energy Contributions

For the interpretation of chemical bonding, it is helpful as well as physically justified
to take into account that the influences determining atomic and molecular electron
distributions can be attributed to two kinds of forces. The primary influence
is the effective one-electron potential that the nuclei and the average electron
distribution generate. The secondary influence is the many-electron potential that
is caused by the deviations of the individual interelectronic interactions from
the average, that is, the dynamic correlations. The primary potential creates a
primary orbital space in which the stock [16] of the ground state wave function
takes form. It can be a single-configuration (SCF) or, if several configurations
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compete energetically, a multi-configurational (MCSCF) function. The secondary
potential generates correlation refinements of the wave function that are grafted
onto the primary stock. Unfortunately, for historical formal reasons, the label
‘‘correlation,’’ albeit ‘‘non-dynamical,’’ ‘‘static’’ or ‘‘strong,’’ is often also used for
primary multi-configurational wave functions.

The primary orbital space of an atom is spanned by its optimized minimal basis set
orbitals. This intuitive insight by the pioneers of the 1930s, which provided the basis
for their remarkable qualitative successes, has been confirmed by the quantitative
ab initio work of the computer-age. In the many atoms with open valence shells,
that is, where the number of valence electrons is less than twice the number of
minimal basis valence orbitals, the primary stock of the ground state wave function
is frequently multi-configurational.

The analysis of chemical bonding is greatly clarified by separating the binding
effects involving the primary stocks of the atomic wave functions from those
involving the dynamic correlations. Bonds between atomic primary stocks form
when at least one atom has an open valence shell because, then, the innate
delocalization drive will cause at least some valence electrons to use available
minimal basis set orbitals on several atoms, that is, the kinetic energy will be
lowered by ‘‘electron sharing.’’ In covalent bonds, this bonding in the primary
orbital space typically dominates markedly over the correlation contributions. But
even when dynamic correlations play a greater or even an essential part in bonding,
separating the two types of contributions greatly clarifies the elucidation.

For these reasons, the bonding analyses of the present study focus primarily
on MCSCF wave functions in full valence spaces. As in our earlier work, [17] we
denote these very specific type of full space MCSCF wave functions as FORS (full
optimized reaction space) wave functions. The correlation contributions to covalent
bonds will then also be briefly examined.

1.3.3
Identification of Quasi-Atoms in a Molecule

In the present discussions, electronic wave functions are conceived of as being
constructed from orbitals. The identification of quasi-atoms in a molecule consists
then of two steps: (i) the identification of quasi-atomic orbitals, generically denoted
as QUAOs, in terms of which the molecular electronic wave function Ψ can
be expressed, and (ii) the construction of quasi-atomic configurations from these
orbitals in terms of which the wave function Ψ can be expanded. The determination
of such QUAOs and configurations requires a judicious choice of appropriate local-
ization criteria. We consider it desirable to determine QUAOs and configurations
in such a way that they differ as little as possible from the corresponding free-atom
quantities while still being capable of regenerating the molecular wave function.

For the determination of QUAOs, the following procedure is used in the present
analysis. Let 𝜓k be the orbitals from which the molecular wave function is con-
structed, ordered by importance, for example, through a natural orbital expansion.
Then the nonsymmetric, usually rectangular, overlap matrix is calculated between
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these MOs and the full set of orthogonalized atomic basis orbitals used on one
atom A (such as, e.g., a cc-pVXZ basis). The singular value decomposition (SVD)
of this overlap matrix determines a set of MOs, that is, linear combinations of the
𝜓k, and an equal number of orbitals in the AO basis space on atom A. They form
corresponding pairs with maximum possible overlap integrals, which are given by
the (always positive) singular values of the SVD. This procedure is done for every
atom in the molecule. Using the magnitudes of the singular values of the SVDs
for the various atoms as guides, a certain number of the SVD-generated MOs is
chosen from each atom as QUAOs for that atom, subject to the limitation that
the total number of the quasi-atomic orbitals selected for all atoms is equal to the
total number of the original MOs 𝜓k. This set 𝜒𝜈 of QUAOs has the following
properties:

• It spans the space of the MOs so that the original electronic wave function can be
expressed in terms of configurations formed from these quasi-atomic orbitals.

• If a sufficient number of MOs 𝜓k are used, then the QUAOs turn out to be
essentially localized on the various atoms.

• The QUAOs χ𝜈 on one atom are mutually orthogonal.
• The QUAOs χ𝜈 from different atoms are mutually non-orthogonal. If it is

expedient for some purpose, they can be symmetrically orthogonalized.

In the case of a full valence space FORS MCSCF wave function, the number
of MOs is equal to the total number of conceptual minimal basis set orbitals
in the molecule. For any one atom, the number of quasi-atomic orbitals is then
chosen to be equal to the number of minimal basis orbitals on that atom. The
quasi-atomic orbitals in fact are the deformed minimal basis set orbitals on that
atom. The abbreviation QUAFO will be used for these quasi-atomic FORS orbitals.
The corresponding linear combinations of the atomic basis orbitals on A represent
the optimal pure atomic approximate orbitals (PAAOs) to the QUAFOs. In the
molecules H2, B2, C2, N2, O2, F2 discussed in the following paragraphs, all overlap
integrals between the QUAFOs and the corresponding PAAOs are found to be
larger than 0.99, which exhibits the atomic character of the QUAFOs. Nonetheless,
the PAAOs do not generate the molecular wave function and a close examination
shows that the QUAFOs contain small admixtures from other atoms. (Molecular
wave functions formed by configuration interaction (CI) calculations using the
PAAOs yield energies a few millihartree higher than the FORS wave functions.)
Details of the SVD method will become apparent from the explicit applications
in the molecules discussed below in the following paragraphs. In the case of F2,
the method is also used for a wave function that includes orbitals providing some
dynamic correlation.

An in-depth elaboration and discussion of the SVD approach to generate quasi-
atomic orbitals in molecules will be given in a separate investigation [18]. It has
been found for instance that, under certain conditions, some correlating orbitals
beyond the FORS level are required to achieve satisfactory localization on atoms.
On the other hand, for some wave functions, the number of available occupied MOs
may be less than the total number of minimal basis set orbitals. There then exists
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some additional freedom that allows further atomic adaptation of the quasi-atomic
orbitals. A systematic approach to this problem has been formulated previously [19]
and is also discussed in Ref. [18]. In the case of polyatomic molecules, an unbiased
method has furthermore been developed for forming hybrid QUAFOs that clearly
exhibit directional bonding on each atom [20].

1.4
The One-Electron Basis of Covalent Binding: H2

+

The question to be answered is: Why does the optimal compromise between the
potential energy pull and the kinetic energy resistance occur for a lower total energy
in H2

+ than in H? In the end, it turns out that the kinetic energy plays the more
critical role and that no static model can account for the physical origin of binding
in H2

+ and H2. Furthermore, notwithstanding inner shells and other complicating
factors present in atoms beyond helium, covalent bond formation appears to be
generally driven by kinetic effects that are analogous to those exemplified in the
prototype H2

+ bond.
To place the analysis of this molecule on the firmest possible footing, it will

be deduced from near-exact wave functions [13]. They were obtained in terms of
uncontracted (14s, 6p, 3d, 2f, 1g) basis sets of 26 σ-type spherical Gaussian AOs
on the two atoms, in which all orbital exponents were optimized. For the hydrogen
atom, the energy found in this basis lies 0.1 μh (microhartree) above the exact value,
with a virial ratio of 2T/|V|= 0.99999985. The energy of the molecule is found to
lie 0.55 μh above the exact value at the equilibrium distance, which is found to be
R= 1.99720 Bohr. The virial ratio is 2T/|V|= 0.9999982 at this distance [21]. The
wave function can be expected to be of similar quality at intermediate distances.
The quantitative results on which the discussion of the present section is based
have been reported in detail in Ref. [13].

1.4.1
Molecular Wave Function as a Superposition of Quasi-Atomic Orbitals

There are two atomic minimal basis set orbitals in this system. According to
the discussion in Section 1.3.2, the molecular FORS space is, therefore, also
two-dimensional. However, only the bonding molecular FORS orbital is occupied
whereas the second molecular FORS orbital, the antibonding orbital, is unoccupied.
The latter can therefore be arbitrarily chosen in such a way that the quasi-atomic
orbitals become as atomic-like as possible.

By collecting the basis orbitals on each atom, the wave function Ψ is cast in the
form

Ψ =
(𝜓A + 𝜓B)√
(2 + 2S)

S = ⟨𝜓A|𝜓B⟩ = 0.588742 (1.10)

𝜓x = a𝐬x + b𝐩x , 𝐬 =
∑

(14s), 𝐩 =
∑

(6p, 3d, 2f , 1g) (1.11)
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Figure 1.3 Resolution of the quasi-atomic orbital (QUAFO) on the left atom in H2
+ as a

sum of contributions from the atomic 1s orbital, the spherical deformation and the angular
deformation at the equilibrium distance (see Section 1.4.1).

where 𝜓 , s, and p are normalized. The molecular FORS space is then formed
by this occupied bonding orbital Ψ and by choosing the unoccupied antibonding
orbital to be

Ψ∗ =
(𝜓A − 𝜓B)√

2 − 2S
(1.12)

Application of the SVD to the rectangular overlap matrix between these two
molecular FORS orbitals and the set of all atomic basis orbitals on atom A
manifestly yields the orbital 𝜓A as the quasi-atomic orbital on A: the QUAFO
orbital is in fact identical with the PAAO orbital. The same holds for atom B. Thus
𝜓A and 𝜓B are directly the quasi-atomic orbitals in this case.

Figure 1.3 exhibits the resolution (Eq. (1.11)) of the quasi-atomic orbital 𝜓A

on the left atom in terms of its components along the internuclear axis, for the
equilibrium distance. In this figure the spherical component s has been further
resolved in terms of the free-atom 1s orbital and the spherical deformation [s – (1s)].
The curves display the total respective contributions, including coefficients, so that
adding the spherical deformation (blue) and the angular deformation (purple) to
the free-atom 1s orbital (green) will yield the quasi-atomic orbital (red). At this
distance, the spherical deformation is manifestly a contraction and the angular
deformation represents a polarization.

The total relative contributions of the spherical and the angular deformations to
the quasi-atomic orbital, i.e., their integrated contributions to the normalization
integral, as well as their variations with the internuclear distance R are shown
in Figure 1.4. The polarization deformation contributes less than 2% over the
whole range, but its contribution extends to fairly large internuclear distances. The
spherical deformation effectively vanishes beyond 4 Bohr, but strongly increases
for shorter distance, being ∼4% at the equilibrium distance.

Regarding the normalized spherical component s in Eq. (1.11), the following
observation is important:
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The spherical component of the quasi-atomic orbital is near-identical with a
scaled hydrogen-like orbital 1s* of the type formulated in Eq. (1.5).

This agreement is demonstrated in Figure 1.5 where Figure 1.5b displays the
overlap integral ⟨s|1s*⟩ as a function of the internuclear distance R. Figure 1.5a
displays the orbital exponent value 𝜁* of the 1s* orbital that corresponds to the
quasi-atomic orbital at each internuclear distance. This exponent was obtained by

1(a)

(b)

1.0

0.990

0.992

0.994

0.996

0.998

1.000

1.1

1.2

1.3

1.4

2 3 4 5

 for 1s∗

1s∗lQUAFO

6 7 8 9 10

1 2 3 4 5 6

R (Bohr)

7 8 9 10
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+ at various internuclear distances. (a) Orbital exponent
of 1s*. (b) Overlap integral between the 1s* orbital and the QUAFO. The gray vertical line
indicates the equilibrium distance.
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maximizing, at each internuclear distance, the overlap integral ⟨s|1s*⟩ with respect
to the orbital exponent 𝜁* in the 1s* orbital. Whereas, in the region R>∼6 Bohr, the
1s* orbital is seen to be very slightly expanded (ζ* < 1) with respect to the hydrogen
1s orbital (𝜁 = 1),

the 1s* orbital becomes considerably contracted (𝜁* > 1) in the region for
R<∼4.5 Bohr. At the equilibrium its orbital exponent is 𝜁* = 1.264.

Combining the data of Figures 1.4 and 1.5, one sees that the projection of the
quasi-atomic orbital 𝜓x on the scaled 1sx* orbital, that is, [a × ⟨s|1s*⟩], is always
larger than 0.982.

1.4.2
Molecular Electron Density and Gradient Density as Sums of Intra-atomic and
Interatomic Contributions

The potential energy is determined by the electron density. The kinetic energy is
determined by the gradient density (see Eq. (1.4)). Therefore, both densities have
to be resolved in terms of intra-atomic and interatomic contributions.

1.4.2.1 Resolution of the Molecular Density
In classical electrostatics an approximate charge distribution covering the two
atoms would be a superposition of quasi-atomic densities, for example,

𝜌qa =
1
2
(𝜓2

A + 𝜓2
B) (1.13)

In quantum mechanics, by contrast, the quasi-atomic wave amplitudes are super-
posed, as expressed in Eq. (1.10), so that the molecular density 𝜌=Ψ2 differs from
the quasi-atomic density 𝜌qa of Eq. (1.13) as follows:

Ψ2 = 𝜌 = 𝜌qa + 𝜌I, 𝜌I = 𝜌 − 𝜌qa =
ℐAB

(2 + 2S)
(1.14)

where

ℐAB = 2𝜓A𝜓B − S(𝜓2
A + 𝜓2

B) (1.14a)

The bond order (2+ 2S)−1 has the value 0.314714 at the equilibrium distance. In 𝜌,
the two atomic amplitudes are summed before they are squared whereas, in 𝜌qa,
they are squared before they are summed. The difference 𝜌I represents therefore
the interference density, that is, the interference part of the total density 𝜌. The term
ℐAB represents the interference of the quasi-atomic orbitals.

The integrals over 𝜌 and 𝜌qa are both= 1. Hence, the integral over 𝜌I vanishes,
which implies that the interference density 𝜌I represents a charge shift in real space.
In fact, the interference density represents the quantification of the often qualitatively
invoked ‘‘accumulation of electronic charge in the bond.’’ This property is exhibited in
panels of Figure 1.6a–c, which display the contour plots of 𝜌I in a plane containing
the internuclear axis at the equilibrium distance. With a view to the subsequent
discussion, plots of 𝜌I are shown not only using the exact orbitals 𝜓A, 𝜓B but also
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Figure 1.6 Interatomic interference in H2
+

at the equilibrium distance. Left column
of panels: interference densities 𝜌I = charge
accumulation in the bond of H2

+. Right
column of panels: kinetic interference den-
sities= gradient attenuation. First row of
panels: interference between the atomic 1s
ground state orbitals. Second row of panels:
interference between the scaled exponential

1s* approximations to the QUAFOs (see
Figure 1.5). Third row of panels: interference
between the quasi-atomic orbitals (QUAFOs)
of the actual wave function of H2

+. Contour
increments: left panels: 0.002 e Bohr−3; right
panels: 5 millihartree Bohr−3. Solid lines =
positive contours. Dashed lines = negative
contours. Dotted lines = zero contours.

using the hydrogen 1s orbitals as well as using the scaled 1s* orbitals discussed at
the end of the preceding Section 1.4.1. Note should be made of the fact that

for all quasi-atomic orbital choices, even when polarization is included, the
charge that is accumulated in the bond is taken away from regions near the
nuclei.

This aspect of the charge accumulation in the bond is often overlooked.

1.4.2.2 Resolution of the Molecular Gradient Density
The gradient density (∇𝜓)2 can be resolved in a similar way as the density 𝜓2,
that is, in terms of the average of the atomic gradient densities and the difference
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between this term and the molecular gradient density, that is,

(∇Ψ)2 =
[(∇𝜓A)2 + (∇𝜓B)2]

2
+
{
(∇Ψ)2 −

[(∇𝜓A)2 + (∇𝜓B)2]
2

}
(1.15)

In analogy to the interference density 𝜌I, the difference term in the curly brackets
on the right hand side can be considered as the gradient interference density. Panels
in Figure 1.6d–f exhibit contours of this gradient interference densities at the
equilibrium distance. All of them are negative, showing that the superposition of the
quasi-atomic orbitals attenuates the gradient of Ψ everywhere, when compared to
the average of the quasi-atomic gradient densities. Along the internuclear axis, this
attenuation is manifest by comparing the plots of Ψ2 and (𝜓A

2 +𝜓B
2)/2, as shown,

for example, in Figure 9 of Ref. [13a].
The interference density as well as the gradient interference density result

from the spread of the orbital amplitude from one atom to two atoms. Both
are thus consequences and exhibit different aspects of the orbital delocalization.
This inference will be confirmed by the energy analyses in Sections 1.4.5.2 (last
paragraph) and 1.4.5.4 (first paragraph).

A difference in interpretation between Eqs. (1.15) and (1.14) is the following.
Although both equations furnish resolutions in terms of intra-atomic contributions
and interference contributions, only the sum of the intra-atomic density contribu-
tions in Eq. (1.14) can be considered as ‘‘quasi-classical.’’ This cannot be claimed
for the intra-atomic gradient densities because, as discussed in Section 1.2.1, the
treatment of the kinetic energy in quantum mechanics is fundamentally different
from that in classical mechanics.

1.4.3
Dependence of Delocalization and Interference on the Size of the Quasi-Atomic
Orbitals

It turns out that a rather important role in the process of bonding is played by the
dependence of the magnitude of interference on the size of the quasi-atomic orbitals
relative to the distance R between the nuclei. This dependence is not trivially obvious.

From the definition in Eq. (1.14) one sees immediately that the interference
density vanishes for R= 0 as well as for R=∞. In between these two limiting cases,
it must therefore wax and wane. On the other hand, comparing the interference
contours on Figure 1.6a, obtained for the hydrogen 1s orbitals, with those on
Figure 1.6b, obtained using the contracted 1s* orbitals, one notes that, at the
equilibrium distance, the accumulation of charge in the bond is stronger for the
contracted 1s* orbitals than for the uncontracted 1s orbitals. Similarly, the kinetic
interference density of 1s* in panel e of that figure is stronger in the bond than that of 1s
in panel d. This correlation is, at first sight, surprizing since the overlap integral decreases
with contraction. The observations are put in perspective by the following explicit
analysis for the case that the quasi-atomic orbitals are approximated by the scaled
1s-type orbital 1s𝜁 defined in Eq. (1.5).
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1.4.3.1 Charge Accumulation at the Bond Midpoint
The contours in Figure 1.6a–c suggest that the maximum of the charge accumu-
lation in the bond, which occurs at the bond midpoint, offers a rough measure of
the magnitude of the interference 𝜌I. By virtue of the definition in Eq. (1.14), this
value is given by

𝜌I,mid(𝜓A) =
Ψ2 − (𝜓2

A + 𝜓2
B)

2
= 𝜓2

A × (1 − S)
(1 + S)

, S = ⟨𝜓A|𝜓B⟩ (1.16)

where 𝜓A
2 is taken at the bond midpoint. If the scaled 1s𝜁 orbital of Eq. (1.5) is

used as an approximation to the quasi-atomic orbital 𝜓A, the Eq. (1.16) becomes

𝜌I,mid(1s𝜁 ) =
( 1
πR3

){[ (1 − S)
(1 + S)

]
𝜎3 exp(−𝜎)

}
(1.17)

where

S =
(

1 + 𝜎 + 𝜎2

3

)
× exp(−𝜎), 𝜎 = 𝜁𝑅 (1.18)

Relevant in the present context is the dependence of 𝜌I,mid on the orbital size
at any given internuclear distance. This dependence is given by the expression in
the curly brackets {} in Eq. (1.17), which is a function of 𝜎 = 𝜁R=R/𝛼 = the
inverse ratio of the orbital size to the internuclear distance. This dependence on 𝜎

is displayed in Figure 1.7a, which is a plot of 𝜌I,mid versus 𝜎, where the equilbrium
value has been arbitrarily chosen for the factor R−3 in front of the curly bracket. Since
the maximum of the curve occurs for 𝜎 = 𝜁R= 4.01, the criterion suggests that the
maximal charge accumulation in the bond is obtained for a value 𝜁m

′ > 1 when
R< 4.01 Bohr, but for a value 𝜁m

′ < 1 when R> 4.01 Bohr. With reference to the
hydrogen 1s orbital (i.e., 𝜁 = 1), maximal charge accumulation in the bond, according
to this criterion, is therefore obtained by orbital contraction when R<∼4 Bohr, and by
orbital expansion when R>∼4 Bohr.

1.4.3.2 Total Charge Accumulation in the Bond
Alternatively, an overall measure of the charge accumulation in the bond can be
obtained by calculating the amount of charge that interference in fact shifts from
the atomic regions into the bond region, that is, from the regions with negative
contours into the region with positive contours of 𝜌I in Figure 1.6. These three
regions are separated by the two-sheet hyperboloid on which 𝜌I vanishes. For the
quasi-atomic orbitals 1s𝜁 , it is given by

(RA –RB)
R

= ±a(𝜎)
𝜎

, a(𝜎) = arccosh

[
1

S (𝜎)

]
= ln

⎧⎪⎨⎪⎩
[
1 +

(
1 − S2

) 1
2

]
S

⎫⎪⎬⎪⎭ (1.19)

Integration of 𝜌I over the central region between the two hyperboloid sheets yields
the total charge Q I that is actually moved from the atomic regions into the bond
region. It is found to be

QI(1s𝜁 ) =
[(

2𝜎 + 𝜎2
) (

a–
(
1–S2

) 1
2

)
+ a2(1–S2)

1
2 –

a3

3

] [
exp (−𝜎)
2𝜎(1 + S)

]
(1.20)
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where 𝜎, S(𝜎), and a(𝜎) are defined in Eqs. (1.18) and (1.19). Figure 1.7b dis-
plays the variation of the total charge accumulation Q I(𝜎) as a function of 𝜎.
Its maximal value occurs for 𝜎 = 2.90 Bohr. According to this criterion, interfer-
ence is enhanced by contraction when R<∼2.9 Bohr and by expansion when
R>∼2.9 Bohr.

1.4.3.3 Origin of the Relation between Interference and Quasi-Atomic Orbital
Contraction/Expansion
The foregoing assessments show that, at shorter internuclear distances, interfer-
ence is enhanced by contraction of the hydrogen AOs whereas, at larger internuclear
distances, it is enhanced by expansion of these orbitals. The switchover occurs
somewhere in the region around twice the equilibrium distance. A remarkable
implication is that, whereas interference increases with increasing quasi-atomic
orbital overlap at larger distances, interference increases with decreasing overlap by
contraction at shorter distances, as noted earlier.

This consequential attribute of interference can be traced back to the following
property of interfering AOs. Consider a scaled hydrogen orbital 𝜙(r, 𝜁 )= 1s𝜁 , as
defined in Eq. (1.5). Because normalization is preserved, the scaled orbital 1s𝜁 =𝜙

(r, ζ) and the unscaled orbital 1s=𝜙(r, 𝜁 = 1) cross over at some distance r* from the
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origin. Manifestly, when 𝜁 > 1, then 𝜙(r, 𝜁 ) is contracted relative to 1s and one has

𝜙(r, 𝜁) > 1s for r < r∗, 𝜙(r, 𝜁) < 1s for r > r∗ (1.21a)

whereas, when 𝜁 < 1, then 𝜙(r, 𝜁 ) is expanded relative to 1s and one has

𝜙(r, 𝜁) < 1s for r < r∗, 𝜙(r, 𝜁) > 1s for r > r∗ (1.21b)

Moreover, one deduces from the equality 𝜙(r*, 𝜁 )= 1s=𝜙(r*, 1) at the crossover
radius r* that the value of this radius depends on 𝜁 according to

r∗(𝜁) =

[(
log 𝜁

)
(𝜁 − 1)

]
× 1.5bohr (1.22a)

and, since r*(𝜁 ) is a monotonic function, there exists a scaled orbital 𝜙(r, 𝜁 ) with a
certain 𝜁 = 𝜁 (r*) for any chosen crossover point r*. It follows from Eq. (1.22a) that

r∗(𝜁) < 1.5 for 𝜁 > 1, r∗(𝜁) = 1.5 for 𝜁 = 1, r∗(𝜁) > 1.5 for 𝜁 < 1

(1.22b)

and, conversely, that

𝜁(r∗) > 1 when r∗ < 1.5, 𝜁(r∗) < 1 when r∗ > 1.5 (1.22c)

Consider now two scaled 1s orbitals placed at an internuclear distance 2R of less
than 3 Bohr so that the bond midpoint is at a distance R< 1.5 Bohr from each
nucleus. For each value of r* in the range R< r*< 1.5 Bohr, there then exists a
scaled orbital 𝜙(r, 𝜁 ) on each nucleus that (i) has 𝜁 = 𝜁 (r*)> 1, i.e., that is contracted
relative to the respective uncontracted 1s orbital (see Eq. (1.22c), left), and (ii) is
larger than the respective 1s orbital, that is 𝜙(r, 𝜁 )> 1s, for all distance r ≤R from
that nucleus (see Eq. (1.21a), left). This is so, in particular at the bond midpoint,
where r =R. Therefore, according to Eq. (1.16), the charge accumulation of the
superposition of the two contracted orbitals at the bond midpoint is larger than that of
the superposition of two uncontracted orbitals. (Note that the factor (1−S)/(1+S) in
Eq. (1.16) is also larger for the contracted orbitals, because the overlap integral
between them is smaller than that for the uncontracted orbitals.) Thus, when the
two orbital centers are closer than 3 Bohr, quasi-atomic orbital contraction enhances
charge accumulation in the bond and, hence, interference and delocalization between
these orbitals. It is also apparent that similar inferences can be drawn for any
suitably decaying quasi-atomic orbitals [14]. This aspect of interference has not
been previously noted.

As shown by an analogous analysis, the enhancement increasingly diminishes
as the internuclear distance becomes longer than 3 Bohr and, for sufficiently large
distances, charge accumulation in the bond is enhanced by orbital expansion rather
than contraction.
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1.4.4
Binding Energy as a Sum of Two Intra-atomic and Three Interatomic Contributions

The well-known general shapes of the kinetic and potential components of the
binding energy curve exhibit very different behaviors at larger and shorter internu-
clear distances. These shapes suggest that the binding energy is the result of several
contributions with different distance dependencies. In fact, five contributions with
distinct conceptual physical meanings can be identified. They are formulated in
the present section. In the next section their quantitative properties are discussed
and in the subsequent section their synergism is traced.

Substitution of the density decomposition (Eq. (1.14)) into the potential energy
integral of H2

+ yields the following resolution of the potential energy of H2
+ in

terms of three contributions:

𝐕(Ψ) = ∫ dx

(
− 1

rA
–

1
rB

)
𝜌 + 1

R
= 𝐕a + 𝐕qc + 𝐕I (1.23)

where the individual terms have the following definitions and physical meanings

𝐕a =

{
−∫ dx𝜓2

A∕rA –∫ dx𝜓2
B∕rB

}
2

= the 𝑖𝑛𝑡𝑟𝑎-𝑎𝑡𝑜𝑚𝑖𝑐 potential energy of the quasi-atomic orbitals (1.24)

𝐕qc =

{
−∫ dx𝜓2

A∕rB − ∫ dx𝜓2
B∕rA

}
2

+ 1
R

= the 𝑞𝑢𝑎𝑠𝑖-𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 potential energy (1.25)

𝐕I = ∫ dx

(
− 1

rA
− 1

rB

)
𝜌I

= [2(1 + S)]–1∫ dx

(
− 1

rA
− 1

rB

)
ℐAB

= the 𝑖𝑛𝑡𝑒𝑟-𝑎𝑡𝑜𝑚𝑖𝑐 potential energy due to the charge accumulation

in the bond

= the potential interference energy. [ℐABwas defined in Eq. (1.14a)] (1.26)

The potential part of the binding energy, that is,

𝐕binding = 𝐕(Ψ) − 𝐕H with 𝐕H = −∫ dx
(1sA)2

rA
= −1hartree (1.27)

is therefore the sum of an intra-atomic and an interatomic contribution:

𝐕binding = 𝐕intra + 𝐕inter (1.28)

where

𝐕intra = 𝐕a − 𝐕H, 𝐕inter = 𝐕qc + 𝐕I (1.29)
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The analogous resolution of the kinetic energy is simpler, viz,

𝐓(Ψ) = 1
2∫ dx (∇Ψ)2 = 𝐓a + 𝐓I (1.30)

where

𝐓a =

{
1
2∫ dx

(
∇𝜓A

)2 + 1
2∫ dx (∇𝜓B)2

}
2

= the 𝑖𝑛𝑡𝑟𝑎-𝑎𝑡𝑜𝑚𝑖𝑐 kinetic energies of the quasi-atomic orbitals (1.31)

𝐓I =
1
2∫ dx

{
(∇Ψ)2 −

[(∇𝜓A)2 + (∇𝜓B)2]
2

}
= 1

2∫ dx
{2(∇𝜓A) ⋅ (∇𝜓B) − [(∇𝜓A)2 + (∇𝜓B)2]}

2(1 + S)
= the 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 kinetic interference energy

= the 𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑜𝑚𝑖𝑐 kinetic energy resulting from the orbital delocalization

(1.32)

The kinetic part of the binding energy, that is,

𝐓binding = 𝐓(Ψ) − 𝐓H with 𝐓H = 1
2∫ dx

(∇1sA)2

rA
= 0.5hartree (1.33)

is thus also the sum of an intra-atomic and an interatomic contribution:

𝐓binding = 𝐓intra + 𝐓inter (1.34)

with

𝐓intra = 𝐓a − 𝐓H, 𝐓inter = 𝐓I (1.35)

By virtue of Eq. (1.4) each kinetic term is a sum of an x, y, and z component, where
the z-direction is conventionally taken along the internuclear axis. It should again
be emphasized that the definitions Eqs. (1.30)–(1.33) of the kinetic terms could all
have been equally well written in terms of the Laplacian expression of the kinetic
energy. As mentioned earlier, the gradient form is preferred in order that positive
kinetic energy terms appear with positive signs in front of them.

Combining the preceding resolutions yields the following decomposition of the
binding energy in terms of intra-atomic and interatomic contributions:

𝐄Binding = 𝐄(Ψ) − 𝐄H = 𝐄intra + 𝐄inter (1.36)

𝐄intra = 𝐄a − 𝐄H = 𝐓intra + 𝐕intra (1.37a)

𝐓intra = (𝐓a –0.5 hartree), 𝐕intra = (𝐕a + 1.0 hartree) (1.37b)

𝐄inter = 𝐄I + 𝐕qc = 𝐓inter + 𝐕inter , 𝐄I = 𝐓I + 𝐕I (1.38a)
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𝐓inter = 𝐓I 𝐕inter = 𝐕I + 𝐕qc (1.38b)

The binding energy has thus the five basic conceptual physical components shaded
in yellow in Eqs. (1.37)–(1.38), viz: the intra-atomic energy changes Tintra and Vintra,
which are due to the deformation from the free atom to the quasi-atom in the
molecule, and the interatomic energy changes Vqc, VI, and TI, which embody the
quasi-classical interactions and the interference interactions that are generated by
delocalization between the quasi-atomic orbitals on the two centers.

1.4.5
Quantitative Characteristics of the Five Energy Contributions

By virtue of the physical meanings of the five energy contributions, certain
general features of their quantitative values can be identified that are relevant for
understanding the behavior of the kinetic, potential, and total energy curves.

1.4.5.1 Intra-atomic Deformation Energy: Eintra = Tintra + Vintra

The intra-atomic deformation energy Eintra of (Eq. (1.37)) is the energy deviation
from the free-atom minimum. By virtue of the atomic variation principle, it is
necessarily positive, that is, it has an antibonding effect. In particular, as discussed
in detail in Section 1.2.2, upon quasi-atomic orbital contraction, Tintra will become
more positive and Vintra will become more negative, with Tintra prevailing over Vintra.

1.4.5.2 Quasi-Classical Interaction between the Atoms: Vqc

By virtue of the molecular symmetry, the quasi-classical energy of Eq. (1.25) can
also be written as

𝐕qc = −∫ dx
𝜓2

A

rB
+ 1

R
(1.39)

It is thus the potential energy of a neutral hydrogen atom at A, with a fixed density
𝜓A

2, in the field of a proton B at a distance R from A.
If 𝜓A

2 is spherically symmetric then, as Newton first showed [22], the first term
on the right hand side of Eq. (1.39) equals {R−1[−∫ dx 𝜓A

2]} where the integration
goes over the sphere with radius R around A. Since this sphere encompasses
less than the whole of 𝜓A

2, the integral ∫ dx 𝜓A
2 is <1 and, hence, Vqc becomes

positive, that is, antibonding. If the spherical quasi-atomic orbital is contracted, then
the integral [−∫ dx 𝜓A

2] is closer to 1 and increases the shielding of nucleus A so
that Vqc will become less repulsive. Expansion of the quasi-atomic orbital will have
the opposite effect.

For Vqc to be attractive, the orbital 𝜓A has to become sufficiently polarized toward
nucleus B.

It may also be noted that the form of Eq. (1.39) for Vqc implies that the effect of
orbital delocalization on the potential energy is entirely contained in the interference
energy VI. The interference density is therefore an expression of delocalization in
agreement with the discussion at the end of Section 1.4.2.2.
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1.4.5.3 Potential Interference Energy: VI

According to the analysis in Section 1.4.2.1, the interference density 𝜌I shifts charge
from near the nuclei toward the bond center, where the potential (−1/rA − 1/rB)
is less negative than near the nuclei. Therefore, the potential interference energy of
Eq. (1.26) is always positive, that is, antibonding.

The rather popular hand waving conjecture that charge accumulation through
overlap in the bonds of H2 and H2

+ lowers the potential energy is patently wrong.

1.4.5.4 Kinetic Interference Energy: TI

By virtue of the molecular symmetry, the kinetic interference energy of Eq. (1.32)
can be written

𝐓I =
1
2∫ dx (∇Ψ)2 − 1

2∫ dx (∇𝜓A)2 (1.40)

where the wave function 𝛹 ∼ (𝜓A +𝜓B) is manifestly more delocalized than the
orbital 𝜓A. According to the basic insights of Section 1.2.1, the first term in
this equation is therefore expected to have a lower kinetic energy than the sec-
ond term so that the kinetic interference energy will be negative, that is, bonding.
This expectation is confirmed by the contours on panels of Figure 1.6d–f in
Section 1.4.2.2, which show that the integrand in Eq. (1.32) is negative everywhere.
The conjunction of Eq. (1.40) and Figure 1.6 also confirms the inference at the
end of Section 1.4.2.2 that the gradient interference density is an expression of
delocalization.

Since superposing the AOs attenuates the derivative along the bond axis most
strongly, the component in this direction is found to contribute 2/3 of the negative
value of TI at the equilibrium distance [13].

1.4.5.5 Interference Energies and Quasi-Atomic Orbital Contraction and Expansion
According to the discussions in Sections 1.4.2.2 and 1.4.5.2, charge accumulation in
the bond goes hand in hand with orbital delocalization. The analysis in Section 1.4.3
had shown that, for R< 3–4 Bohr, charge accumulation in the bond as well as
delocalization increase when the quasi-atomic orbitals contract (with respect to the
free-atom 1s orbitals) whereas, for R> 3–4 Bohr, charge accumulation in the bond
and delocalization increase when the quasi-atomic orbitals expand. These changes
with orbital shrinking and swelling lead to the following changes in the kinetic and
potential interference energies.

According to the discussion in Section 1.4.5.3, increasing the charge accumula-
tion in the bond will make VI more positive (antibonding). Therefore, quasi-atomic
orbital contraction of the free-atom 1s orbitals is expected to increase the antibonding
effect of the potential interference energy when R<∼4 Bohr whereas the opposite holds
when R>∼4 Bohr. This inference is confirmed by explicit calculation of VI for the
case that the quasi-atomic orbitals are chosen to be of the scaled 1s𝜁 type defined
in Eq. (1.5) with a variable exponent 𝜁 . The potential interference energy is then
found to be
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Figure 1.8 Variation of the strengths of the interference energies between scaled 1s𝜁
orbitals (of Eq. (1.5)) with the orbital size 𝛼 = 1/𝜁 relative to the internuclear distance R.
Abscissa: 𝜎 = 𝜁R=R/𝛼. (a) Potential interference energy. (b) Kinetic interference energy. For
details, see text after Eq. (1.41) and (1.42).

𝐕I(1s𝜁 ) = R−1

⎧⎪⎨⎪⎩
[
S
(

1–e–2𝜎
)

–2𝜎e–𝜎
]
(1 + 𝜎)

(1 + S)

⎫⎪⎬⎪⎭ , 𝜎 = 𝜁𝑅 (1.41)

where S(𝜎) is the overlap integral given in Eq. (1.18). For fixed R, the dependence on
𝜁 is contained, through 𝜎 = 𝜁R, in the expression in the large curly brackets {}. The
dependence of this expression on 𝜎 is displayed in Figure 1.8a, which is a plot of
VI versus 𝜎 where the equilibrium value has been arbitrarily chosen for the factor
R−1 in front of the curly bracket. The antibonding of VI is seen to be maximal for
𝜁m ≈ 4.07/R. Hence, for R< 4.07 Bohr, contraction (i.e., increasing 𝜁m) will increase
the positive VI whereas, for R> 4.07, expansion will increase VI.

According to the discussion in Section 1.4.5.4, the negative value of TI is due to
delocalization, and therefore, increasing delocalization will make TI more negative
(bonding). Quasi-atomic orbital contraction is therefore expected to enhance the
negative kinetic interference energy for R<∼4 Bohr, whereas the opposite occurs
for R>∼4 Bohr. This effect on the kinetic interference energy is confirmed through
explicit calculation of TI by choosing as quasi-atomic orbitals the scaled 1s-type
orbitals defined in Eq. (1.5) with a variable exponent 𝜁 . The kinetic interference
energy at any given internuclear distance R is then readily found to be

𝐓I(1s𝜁 ) = R−2

{(
–𝜎4e−𝜎

)
3(1 + S)

}
(1.42)
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where 𝜎 and S are the same quantities as in Eq. (1.41). For fixed R, the depen-
dence on 𝜁 is contained, through 𝜎 = 𝜁R, in the expression in the large curly
brackets {}. The dependence of this expression on 𝜎 is displayed in Figure 1.8b,
which is a plot of TI versus 𝜎, where the equilibrium value has been arbitrarily
chosen for the factor R−2 in front of the curly bracket. Its minimum occurs at
𝜁m ≈ 4.38/R, which identifies the quasi-atomic orbital with maximal interference
energy lowering. For R< 4.38 Bohr, the value of 𝜁m is larger than 1, which implies
an enhancement of the kinetic interference effect by quasi-atomic orbital contraction
with respect to the free-atom orbital with 𝜁 = 1. For R> 4.38, the value of 𝜁m is
smaller than 1, which implies an enhancement of TI with quasi-atomic orbital expan-
sion. It is also seen that the enhancement decreases with increasing internuclear
distance as (1/R2).

Thus, the bonding character of the kinetic interference energy TI, the antibonding
character of the potential interference energy VI, as well as the response of these
quantities to quasi-atom orbital shrinking and swelling as a function of the
internuclear distances, are all consequences of the delocalization of the electron
from one nucleus to two nuclei.

1.4.6
Synergism of the Binding Energy Contributions along the Dissociation Curve

On the basis of the quantitative relations identified in the preceding section, the
changes in the total binding energy can be understood by variational reasoning.
The changes along the binding energy curve will be discussed with reference to the
graphs in Figure 1.9, which exhibit the resolution of the binding energy in terms of
the five components identified in Eqs. (1.36–1.38) as a function of the internuclear
distance.

The three columns of panels exhibit the analyses that result from three different
choices for the quasi-atomic orbitals 𝜓A in Eq. (1.10). The last column corresponds
to using the exact quasi-atomic orbitals discussed in Section 1.4.1. The second
column corresponds to choosing the approximation obtained by omitting the
polarization contributions in Eq. (1.10) and replacing the normalized spherically
symmetric term s by the corresponding scaled 1s* orbital discussed at the end of
Section 1.4.1. For the first column, the quasi-atomic orbitals are simply chosen to
be the undeformed 1s orbital of the hydrogen atom. The rows of colored panels
display from top to bottom: (i) the quasi-classical coulombic contributions, (ii) the
interference contributions, (iii) the interatomic contributions (= the sum of the top
two rows), (iv) the intra-atomic contributions, and (v) the total binding energy (=
the sum of the preceding two rows).

1.4.6.1 First Column: Zeroth Order Approximation to 𝝍A, 𝝍B by the 1sA, 1sB

Hydrogen Atom Orbitals
The signs of all contributions in this column correspond exactly to the general
quantitative predictions made in Section 1.4.5. The quasi-classical potential con-
tribution (see Section 1.4.5.2) as well as the potential interference contribution
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(see Section 1.4.5.3) is positive so that the total interatomic potential energy is
antibonding over the whole range. However, the negative (bonding) kinetic interference
energy, which prevails at all distances, is stronger (see Section 1.4.5.4). No intra-atomic
deformation energy exists, of course, in this approximation. The total molecular
binding energy is entirely due to the kinetic interference energy lowering that is a result of
the delocalization.

1.4.6.2 Second Column: Optimal Spherical Approximation to 𝝍A, 𝝍B by the Scaled
Orbitals 1sA*, 1sB*
As noted in the last paragraph of Section 1.4.1 (see also Figure 1.5), these
quasi-atomic orbitals are very slightly expanded with respect to the hydrogen
1s orbital when R>∼5 Bohr. The reason is that the expansion yields an energy
lowering beyond that of the first column because the (bonding) kinetic interference
energy is enhanced by expansion in this region of R (see Section 1.4.5.5) even
though the (antibonding) potential interference (Section 1.4.5.5) as well as the
(antibonding) quasi-classical energy (Section 1.4.5.2) is enhanced. The slight
deformation of the atom is also unfavorable (Section 1.4.5.1). However, all these
effects are small at large distances so that all energy contributions differ little from
those in the first column.

For R<∼4 Bohr on the other hand, the 1s* orbitals increasingly contract relative
to the hydrogen 1s orbital, as discussed in Section 1.4.1. The reason is that, in this
region, contraction yields a marked lowering of the total energy beyond that obtained
with the uncontracted orbitals shown in the first column of Figure 1.9, mainly
because of the bonding enhancement of the kinetic interference energy by increasing orbital
contraction (see discussion in Section 1.4.5.5). In addition, the quasi-classical energy
Vqc is less repulsive than that in the first column due to enhanced shielding of the
nuclei (see Section 1.4.5.2). These effects prevail over the following two changes that
oppose the contraction.

First, quasi-atomic orbital contraction enhances the antibonding potential inter-
ference energy VI beyond that of the first column (see Section 1.4.5.5). This
increased antibonding in fact largely offsets the decrease in the repulsive quasi-
classical energy Vqc noted in the preceding paragraph. Therefore, the total
interatomic potential energy contribution Vinter is about equally antibonding as
in the first column, that is, for the undeformed 1s orbitals.

Secondly, the intra-atomic energy Eintra increases as a result of the orbital
deformation by virtue of the atomic variation principle, as was discussed in
Section 1.4.5.1. It is noteworthy that this, not very large change in Eintra, is the
sum of a strong increase in the intra-atomic kinetic energy Tintra prevailing over an
only slightly less strong decrease in the intra-atomic potential energy Vintra. These
changes are in fact so strong that, in this region, the kinetic contribution Tbinding

and the potential contribution Vbinding to the total binding energy have signs that are
opposite to those that they have at larger distances. This feature will be commented
on further in Section 1.4.7.
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1.4.6.3 Third Column: Exact Quasi-Atomic Orbitals 𝝍A, 𝝍B

The exact quasi-atomic orbitals differ from the 1s* orbitals by the polarization
terms as shown in Eq. (1.11) and Figures 1.3 and 1.4. Because these are relatively
small, the energy curves in the third column of Figure 1.9 are similar to those in
the second column.

The energy lowering with respect to the second column is essentially caused
by the fact that the quasi-classical energy Vqc becomes attractive as a result of
the quasi-atomic orbital polarization as mentioned in Section 1.4.5.2. This energy
lowering outweighs a lesser energy increase in the interference energy and in the
intra-atomic energy.

The interference energy becomes slightly less bonding because polarization
slightly decreases the charge accumulation in the bond. The intra-atomic energy
increases because polarization is achieved by moving some of the intra-atomic
electron population from an s-type orbital to a p-type orbital of the same spatial size.

1.4.6.4 Conclusion
At all internuclear distances, it is the kinetic interference interaction between the two
atoms that drives the energy lowering that establishes bonding. The response of the
kinetic interference interaction to swelling and shrinking of the quasi-atomic
orbitals is, moreover, responsible for the peculiar variations of the kinetic energy
and the potential energy with the internuclear distance.

It should be noted that, at about half the equilibrium distance, the transition
to the united atom regime begins so that, for shorter internuclear distances, the
physical analysis requires modification.

1.4.7
Origin of Bonding at the Equilibrium Distance

The essential factors that emerge from the detailed preceding analysis of the
bond-creating quantum physical mechanism are epitomized in Table 1.1, which
lists the quantitative values of the binding energy contributions at the equilibrium
distance. The rows and columns of this table have exactly the same meanings as
those described in the second paragraph of Section 1.4.6 for Figure 1.9. In light of
the assessments of the preceding section, the data of Table 1.1 lead to the following
conclusions on the origin of the binding energy at the equilibrium distance.

1.4.7.1 Contributions to the Binding Energy
A full understanding of the energy lowering requires that intra-atomic as well as
interatomic energy changes are accounted for.

The intra-atomic energy changes represent deformations of the free-atom AOs
to the quasi-atomic orbitals in the molecule.

The interatomic interactions are of two kinds: (i) quasi-classical coulombic
potential energy changes due to the electrostatic interactions between the densities
of the two atoms and (ii) additional energy changes that result from the quantum
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Table 1.1 Binding energy analysis of H2
+ at Req (energies in mh).

Atomic orbitals used →
Interaction type ↓

Free
atoms

Contracted
free atoms

Quasi-atoms
in molecule

Quasi-classical V 27.6 11.3

Interference I T –113.7

–81.3

–187.2

–132.3 –108.4

–161.8

–36.2

V 32.4 54.9 53.4
E

Interatomic total T
V

E

Intra-atomic T 0

V 0
E 0

Total Binding T

V
E

–113.7

–53.6

60.1

–113.7 111.7

–53.6 –86.2
60.1 –197.8

102.632

–102.634
–205.266

–187.2

–122.0

–264.0 –222.4
34.8 42.0

66.2

298.8 264.4

–161.8

–144.6

17.2

mechanical delocalization of the electron orbital from one atom to both atoms
(‘‘electron sharing’’).

The effect of delocalization is embodied in constructive interference terms
between the wave amplitudes of the AOs from the two atoms (for the antibonding
orbital the interference is destructive). This constructive interference generates
a shift of charge into the bond region (‘‘charge accumulation’’) as well as an
attenuation of the gradient in the bond region.

In the interference energy as well as in the intra-atomic deformation energy,
the kinetic contribution and the potential contribution differ in their effects on
bonding.

1.4.7.2 Energy Lowering By Electron Sharing
The energy lowering that creates the bond is driven by the interatomic interactions.

This is most clearly seen when the quasi-atomic orbitals are approximated by
the undeformed orbitals of the hydrogen atom so that the intra-atomic energy
changes vanish, as shown in the first column of Table 1.1. In this case the energy
lowering at the equilibrium distance (−53.6 mh) is caused entirely by the kinetic
interference energy (−113.7 mh) as a result of orbital delocalization. The potential
interference energy and the potential quasi-classical energies are both positive, that
is, antibonding (+32.4 and +27.6 mh, respectively).

In fact, beyond thrice the equilibrium distance, the exact binding energy comes
about just in this way (albeit on a smaller scale), since the quasi-atomic orbitals do
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not deform at these distances. However, at less than twice the equilibrium distance
intra-atomic orbital deformations occur and lower the energy further.

1.4.7.3 Energy Lowering by Quasi-Atomic Orbital Deformation
The deformations of the hydrogen atom orbitals into the quasi-atomic orbitals
unavoidably increase the intra-atomic energy by virtue of the atomic variation
principle. However, the deformations decrease the interatomic energy contributions
even more, thus yielding a decrease of the molecular energy.

The deformations are of two kinds: spherical contraction and polarization. The
second column of Table 1.1 contains the binding energy resolution after contraction.
The third column shows the resolution after polarization is also added.

The spherical contraction of the hydrogen AO (second column) lowers the inter-
atomic energy in two ways. Most importantly, it increases the electron delocalization
between the quasi-atomic orbitals so that the negative kinetic interference energy
is lowered by an additional −73.5 mh. The contraction also diminishes the quasi-
classical electrostatic repulsion by −16.3 mh because of the increased shielding of
the proton. This potential energy lowering is however smaller than the increase in
the potential interference energy (+22.5 mh), which the aforementioned enhanced
delocalization entails, so that the antibonding of the total interatomic potential
energy contribution increases by 6.1 mh. The total interatomic energy lowering by
contraction is thus −67.4 mh and it is entirely due to the kinetic interference energy.
This interatomic energy lowering is still stronger than the antibonding intra-atomic
energy increase of 34.8 mh that occurs because AO contraction raises the intra-
atomic kinetic energy more (by+298.8 mh) than lowering the intra-atomic potential
energy (−264 mh), in agreement with the general discussion in Section 1.2.2. The
net energy lowering due to contraction is thus −32.6 mh.

The polarization of the quasi-atomic orbitals (third column), on the other hand,
lowers the interatomic quasi-classical electrostatic energy by −47.5 mh through
shifting the intra-atomic charge on each nucleus slightly toward the other nucleus.
However, polarization raises the negative interference energy by +23.9 mh so that
the total interatomic energy is only lowered by −23.6 mh. Moreover, polarization
increases the intra-atomic energy by +7.2 mh because it represents an intra-atomic
charge shift that involves moving some electron population from a spherical orbital
to higher angular momentum orbitals without orbital swelling. The net energy
lowering due to polarization is thus only −16.4 mh.

1.4.7.4 Variational Perspective
The preceding analysis shows that, for every choice of quasi-atomic orbitals, the
interatomic kinetic energy change because of interference is the driving interaction,
whereas the sum total of the interatomic potential interactions is always antibonding, as
are of course the total intra-atomic energy changes. Nonetheless, the largest individual
energy changes are the intra-atomic changes in the kinetic and potential energies
(+298.8 and−264 mh, respectively) and, although they nearly cancel each other, they
actually invert the signs of the total contributions of T and V to the binding energy.
This, somewhat puzzling, incidental result of the interplay between interatomic
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and intra-atomic energy changes can be understood by the following variational
analysis.

In the molecule, the interatomic kinetic energy lowering is included in the
variational competition between the total T and the total V and hence, the intra-
atomic kinetic energy can increase beyond that of the free atom before the optimal
compromise between T and V is reached. Hence, a contraction occurs that lowers
the intra-atomic potential energy in a way similar to what would happen in a free
atom when the kinetic energy resistance to localization is weakened by increasing
the electron mass from 1 to about 1.275 (see Section 1.2.2). Thus, the interatomic
kinetic energy lowering through delocalization can be said to open the possibility
for an adjustment of the ratio between the intra-atomic electrostatic pull and kinetic
resistance in the direction of a tighter attachment of the electron cloud to the nuclei
than exists in the free atom, which leads to a corresponding energy lowering. One
can also say that the weakening of the overall kinetic energy pressure resulting from
interatomic delocalization allows for an increased intra-atomic localization through
which the electron wave can exploit more effectively the attractive potential regions
near the nuclei.

1.4.7.5 General Implications
One may reasonably ask whether the described interplay between interatomic and
intra-atomic energy changes is a peculiar quirk of H2

+ or whether it also occurs
in other molecules. In this context, the virial theorem discussed in Section 1.2.3
is relevant. According to Eq. (1.9), the ratio |2T/V| must be equal to 1 at the
equilibrium geometry of any molecule. The following reasoning shows that this
requirement entails the coupling of electron sharing and intra-atomic deformations,
in particular, contraction.

From the first column of Table 1.1 it is seen that the kinetic energy lowering that
results from electron sharing without quasi-atomic deformation, in conjunction
with the concomitant potential energy increase, lowers the virial ratio |2T/V| from
the free-atom value 1 to the value 0.82 at the equilibrium distance. But it has to be 1
for the correct molecular wave function. According to the discussion in the second
but last paragraph of Section 1.2.3, the exact wave function must therefore be more
localized in regions of low potential energy. This localization is achieved by the
intra-atomic contraction of the quasi-atomic orbitals, which entails the necessary
large changes in the intra-atomic kinetic and potential energy (even though the total
intra-atomic energy increase is small) that are needed to establish the virial ratio of 1.

In this regard, it is helpful to note that the contracted quasi-atomic orbital 1s*
(second column of Table 1.1), which approximates the spherical component of the
exact quasi-atomic orbital, is in fact very close to that contracted orbital 1s# that
minimizes the energy of the approximate wave function (1sA

# + 1sB
#)/
√

(2+ 2S#).
[23] This orbital 1s# has the exponent 𝜁# = 1.240, as compared to the exponent
𝜁* = 1.264 of 1s*, which was given at the end of Section 1.4.1. The corresponding
molecular values of E#, T#, V# are therefore close to those for 1s*. Since energy
optimization with respect to 𝜁 guarantees the virial ratio |2T/V|= 1, this relation
is indeed fulfilled by T# and V#. It is therefore also justified to reason in terms



34 1 The Physical Origin of Covalent Bonding

of the variational competition between T and V with reference to the 1s* wave
function listed in column 2 of Table 1.1. On the other hand, it is apparent that
the proper compromise between electrostatic pull and kinetic resistance cannot be
accomplished by a polarization deformation.

Finally, it is to be noted that the following relationships are generally and
rigorously valid: (i) The virial ratio |2T/V| is equal 1 at all equilibrium geometries.
(ii) Orbital exponent optimization always establishes the virial ratio. (iii) Electron
delocalization always lowers the kinetic energy. In conjunction, these observations
lead to the inference that any covalent bond that is formed by electron sharing, that
is, delocalization, can be expected to involve orbital deformations that will attach
the electrons more firmly to the nuclei. This anticipation will be confirmed by the
analyses of the other molecules examined in Sections 1.5 and 1.6.

1.5
The Effect of Electronic Interaction in the Covalent Electron Pair Bond: H2

Since the two electrons in the ground state of H2 have opposite spins and, thus, are
allowed to occupy the same function space, they are shared in a similar manner
between the two atoms. The cumulative result of the bonding generated by each
electron produces the pair bond. The binding energy analysis of H2 is therefore
very similar to that of H2

+, showing that covalent bonding is also a one-electron
phenomenon within an electron pair bond. However, electron sharing enhances
the mutual interpenetration of the electrons, each of which originally resides on
one atom, and this enhanced penetration increases the interelectronic repulsion. For this
reason, the binding energy of H2 is only 85% of twice the binding energy of H2

+.
The elucidation of this interelectronic effect is the new element to be traced in the
analysis of H2.

Following the approach laid out in Section 1.3.2, the binding energy of the optimal
wave function in the FORS space will be analyzed first. This two-determinant wave
function recovers 87.3% of the binding energy. The remaining 12.7%, contributed
by the dynamic interelectronic correlation, will then be examined by means of a
full CI wave function of 3176 determinants.

All the wave functions to be discussed were calculated using an uncontracted (14s,
6p, 3d, 2f, 1g) basis of 26 σ-type spherical Gaussian AOs on each atom, which was
optimized for the present problem and differs slightly from that used for H2

+.1) It
yields the energy –0.4999993 hartree and the virial ratio |2T/V|= 1.0000197 for the
hydrogen atom. The quality of the present approach for the molecule was assessed
by means of a full CI calculation at the internuclear distance R= 1.4000 Bohr, for
which Kolos [24] as well as Nakatsuji [25], using the interelectronic distance in the
wave function, have produced benchmark calculations of highest accuracy. The full

1) The uncontracted basis set for H2 was optimized to minimize the FCI energy at R= 1.4 bohr
and contains GTOs with the following orbital exponents: s= 26110.0, 4078.0, 952.7, 243.8, 70.77,
23.75, 8.713, 3.628, 1.904, 1.243, 0.6419, 0.2978, 0.1382, 0.06620; p= 11.13, 3.858, 2.261, 1.079,
0.4752, 0.1952; d= 3.111, 1.232, 0.4749, f = 2.661, 0.9583, g = 2.271.
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CI energy obtained with the present basis was found to lie 0.1991 mh above the
value of –1.1744757 hartree determined by the two mentioned authors.

The FORS calculation yields the equilibrium distance 1.425859 Bohr, the energy
of 1.1522764 hartree and the virial ratio |2T/V|= 1.0000023. The full CI calculation
yields the equilibrium distance 1.4012 Bohr, the energy –1.1742769 hartree and
the virial ratio |2T/V|= 1.0000015. The best bond length known is 1.4011 Bohr [26].
The quantitative details on which the discussion in the present section is based will
be elaborated in a separate report [27].

1.5.1
Quasi-Atomic Orbitals of the FORS Wave Function

There are two atomic minimal basis set orbitals in this system. According to
the discussion of Section 1.3.2, the FORS MO space is therefore by definition
two-dimensional. It can be spanned by the bonding orbital σg and the antibonding
sigma orbital σu, both of which are partially occupied. At all internuclear distances,
this FORS wave function was obtained by MCSCF optimization of the expression

Ψ(1, 2) = cg𝜎g(1)𝜎g(2) + cu𝜎u(1)𝜎u(2) (1.43)

which determined the coefficients cg, cu as well as the orbitals 𝜎g, 𝜎u in terms
of the 52-dimensional AO basis mentioned above. At the equilibrium distance,
the coefficients are {cg, cu}= {0.99370277, –0.11204818}. The two quasi-atomic
orbitals 𝜓A, 𝜓B that span the same FORS orbital space, that is, the QUAFOs, were
then obtained as follows.

To determine 𝜓A, the (2× 26) overlap matrix between the MCSCF orbital set
(σg, σu) and the set of the 26 sigma basis AOs on atom A mentioned earlier
was calculated. Its SVD yielded two orbitals in the FORS orbital space. At all
internuclear distances, the largest SVD diagonal element is larger than 0.999780
(the value for 2.2 Bohr). The corresponding orbital in the FORS space is the QUAFO
(quasi-atomic FORS orbital) 𝜓A. The corresponding orbital that is spanned by the
26 basis AO’s on atom A is the PAAO (Pure Atomic Approximate Orbital) to the
QUAFO 𝜓A. In contrast to the PAAO, the QUAFO contains a slight admixture
from the basis AOs on atom B. In generalization of Eq. (1.11) for H2

+, the QUAFO
of H2 on atom A can therefore be expressed as

𝜓A = a𝐬A + b𝐩A + 𝜒B (1.44)

𝐬A =
∑

(14sA), 𝐩A =
∑

(6pA, 3dA, 2fA, 1gA), 𝜒B =
∑

(orbitals on atom B)
(1.44a)

where sA and pA are normalized. By expressing the spherical component sA as the
sum of a projection on the orbital hA = 1s(H) of the free hydrogen atom A and its
orthogonal complement, the Eq. (1.44) can be written

𝜓A = a⟨𝐬A|𝐡⟩𝐡 + a(𝐬A –⟨𝐬A|𝐡⟩𝐡 + b𝐩A + 𝜒B (1.44b)
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Figure 1.10 Resolution of the quasi-atomic
FORS orbital (QUAFO) on the left atom
in H2 as a sum of contributions from the
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from the right atom at the equilibrium dis-
tance. The dashed curve is the pure atomic
approximate orbital (PAAO) to the QUAFO
(see Section 1.5.1). Distances are in bohr
from the bond midpoint.

The four terms of this resolution of 𝜓A are displayed in Figure 1.10 for the
equilibrium distance. It is apparent that, as in H2

+, the second term represents a
contraction of the spherical part.

Also shown in Figure 1.10, as a dotted curve, is the PAAO corresponding to the
QUAFO 𝜓A. The plot shows that the PAAO approximates the QUAFO extremely
closely. The overlap integral between the two orbitals is 0.999865. A CI calculation
of H2 with the PAAOs yields an energy that is only 2 mh above that obtained with
the QUAFOs, that is, the actual energy for Ψ.

The fractional contributions of contraction, polarization (pA), and the contribution
from the other atom (𝛘B) to 𝜓A are exhibited in Figure 1.11 as functions of the
internuclear distance. The values plotted in this Figure were obtained as follows.
Since 𝛘B is non-orthogonal to sA and pA, the contribution from 𝛘B that is actually
different from the orbitals on A is given by [𝛘B – ⟨𝛘B|sA⟩sA – ⟨𝛘B|pA⟩pA] and this is
the contribution shown in Figure 1.11. Accordingly, the contraction contribution
shown is [(a+ ⟨𝛘B|sA⟩)(sA – ⟨sA|h⟩h)] and the polarization contribution shown
is [(b+ ⟨𝛘B|pA⟩) pA]. It is apparent that, in H2, the spherical contraction is of
considerably greater relative importance than in H2

+. The reasons will become
apparent further on.

As in H2
+, the spherical component sA is very similar to a contracted hydrogen-

like 1s orbital. Figure 1.12a shows the exponent 𝜁* of this 1s* orbital, determined
by maximizing the overlap of 1s* with sA of Eq. (1.44a), as a function of the
internuclear distance. The overlap between this 1s* orbital and the QUAFO 𝜓A is
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shown in Figure 1.12b as a function of the distance. At the equilibrium distance
the exponent of 1s* is 𝜁* = 1.192.

The QUAFO on atom B, 𝜓B, was obtained in an entirely analogous way, using
the 26 basis AOs on B for the SVD. The QUAFOs 𝜓A and 𝜓B were then chosen
as the quasi-atomic basis to span the FORS space. They are related to the MCSCF
bonding /antibonding MOs of Eq. (1.43) by the transformation

𝜓A = 𝜎g cos 𝛼 + 𝜎u sin 𝛼 (1.45a)

𝜓B = 𝜎g cos 𝛼–𝜎u sin 𝛼 (1.45b)

At the equilibrium distance, the value of cos 𝛼 is 0.920259 and the overlap integral
between the non-orthogonal quasi-atomic orbitals is

S = ⟨𝜓A|𝜓B⟩ = cos 2𝛼 = 0.693754 (1.46)

With increasing internuclear distance, cos 𝛼 decreases to 1/
√

2 and S decreases
to zero.

1.5.2
FORS Wave Function and Density in Terms of Quasi-Atomic Orbitals

Using Eq. (1.45), the MCSCF optimized FORS wave function of Eq. (1.43) was then
expressed in terms of the quasi-atomic orbitals, which yielded the valence-bond
type expression

Ψ(1, 2) =
(N

2

) 1
2 {cos 𝛾[𝜓A(1)𝜓B(2) + 𝜓B(1)𝜓A(2)] + sin 𝛾[𝜓A(1)𝜓A(2) + 𝜓B(1)𝜓B(2)]}

(1.47)

N = 1
(1 + S2 + 2S sin 2𝛾)

(1.48)

The coefficients cos 𝛾 and sin 𝛾 are related to the coefficients cg, cu, cos 𝛼, sin 𝛼 of
Eqs. (1.43) and (1.45) by

sin 𝛾 =
C1√

(C2
1 + C2

2)
cos 𝛾 =

C2√
(C2

1 + C2
2)

(1.49a)

4C1 =
( cg

cos2 𝛼

)
+
(

cu

sin2 𝛼

)
, 4C2 =

( cg

cos2 𝛼

)
–

(
cu

sin2 𝛼

)
(1.49b)

At the equilibrium distance, the value of 𝛾 is 13.051068◦.
The first order density matrix obtained from this wave function can be resolved

into a quasi-atomic and an interference contribution between the quasi-atomic
orbitals in a way that is entirely analogous to the corresponding resolution in H2

+.
One finds

𝜌(1′, 1′′) = 2∫ dx2 Ψ(1′, 2)Ψ(1′′, 2) = 𝜌qa(1′, 1′′) + 𝜌I(1′, 1′′) (1.50)
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where the quasi-atomic density matrix is the superposition of the atomic density
matrices, that is,

𝜌qa(1′, 1′′) = 𝜓A(1′)𝜓B(1′′) + 𝜓B(1′)𝜓A(1′′) (1.51)

and the interference density matrix is

𝜌I(1′, 1′′) = p × {[𝜓A(1′)𝜓B(1′′)+𝜓B(1′)𝜓A(1′′)] − S[(𝜓A(1′)𝜓A(1′′)+𝜓B(1′)𝜓B(1′′)]}
(1.52)

with the bond order

p = (S + sin 2𝛾)
(1 + S2 + 2S sin 2𝛾)

(1.53)

The diagonal terms, that is, the interference density, which is relevant for the
potential energy terms, becomes therefore

𝜌I(1, 1) = 𝜌I(1) = p ×ℐAB (1.54)

where

ℐAB = 2𝜓A𝜓B − S(𝜓2
A + 𝜓2

B) (1.54a)

is the same orbital interference density as the one that occurred in Eq. (1.14a) for
H2

+. The bond order p depends on the mixing ratio between the covalent and the
ionic contribution to Ψ. For the Hartree–Fock wave function (i.e., 𝛾 = 45◦ in Eq.
(1.47)), it is p= 1/(1+S) so that the interference density expression of Eq. (1.54)
becomes exactly twice that of H2

+ given in Eq. (1.14). For the wave function of Eq.
(1.47), it has the value 0.541996.

An implication of Eq. (1.54a) is that the orbital product 𝜓A𝜓B can be resolved
into a coulombic and an interference component according to

2𝜓A𝜓B = S(𝜓2
A + 𝜓2

B) +ℐAB (1.54b)

This interference resolution of the product 𝜓A𝜓B will be used to analyze the role of
the electron interaction terms in the binding energy analysis.

1.5.3
Binding Energy as a Sum of Two Intra-atomic and Five Interatomic Contributions

1.5.3.1 Overall Resolution
By inserting the discussed resolution of the density into the energy expression
resulting from ⟨Ψ|𝓗|Ψ⟩ with the Hamiltonian of the H2 molecule, and after
appropriately combining terms, one obtains the following resolution of the binding
energy in terms of contributions with physical meanings.

The total binding energy is again the sum of intra-atomic and interatomic energy
changes and both are again resolved into kinetic and potential contributions:

𝐄Binding = 𝐄(Ψ) − 2𝐄H = 𝐄intra + 𝐄inter (1.55)

𝐄intra = 𝐓intra + 𝐕intra (1.56)
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𝐄inter = 𝐓inter + 𝐕inter (1.57)

The intra-atomic contributions are entirely analogous to those of H2
+ in Eqs. (1.24),

(1.31), and (1.37), except that, now, a full electron resides on each of the two atoms:

𝐓intra =
1
2∫ dx(∇𝜓A)2 +

1
2∫ dx(∇𝜓B)2 –1.0Hartree (1.58)

𝐕intra = −∫ dx
𝜓2

A

rA
–∫ dx

𝜓2
B

rB
+ 2.0Hartree (1.59)

The interatomic kinetic energy change is again the result of the interference of the
quasi-atomic orbitals, that is,

𝐓inter = 𝐓I = p × ∫ dx
{

2
(
𝜓A

(
−1

2
∇2
)
𝜓B

)
−
[(

𝜓A

(
−1

2
∇2
)
𝜓A

)
+
(
𝜓B

(
−1

2
∇2
)
𝜓B

)]}
= p × 1

2∫ dx
{

2
(
∇𝜓A

)
⋅ (∇𝜓B) − [(∇𝜓A)2 + (∇𝜓B)2]

}
(1.60)

where p is the bond order given in Eq. (1.53). Equation (1.60) is entirely analogous
to Eq. (1.32) for H2

+.
The interatomic potential interactions contain two kinds of terms, as was the case

for H2
+, namely:

• coulombic terms, which are defined as electrostatic interactions between non-zero
charges,

• interference terms, that is, electrostatic interactions, which involve interference
charge distributions that have zero integrated charges and describe charge shifts
with respect to the coulombic terms.

Thus:

𝐕inter = 𝐕coulombic + 𝐕interference (1.61)

The contributions of the interelectronic repulsion terms to Vcoulombic and Vinterference

are obtained by substituting the interference Eq. (1.54b) for the orbital products 𝜓A𝜓B

in the energy expression of H2.

1.5.3.2 Interatomic Coulombic Contributions
By the just mentioned substitutions, the total coulombic part of the interelectronic
interaction is found to be

(1 − 2q)⟨⟨𝜓2
A|𝜓2

B⟩⟩ + q⟨⟨𝜓2
A|𝜓2

A⟩⟩ + q⟨⟨𝜓2
B|𝜓2

B⟩⟩ (1.62)

In this as well as the following equations of this section, light gray shading
identifies terms arising from interelectronic interactions and the electrostatic
integral between two charge distributions f (x, y, z) and g(x, y, z) is denoted by

⟨⟨f |g⟩⟩ = ∫ dx1∫ dx2

f (1)g(2)|r1 –r2| (1.63)
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The factors q and (1− 2q) in Eq. (1.62) have the following origin. Since each electron
is shared between both atoms, both electrons contribute to the average charge of 1e
on each atom and there exists a finite probability of finding both electrons on the
same atom, that is, occupying the same quasi-atomic orbital. The analysis of the
second-order density shows that (with N and 𝛾 being defined in Eqs. (1.47), (1.48)
and (1.49))

q = (1–N cos 2𝛾)
4

(1.64)

is the probability of finding both electrons on the same atom and, correspondingly,
that (1− 2q) is the probability of finding one electron on atom A and the other on
atom B. The value of q is maximal {viz 0.25} for the MO wave function (𝛾 = 45o)
and minimal, but not zero {viz (S2 / 4(1+S2)= 0.081299} for the valence bond
(VB) wave function (𝛾 = 0o). It is 0.142673 for the wave function of Eq. (1.47).

Combining the coulombic electron interaction terms of Eq. (1.62) with the
electron nuclear coulombic attractions and the internuclear repulsion, the total
coulombic interaction is expressed as follows

𝐕coulombic = 𝐕qc + 𝐕sc (1.65)

Where

𝐕qc = −∫ dx
𝜓2

A

rB
− ∫ dx

𝜓2
B

rA
+ ⟨⟨𝜓2

A|𝜓2
B⟩⟩ + 1

R
= the quasi-classical coulombic interactionbetween the two atoms,

each having one full electron (1.66)

𝐕sc = q ×
{ ⟨⟨

𝜓2
A|𝜓2

A

⟩⟩
+ ⟨⟨𝜓2

B|𝜓2
B⟩⟩ –2 ⟨⟨𝜓2

A|𝜓2
B⟩⟩ }

= a ‘‘correction’’ of the preceding term 𝐕qc so that the sum of the

interelectronic terms in 𝐕coulombic of Eq. (1.65) becomes in fact

identical with the actual terms given in Eq. (1.62) (1.67)

The quasi-classical coulombic term Vqc of Eq. (1.66) has been formulated so as to
balance attractions and repulsions between the atoms in a way analogous to the
quasi-classical interaction term in H2

+ given in Eq. (1.25). The term Vsc manifestly
replaces an appropriate amount of interatomic electron repulsion, included by
definition in Vqc, with the amount of intra-atomic electron repulsion required to
recover the actual contribution given in Eq. (1.62). Since the intra-atomic electron
repulsions are generated by electron sharing, the energy contribution Vsc is called
the coulombic sharing contribution. It is the energetic measure of the finite probability
of both electrons being on the same atom. Although rarely mentioned, it is quite
strong and antibonding.

1.5.3.3 Interatomic Interference Contributions
The potential interference energy is the sum of two contributions

𝐕interference = 𝐕I + 𝐕II (1.68)
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The first term is analogous to the potential interference energy of H2
+ given by

Eq. (1.26). Here, one obtains

𝐕I = ∫ dx

(
− 1

rA
− 1

rB

)
𝜌I +

1
2
⟨⟨𝜓2

A + 𝜓2
B|𝜌I⟩⟩

= p ×
{
∫ dx

[(
− 1

rA
− 1

rB

)
ℐAB + 1

2
⟨⟨𝜓2

A + 𝜓2
B|ℐAB⟩⟩ ]} (1.69)

where 𝜌I and ℐAB are the orbital interference terms of Eqs. (1.54) and (1.54a)
and p is the bond order of Eq. (1.53). The difference between this expression
for VI and that for H2

+ in Eq. (1.26) is the presence of the electron repulsion
terms ⟨⟨..|..⟩⟩, which have the following origin: The interference density of each
electron experiences the attractions of the two shielded nuclei. The shielding that
one electron experiences is caused by the coulombic repulsion of the other electron,
which is evenly distributed over both nuclei, so that each nucleus is shielded by half
an electron.

The second interference term in Eq. (1.68) is

𝐕II =
1
4

N ⟨⟨ℐAB|ℐAB⟩⟩ (1.70)

It represents the interaction between the interference energies of the two electrons.

1.5.3.4 Binding Energy as a Sum of Two Intra-atomic and Five Interatomic
Contributions
The total binding energy is then the sum of the following seven contributions with
physical interpretations discussed in Sections 1.5.3.1 to 1.5.3.3:

𝐄Binding = 𝐓intra + 𝐕intra + 𝐓I + 𝐕qc + 𝐕sc + 𝐕I + 𝐕II (1.71)

This decomposition has not been arbitrarily conceived or imposed. Rather, it is the
result of simply sorting out the terms in the rigorous energy expression ⟨Ψ|𝓗|Ψ⟩
after inserting the interference resolution of Eq. (1.54b) for 𝜓A𝜓B.

1.5.4
Quantitative Synergism of the Contributions to the Binding Energy

1.5.4.1 Quantitative Characteristics
From the discussion in the preceding section it is apparent that five of the seven
contributions to the binding energy Eq. (1.70), namely Tintra, Vintra, Vqc, TI, VI, have
the same physical meanings as the corresponding contributions in H2

+, which
were discussed in Section 1.4.4.

These contributions also exhibit the same general quantitative characteristics
as those discussed for H2

+ in Section 1.4.5. An exception is the quasi-classical
coulombic energy Vqc, which differs from twice that of H2

+ in that one internuclear
repulsion is replaced by the interelectronic repulsion, as is seen by comparing the
definition of Eq. (1.66) for H2 with that of Eq. (1.25) for H2

+. As a consequence and
in contrast to H2

+, the term Vqc is, therefore, always attractive in H2.
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More importantly, the binding energy of Eq. (1.71) also contains the coulombic
sharing contribution Vsc of Eq. (1.67), which does not exist in H2

+. It arises from
both electrons spending part of the time simultaneously on the same atom. As
explained after Eq. (1.67), it replaces an interatomic electron repulsion by intra-
atomic repulsions. Since the latter are significantly larger than the former, this
term is always positive, that is, antibonding. As a result the sum total coulombic
contribution Vcoulombic = Vqc +Vsc of Eq. (1.65) is in fact antibonding at all internuclear
distances, even when the quasi-atomic orbitals are polarized. It is a two-electron
price to be paid for the energy lowering gained by simultaneous one-electron
sharing of the two electrons in the same bond. The compromise between Vsc

and the interference energy TI determines what is sometimes called left–right
correlation.

Finally, the binding energy of Eq. (1.70) contains the second interference term
VII. It represents the self-energy of a distribution with zero total charge and is
therefore expected to have very small numerical values.

1.5.4.2 Synergism along the Dissociation Curve
The synergism of the various contributions to the binding energy is shown in
Figure 1.13 for H2, which corresponds to Figure 1.9 for H2

+. The rows and
columns of the 15 panels have exactly the same meaning as in Figure 1.9 and were
explained in detail in the second paragraph of Section 1.4.6. The comparison of
the two figures shows that, notwithstanding differences in quantitative details, all
binding energy contributions exhibit essentially the same bonding and antibonding
pattern over the full range of the interatomic distance.

The differences between H2 and H2
+, which are a result of the presence of the

interelectronic repulsions, appear mainly in the panels of the first row, that is,
for the coulombic contributions. Whereas only the quasi-classical coulombic term
Vqc is present in H2

+, the coulombic contribution of H2 contains in addition the
coulombic sharing contribution Vsc. In confirmation of the explanation elaborated
in the preceding Section 1.5.4.1, it is seen that, at all distances and on all three
panels, i.e., for all three quasi-atomic orbital choices, the quasi-classical term Vqc is
attractive, the sharing modification Vsc is repulsive and the total coulombic contribution
Vcoulombic is repulsive. Nonetheless, when the spherical 1s* quasi-atomic orbital
approximation (second column) is replaced by the polarized exact quasi-atomic
orbitals (third column), the coulombic contributions of H2 and H2

+ change in the
same direction: In H2

+, the contribution changes from repulsive to attractive; in H2,
it becomes less repulsive. Specifically, the quasi-classical term of H2 becomes more
attractive and the coulombic sharing contribution becomes less antibonding. Thus,
in both molecules, the polarization of the quasi-atomic orbitals, which results from
replacing the 1s* quasi-atomic orbital approximation (second column) by the exact
quasi-atomic orbitals (third column), lowers the binding energy because it lowers
the coulombic energy. This lowering outweighs the increases in the interference
energy and the intra-atomic energy caused by the polarization as discussed in
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Figure 1.13 Each column of panels exhibits
the contributions to the binding energy of
H2 as functions of the interatomic distance.
First column: when the molecular wave func-
tion is a superposition of atomic ground
state 1s orbitals. Second column: when the

molecular wave function is a superposition
of the scaled exponential 1s* approximations
to the QUAFOs (see Figure 1.12). Third col-
umn: when the molecular wave function is
a superposition of the QUAFOs, that is, for
the actual wave function.
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Section 1.4.6.3. Nonetheless, the total inter-atomic potential contribution to the
binding energy remains anti-bonding over the whole range.

As noted earlier, the second interference term is expected to have very small
values. In fact, these values are so small that they are indistinguishable from zero
on the scale of the panels in the second row in Figure 1.13 and are therefore not
displayed. The total potential interference energy shown in these panels is therefore
essentially equal to VI of Eq. (1.69).

The overall synergism of the binding energy contributions in H2 is thus the
same as that in H2

+ and the general conclusions deduced for H2
+ by the in-depth

discussions in Sections 1.4.5 and 1.4.6 apply therefore also to H2.

1.5.5
Origin of Bonding at the Equilibrium Distance

Detailed insights into the effect of the interelectronic interaction on the binding
energy are provided by the explicit quantitative values at the equilibrium distance,
which are listed in Table 1.2. The table is analogous to Table 1.1 for H2

+ and is
organized in the same manner. The rows and columns have the same meaning
in the two tables and they also correspond to those in Figure 1.13, which was
discussed in the preceding Section 1.5.4.2.

Table 1.2 Binding energy analysis of H2 at Req (energies in mh).

Atomic orbitals used →
Interaction type ↓

Free
atoms

Contracted
free atoms

Quasi-atoms
in molecule

Quasi-classical coulombic V
Sharing Coulombic V

Interference I T
V
E

Interference II V

Interatomic total T
V
E

Intra-atomic T 0
V 0
E 0

Total binding T
V
E

–4.7

–167.8 –275.7 –245.0

–167.8 –275.7 –245.0

420.9 397.3

–136.2 –221.0 –204.8

–109.1 –184.8 –193.8

–167.8 145.2 152.282

–109.1 –147.9 –152.276
–304.559

–384.0

–293.1

–355.8

31.6 54.7 40.2

58.7

58.7 90.9 51.2

36.9 41.5

–21.6 –41.0
30.8 56.2 50.4

1.0 1.6 1.6
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The overall quantitative energetic pattern is indeed analogous to that found
for H2

+. In particular the interatomic energy lowering is the driver for all three
quasi-atomic orbital choices (columns). There are however noteworthy differences.

1.5.5.1 The Primary Mechanism as Exhibited by Choosing the Free-Atom Orbitals as
Quasi-Atomic Orbitals
As in H2

+, the binding energy in the first column of Table 1.2 is again furnished
by the kinetic interference energy (−167.8 mh), that is, electron delocalization. It is
54.1 mh more bonding than that of H2

+ (−113.7 mh). But the former is less than
twice the latter, presumably because the bond order p of H2 [∼0.542 see after
Eq. (1.54a)] is less than twice that in H2

+ [∼0.315, see after Eq. (1.14a)].
On the other hand, the antibonding potential interference energy in H2

(+31.6+ 1.0=+32.6 mh) differs only by 0.2 mh from that of H2
+, even though

two electrons are involved. The reason is presumably that the potential acting on
the interference density 𝜌I of H2 in Eq. (1.69) is weaker than the corresponding
potential for H2

+ in Eq. (1.26) because, in H2, each nucleus is shielded by half an
electron as explained after Eq. (1.69).

Although the quasi-classical coulombic energy of H2 is attractive (−4.7 mh), as
explained in Section 1.5.4.1, and in fact 32.3 mh lower than the repulsive quasi-
classical energy in H2

+, the total coulombic energy of H2 is repulsive (+26.1 mh)
and only 1.5 mh lower than that of H2

+. This is because of the additional coulombic
repulsion that is a result of the finite probability of both electrons being on the
same atom, as explained in the third paragraph of Section 1.5.4.1. It gives rise to
the antibonding coulombic sharing energy Vsc, of +30.8 mh!

As a result the interatomic potential contributions add up to the antibonding
value of +58.7 mh against the bonding kinetic contribution of −167.8 mh, yielding
the binding energy of −109.1 mh.

1.5.5.2 Effect of Quasi-Atomic Orbital Contraction
As discussed in detail in Section 1.4.3, near the equilibrium distance the contraction
shown in the second column of Table 1.2 enhances interference, delocalization
and charge accumulation in the bond. As in H2

+, the kinetic interference energy is
thus enhanced to −275.7 mh, that is, by a factor 1.64, which is near identical to the
corresponding enhancement factor in H2

+. The antibonding potential interference
energy increases by a factor 1.73, which is also similar to that factor in H2

+.
The contraction lowers the quasi-classical coulombic energy by −16.9 mh (second

minus first column), that is, by almost the same amount as in H2
+ (−16.3 mh).

On the other hand however, it is manifest from the Eq. (1.67) and the subsequent
discussion that quasi-atomic orbital contraction will increase the sharing coulombic
energy Vsc. This increase is in fact 25.4 mh so that the antibonding of the total
coulombic energy increases by +8.5 mh. In H2

+ by contrast, where Vsc does not exist,
the coulombic energy decreases by −16.3 mh.

As a result, contraction increases the total antibonding interatomic potential
contributions by a factor 1.54 in H2 as compared to a factor of only 1.1 in H2

+.
Since contraction increases the bonding interatomic kinetic contributions in H2
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and H2
+ by the same factor (about 1.7, see two paragraphs earlier), contraction

enhances the total interatomic bonding contribution of H2 (−184.8) only by a factor
1.69 whereas that factor is 2.26 in H2

+.
Contraction increases the intra-atomic energy by +36.9 mh, which is only 2.1 mh

more than that in H2
+ (the contraction is less than in H2

+, but two electrons
contribute).

As a result, the total binding energy of H2 (−147.9 mh) has been enhanced by a
factor of 1.36 through quasi-atomic orbital contraction. This factor is less than the
factor 1.61 in H2

+.

1.5.5.3 Effect of Polarization
The third column of Table 1.2 shows the effect of modifying the quasi-atomic
orbitals by polarization as well as by the admixture from the other atom. For
simplicity, both distortions of the exact quasi-atomic orbitals’ spherical symmetry
will be subsumed under the label ‘‘polarization’’ in the following paragraphs.

The effect of these distortions on the interference energy of H2 is very similar
to that in H2

+: The kinetic interference contribution becomes less bonding,
the potential interference contribution becomes less antibonding and the total
interference energy becomes less bonding, that is, more positive. The increase in
the value of the interference energy in H2 (16.2 mh) is less than the corresponding
increase in H2

+ (23.9 mh).
As in H2

+, polarization lowers the quasi-classical coulombic energy of H2, that
is, it makes it more bonding. But the energy lowering is less than half of that in
H2

+. It also lowers the antibonding sharing coulombic energy somewhat. The total
coulombic energy lowering through polarization in H2 (−25.2 mh) is considerably
less than that in H2

+ (−47.5 mh).
As a result the total interatomic bonding interactions in H2

+ are enhanced by
only −9.0 mh as compared to −23.6 mh in H2

+.
Polarization increases the intra-atomic antibonding 4.6 mh, that is, 2.6 mh less

than in H2
+.

As a result, the total binding energy of H2 is enhanced only by −4.4 mh through
polarization whereas the enhancement in H2

+ is −16.4 mh. The effect of the
distortion of the quasi-atomic orbitals from spherical symmetry is thus much
smaller in H2 than in H2

+.

1.5.5.4 Binding in the Electron Pair Bond of H2

As in H2
+, the driving element of binding in H2 is the interatomic kinetic energy

lowering through delocalization (‘‘electron sharing’’), which is embodied in the
kinetic interference energy. This effect is a part of the cumulative one-electron
energies of the two electrons. The two-electron bond is thus the cumulative result
of the one-electron bonding created by each electron. The essential conclusions
regarding the origin of the covalent bond in H2

+, which were summarized in
Section 1.4.7, remain therefore also valid for H2.

These one-electron bonding effects are however diminished by the presence of
the interelectronic repulsion because the bonding delocalization of both electrons
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also results in a finite probability of the two electrons being found at the same
atom, and this simultaneous presence at the same site generates a strong coulombic
repulsion that exists neither in the hydrogen atoms nor in the H2

+ molecule. In
consequence, the binding energy of H2 is less than twice that of H2

+.
In the energy analysis, the effects caused by the interelectronic repulsion appear

in three places:

1) The strong antibonding contribution generated by the finite probability of
finding both electrons near the same nucleus is embodied in the sharing
coulombic energy Vsc, which is absent in H2

+. Indeed, the value of Vsc at the
equilibrium distance, viz 50.4 mh (Table 1.2) is very close to the difference of
52.0 mh between the binding energy of the FORS wave function (Table 1.2)
and twice the binding energy of H2

+ (Table 1.1).
2) Because of the electron repulsion, the delocalization of the individual electrons

is moreover not as uninhibited as in H2
+, a fact often denoted as ‘‘left–right

correlation’’ As a result, the bond order, which weights the interference terms,
is smaller than twice that in H2

+.
3) The nuclear potentials that act on the interference density are shielded, which

reduces the antibonding potential energy increase associated with the charge
accumulation in the bond. But this enhancement of bonding is counteracted by
the bond order attenuation mentioned under (ii) which decreases the bonding
of the kinetic interference terms.

It should be noted that the large antibonding term Vsc is a coulombic interaction.
Although it is generally appreciated that the quasi-classical coulombic energy is
attractive in H2, it seems to be much less recognized that electron sharing also
generates the large repulsive coulombic term Vsc and that, in consequence, the total
coulombic contribution is in fact always antibonding – in contrast to H2

+, where it is
bonding. In fact, as in H2

+, the sum total of the inter-atomic potential contributions
is always anti-bonding.

1.5.6
Electron Correlation Contribution to Bonding in H2

As seen in the preceding parts of this section, the finite probability of both electrons
being on the same atom, which is inherent in the FORS wave function, entails
an electron repulsion that causes the FORS binding energy (−152.276 mh) to fall
52 mh short of twice the binding energy of H2

+ (−102 mh). Of this difference,
22 mh are recovered by the exact wave function, in which the probability of the two
electrons to find themselves in the same space element is reduced by adjustments
beyond the FORS level, that are termed dynamic correlations. Thus, 87% of the
actual binding energy (−174.476 mh) is accounted for at the FORS level and 13%
is recovered by dynamic correlation.

To examine the correlating adjustments, a full configuration interaction (FCI)
wave function was calculated in the configuration space spanned by the 3176
determinants that are generated by the 140 orbitals of the 14s, 6p, 3d, 2f, 1g basis
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mentioned in the third paragraph of Section 1.5. It yields the binding energy
−174.168 at the FORS equilibrium distance (1.425859 Bohr), and −174.277 mh at
the re-optimized equilibrium distance (1.4012 Bohr).

At the FORS equilibrium distance, where the FCI wave function recovers 99.8% of
the binding energy, the dominant FCI natural orbitals (NOs) and their occupations
are:

1σg 1σu 2σg 1πxu 1πyu 135 remaining NOs

1.96347 0.02067 0.00598 0.00428 0.00428 0.00132

The first two of these NOs closely resemble the bonding and antibonding FORS
orbitals and account for 1.98414 electrons. The next three natural orbitals provide
in–out and π angular correlation. The two configurations that form the FORS
wave function clearly represent the dominant part of the nearly exact FCI function.
According to the text after Eq. (1.43), the occupancies of the corresponding two
NOs in the FORS wave function are 1.974890, and 0.025110.

To assess the effect of dynamic correlation on the bonding interactions at
the equilibrium distance, the interference effects generated by the FCI wave
function are compared with those of the FORS wave function in Figure 1.14.
The interference densities, which show the charge accumulation in the bond, and
the kinetic interference densities, which exhibit the effect of delocalization on the
kinetic energy, were calculated as follows:

Interference density
N∑
i

ni𝜙
2
i − 𝜓2

A − 𝜓2
B

Kinetic interference density + 1
2

N∑
i

ni{∇𝜙i}2 − 1
2
{∇𝜓A}2 − 1

2
{∇𝜓B}2

where the 𝜙i are the respective NOs, the ni are their occupations and 𝜓A and 𝜓B

are the QUAFO orbitals determined in Section 1.5.1. The upper limit N is 2 and
140 for the FORS and the FCI case respectively. These contour plots are analogous
to those shown in Figure 1.6 for H2

+.
It is apparent from the first two rows of panels in Figure 1.14 that the two-

electron correlation effects modify the basic structure of the one-electron densities
so little that the changes are hardly perceptible on the scale of these plots. The
difference plots displayed in the third row have reduced contour increments: 4
times reduced on the left panel, 10 times reduced on the right panel. The result of
electron correlation is seen to enhance very slightly the charge accumulation in the
bond (lower left panel). As argued in Section 1.4.5.3 and shown by the subsequent
quantitative results (e.g., Figures 1.9, 1.13 and Tables 1.1, 1.2), this enhancement
is expected to slightly increase the (positive) potential energy. On the other hand,
the correlation modification of the wave function slightly increases the gradient
density in a very narrow region near the nuclei (lower right panel, in agreement
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Kinetic interference Interference density
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FCI

FCI minus FORS FCI minus FORS

FCI

FORS

Figure 1.14 Comparison of the interference
for the full CI wave function with that for
the FORS wave function of H2. Left column
of panels: interference densities with con-
tour increments= 0.004 e Bohr−3 in the upper
two panels and 0.001 e Bohr−3 in the low-
est panel. Right column of panels: kinetic

interference densities with contour incre-
ments= 10 millihartree Bohr−3 in the upper
two panels and 1 millihartree Bohr−3 in the
lowest panel. Note that the increment in the
upper four panel’s is twice that used for the
one-electron system H2

+ in Figure 1.6.

with the lower left panel), which is expected to also increase the kinetic interference
density slightly.

These inferences are confirmed by the decomposition of the binding energy in
terms of its kinetic (T), nuclear-electronic attraction (Vne), and electron–electron
repulsion contributions (Vee), which is documented along the internuclear distance
in Figure 1.15. The two dissociation graphs at the top show that the relative roles
of these three components are very similar in the FCI and the FORS wave function
over the whole range.

The lower panel exhibits the modifications induced by the full CI calculations on
a scale that is magnified by a factor 20. At the equilibrium distance, the one-electron
energy changes are as predicted earlier from the interference plots in Figure 1.14.
The increases of the one-electron energies T and Vne are manifestly a side effect
of the much larger lowering of the electron repulsion energy Vee that is achieved
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Figure 1.15 Comparison of the kinetic, potential, and total energies of the full CI wave
function with those of the FORS wave function. Energy scale in millihartree.

by the correlating wave function adjustments. At large distances (>5 Bohr), on the
other hand, the one-electron FCI energies still differ by about 5 micro-hartree from
the corresponding FORS energies, even though the electronic interaction energy
differs by less than one micro-hartree. This surprizing result may be related to the
very long range of the (small) polarization effect that was noted in Figure 1.11.

The correlating wave function adjustments manifestly do not change the physical
interactions that lead to bond formation at the FORS level. These interactions
between the atomic minimal basis sets are left intact and remain dominant. The
correlating adjustments achieve however a reduction of about 40% in the amount
by which the bond energy of H2 falls short of twice the bond energy of H2

+.

1.6
Covalent Bonding in Molecules with More than Two Electrons: B2, C2, N2, O2, and F2

The essential conclusion of the preceding analysis has been that covalent bond
formation in H2

+ and H2 is the consequence of the attenuation of the kinetic
energy pressure experienced by each electron due to its interatomic delocalization
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(‘‘sharing’’). This attenuation is further enhanced by intra-atomic contractions,
which moreover allow the electronic wave to exploit more of the attractive potentials
near the nuclei. The shrinkage toward the nuclei is signaled by large contragredient
changes in the intra-atomic kinetic and potential energies. Although these changes
are large, they are not the cause of the binding process inasmuch as they nearly
cancel each other, leaving a small antibonding contribution. In the last paragraph
of Section 1.4, it was argued that this process of covalent bonding is general. In the
present section, it will be shown that, in the five diatomic molecules B2, C2, N2, O2,
and F2, covalent bonding involves, in fact, the same pattern of energy changes and
thus comes about in the same way.

All molecules are treated at the full valence space MCSCF level, that is, the
full FORS wave functions based on eight molecular valence orbitals is analyzed.
In addition a wave function containing some additional valence correlation is
considered for F2. All calculations are performed with Dunning’s quadruple-zeta
cc-pVQZ basis sets [28] using the GAMESS molecular program suite [29].

1.6.1
Basis of Binding Energy Analysis

The detailed interactions in these systems are manifestly quite complex and a
complete analysis is beyond the scope of this chapter. Only those aspects will be
exhibited that have a bearing on the essential basic mechanism summarized in
the first paragraph of this section. To this end, the following four energies are
calculated for each molecule.

Energy (i): The energy of the free atom is calculated at the full valence space
MCSCF level (FORS), the core being kept as a closed shell. This calculation
is performed assuming the configurational structure that will result for the
atom when the molecular calculation is done at large internuclear distances.
Accordingly, the atomic calculation is performed in C∞v symmetry, keeping the
orbitals px and py equivalent, but the pz orbital nonequivalent. The five minimal
basis set orbitals are optimized in the quadruple-zeta AO basis (55 orbitals) of
the atom.

Energy (ii): The energy of the molecule is calculated by a full valence space
MCSCF calculation, the cores being closed shells. However, in this calculation the
orbitals are not optimized in the quadruple-zeta AO bases. Rather, all 10 orbitals are
determined as optimal linear combinations of the 10 optimal (core and valence)
free-atom orbitals that were found in the preceding atomic calculations on the
two atoms. The resulting molecular wave function represents the analogue to
the wave function that was obtained for H2 with the 1s ground state orbital of the
hydrogen atom.

Energy (iii): The energy of the molecule is optimized by a full valence space
MCSCF calculation, the cores being closed shells. In this calculation the orbitals
are optimized in the full quadruple-zeta bases of both atoms. This is the FORS
energy of the molecule.
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Energy (iv): The energy of the quasi-atom in the molecule is determined, which
represents the analogue to the quasi-atomic energies obtained in H2

+ and H2

by using the (contracted + polarized) quasi-atomic orbitals. This objective is
accomplished as follows.

The first step is to determine a basis for quasi-atomic FORS orbitals (QUAFO’s)
that span the full FORS function space of the MCSCF MOs obtained in the
preceding calculation (iii). To this end, the overlap integral matrix is calculated
between, on the one hand, all 10 molecular FORS MCSCF orbitals (including
the core orbitals) and, on the other hand, all 55 orthogonal occupied and virtual
free-atom orbitals obtained earlier in calculating the energy (i) on one of the two
atoms. Then, the SVD of this matrix is performed and those five MOs that
correspond to the largest five SVD eigenvalues are taken as the optimal quasi-
atomic orbital basis on that atom. By an analogous procedure, five quasi-atomic
orbitals are determined for the other atom. The ten quasi-atomic orbitals obtained
in this manner span the same orbital space as the molecular FORS orbitals from
the molecular MCSCF calculation of step (iii). We consider these QUAFOs as
the quasi-atomic orbital basis that is intrinsically embedded in the FORS wave
function.

As typical examples, Figure 1.16 displays contours of the quasi-atomic MOs for
the molecules N2 and F2. For N2, all five QUAFOs on one atom are shown. The
figure for F2, on the other hand, omits the 1s and the equivalent py orbitals. It
displays the three quasi-atomic FORS orbitals 2s, 2pz and 2px and the two additional
correlating orbitals 3s and 3px, which were obtained from a wave function that
included some valence correlation (see Section 1.6.4). The correlating quasi-atomic
orbitals were obtained by an entirely analogous SVD algorithm involving 16 MCSCF
orbitals. In view of the manifest atomic localization of these orbitals, we emphasize
that all of them are MOs in terms of which the molecular wave functions can be
expressed.

The energy of each quasi-atom in the molecule is then obtained by a full valence
space MCSCF (FORS) atomic calculation with the same format as that used for
the atomic calculation of Energy (i). However, the orbitals are not optimized in the
quadruple-zeta AO basis. Rather, all five orbitals are determined as optimal linear
combinations of the five QUAFOs that were obtained for that atom as described in
the preceding paragraph.

1.6.2
Origin of Binding at the Equilibrium Geometry

The results obtained by these calculations for the five molecules at their theoretical
equilibrium distances are contained in Table 1.3. For comparison, the correspond-
ing values of H2 are also included. Because the quantities of interest are the binding
energies, all entries listed in this table are in fact energies with reference to twice
the free-atom energy, i.e., 2×Energy (i) of the preceding Section 1.6.1 has been
subtracted from all energies.



54 1 The Physical Origin of Covalent Bonding

2s 2px2pz  3px 3s 

2s 2px 2py2pz

Quasi-atomic orbitals on the left atom of N2: FORS calculation 

1s 

Quasi-atomic orbitals on the left atom of F2: correlated FORS calculation 

Figure 1.16 Upper panels: core and valence
quasi-atomic orbitals of the FORS wave func-
tion (QUAFOs) in the N2 molecule. Lower
panels: valence quasi-atomic orbitals and
two correlating quasi-atomic orbitals of a
full MCSCF calculation that includes the

correlating orbitals 3s, 3px, 3py in the fluo-
rine molecule (the py orbitals being equiva-
lent to px orbitals are not shown,). For both
molecules, only orbitals on one atom are
shown. Note that all orbitals are molecular
orbitals (see Section 1.3.3).

For each molecule, a panel of nine blocks of entries is displayed, each block consisting
of the values for T, V, and E. The four corner blocks correspond to the four energies
discussed in the preceding Section 1.6.1. The upper left corner corresponds to the
two separated atoms. Since 2×Energy (i) has been subtracted from all energies,
this entry is always zero. The lower left corner contains the binding energy
obtained using the unchanged optimal orbitals of the free atoms, i.e., it is (Energy
(ii) minus 2×Energy (i)). The upper right corner block lists the energy of the
quasi-atoms in the molecule relative to the free atoms, i.e., it is 2× (Energy (iv)
minus Energy (i)). The lower right hand corner, finally, lists the actual FORS
binding energy from the full MCSCF calculations, i.e., it is (Energy (iii) minus
2×Energy (i)).

The other five blocks represent the energy changes between the respective adjacent
blocks and their values were simply obtained by subtraction. Thus, the blocks in the
second column show the energy differences that result from replacing the optimal
free-atom orbitals by the deformed quasi-atomic orbitals of the molecule, and the
blocks in the second row of blocks exhibit the differences between the molecular
energies and the intra-atomic energies, i.e., the energy contributions due to the
interatomic interactions.
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Table 1.3 Energy changes from free-atom energies to molecular FORS energies, resolved in
terms of intra- and interatomic contributions and in terms of free atom and deformed atomic
orbitals.

Contributions to
energy change

Free-atom
orbitals

Orbital
deformation

Quasi-atomic
orbitals

Free-atom
orbitals

Orbital
deformation

Quasi-atomic
orbitals

H2 B2

C2 N2

O2 F2

Intra-atomic
contributions

T 0 397.3 0 564.6
V 0 –355.8 0 –507.4
E 0 41.5

397.3
–355.8

41.5 0 57.1

564.6
–507.4

57.1

Interatomic
contributions

T –167.8 –77.2 –245.0 –142.4 –325.1 –467.6
V 58.7 –7.5 51.2 81.7 231.1 312.7
E –109.1

–167.8
58.7

–109.1

–84.7 –193.8 –60.8

–142.4
81.7

–60.8

–94.0 –154.8

Total binding
energy

T 320.1 152.3 239.5 97.0
V –363.3 –304.6 –276.4 –194.7
E –43.2 –152.3 –36.9 –97.7

Intra-atomic
contributions

T 0 1407.2 0 2352 2352
V 0 –1301.8 0 –2127 –2127
E 0 105.4

1407.2
–1301.8

105.4 0 225 225

Interatomic
contributions

T –608.0 –573.6 –1181.6 –955 –1056 –2011
V 468.2 379.7 847.9 862 584 1446
E –139.8 –193.8 –333.6 –92 –472 –564

Total binding
energy

T –608.0 833.7 225.7 –955 1296 341
V 468.2 –922.1 –453.8 862 –1543 –680
E –139.8 –88.4 –228.2 –92 –247 –339

Intra-atomic
contributions

T 0 1264.9 0 590.7
V 0 –1119.3 0 –547.2
E 0 145.6

1264.9
–1119.3

145.6 0 43.5

590.7
–547.2

43.5

Interatomic
contributions

T –378.3 –734.8 –1113.1 –100.4 –464.1 –564.5
V 357.2 459.3 816.4 97.2 393.3 490.5
E –21.2

–378.3
357.2
–21.2

–275.5 –296.7 –3.2

–100.4
97.2
–3.2

–70.8 –74.0

Total binding
energy

T 530.1 151.8 126.7 26.3
V –660.0 –302.9 –153.9 –56.7
E –129.9 –151.1 –27.2 –30.4

Quadruple-zeta bases, energies in mh.
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The following conclusions are manifest from these data.

1) The first column exhibits the bonding that is achieved when the free-atom
orbitals are used in the molecular calculation. In all molecules, this bonding
is seen to be the result of the lowering of the interatomic kinetic energy
contributions that is stronger than a concomitant potential energy increase,
exactly as in H2

+ and H2. There is no question that this binding is due to
delocalization.

2) The center column in the first row of the blocks shows the intra-atomic energy
increase when the optimal free-atom orbitals are replaced by the deformed
quasi-atomic orbitals of the molecule. In all molecules, the intra-atomic potential
energy decreases considerably, but the intra-atomic kinetic energy increases even
more so that the total intra-atomic energy increases somewhat (as it must by
the intra-atomic variation principle). These changes in the intra-atomic kinetic
and potential energies show that the quasi-atomic orbital deformations are
dominated by an overall contraction in all molecules, as was the case in H2

+

and H2.
3) The third column in the second row of the blocks shows the interatomic

interactions that create the bond between the quasi-atoms calculated with the
deformed quasi-atomic orbitals. These interactions are always stronger than
the interactions between the undeformed atoms listed in the first column. This
enhancement is indicated by blue-green highlighting of the energies in the
second row of the blocks. In all molecules, as in H2

+ and H2, the enhance-
ment is due to the interatomic kinetic contributions, which are indicated by
yellow highlighting.

4) The values of the just mentioned enhancement of the interatomic interaction
by quasi-atomic orbital deformation, are given in the second column of
the second row of the blocks (i.e., the center block of the entire panel).
It is always the result of a considerable enhancement of the interatomic

kinetic contributions, which indicates that, the quasi-atomic orbital deforma-
tions increase the delocalization, as was discussed in detail for H2

+ and H2. On
the other hand, the quasi-atomic orbital deformations render the interatomic
potential contribution more antibonding in all molecules, except in H2 where
it becomes slightly less antibonding. In all systems (including H2), the total
interatomic potential energy contribution (last column, second row of the
blocks) is very antibonding.

5) The lowest block in the third column shows the kinetic and potential energy
decomposition of the FORS binding energy. These contributions are, respec-
tively, positive and negative (as they must be by the virial theorem). From the
data in the blocks in the first and second row of the last column, it is apparent
that these signs are a consequence of the intra-atomic orbital contraction men-
tioned above, which are a side effect of the enhanced binding of the interatomic
kinetic contributions due to orbital deformation, as has been discussed for H2

+

and H2.
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In summary, bonding is brought about by the kinetic energy lowering in the
interatomic interactions in all molecules. The kinetic energy lowering is further
enhanced by a deformation of the quasi-atomic orbitals, which is an overall
contraction. This enhancement prevails over the intra-atomic energy increase that
is unavoidably also generated by the deformation. The intra-atomic energy increase
is the result of large compensating intra-atomic kinetic and potential energy
changes that cause the kinetic binding energy to be positive and the potential
binding energy to be negative, but reveal no information about the origin of
binding.

1.6.3
Synergism along the Dissociation Curve

The overall consistency that has been found for the essential bonding contributions
at the equilibrium geometries extends to the entire dissociation curves. This
similarity is exhibited in Figures 1.17–1.19 for the molecules B2, C2, N2, O2, and
F2. Each molecule is represented by one row of panels. In each row, from left to
right:

• The first panel displays the kinetic, potential, and total energy curves for the
interatomic interactions obtained with the free-atom orbitals (corresponding to item
1) in the preceding Section 1.6.2).

• The second panel displays the curves for the interatomic interactions obtained
with the deformed quasi-atomic orbitals of the molecules, that is, the QUAFOs
(corresponding to item 3) in the preceding Section 1.6.2).

• The third panel displays the curves for the intra-atomic energy changes caused
by the deformations that change the free-atom orbitals into the QUAFOs (corre-
sponding to item 2) in the preceding Section 1.6.2).

• The fourth panel shows the binding curves obtained by optimizing the QUAFOs
at each internuclear distance (corresponding to item 5) in the preceding
Section 1.6.2). The values of this FORS binding energy curve, as well as its
kinetic and potential components in the fourth panel, are the sums of the
corresponding values in the second and third panels.

Between the equilibrium distance, which is indicated by a gray vertical line, and
infinite separation, the curves of all molecules exhibit the same overall pattern,
namely:

Binding is provided by the interatomic interactions (first and second panel),
specifically by the kinetic interatomic energy lowering, due to delocalization, pre-
vailing over an interatomic potential energy increase, presumably due to charge
accumulation in the bond and sharing coulombic effects. The interatomic interac-
tions for the deformed quasi-atomic orbitals (second panel) are qualitatively similar
to those for the undeformed free-atom orbitals (first panel). But the deformations
enhance these contributions.

The intra-atomic contribution is the result of a large increase in the kinetic
component prevailing slightly over a large decrease in the potential component,
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changes that imply intra-atomic contraction. Although the intra-atomic changes
determine the signs of the kinetic and components of the binding energy, they
yield an overall antibonding contribution to this energy.

It is evident that, in all of these molecules, the basic synergism that leads to
covalent binding is entirely analogous to the one that was found for H2

+ and H2

and exhibited in Figures 1.9 and 1.13.
Parenthetically, it is noted that the kinks in the curves for C2 are due to the

avoided curve crossing that exists in this system. The curve shown is the lowest
1Σg

+ state obtained from a state-average MCSCF calculation over the three lowest
states X1Σg

+, B
′1Σg

+, B1Δg (even though the Δ-state is lower at large distances).
Appropriately corresponding state averaged calculations were performed for the
carbon atom to obtain the dissociation limit of the lowest 1Σg

+ state.

1.6.4
Effect of Dynamic Correlation on Covalent Binding

The effect of dynamic electron correlation on the bond in the H2 molecule was
discussed in Section 1.5.6. In that case, it accounted for about 13% of the binding
energy and it did not change the conclusions regarding the origin of covalent
binding. It was also noticed that the energy lowering achieved by the correlating
adjustments in the wave function are not able to compensate entirely for the adverse
effect that electron repulsion has on bond formation at the FORS level through the
sharing coulombic interaction.

The molecules treated in the present section differ from H2 in that dynamic
electron correlation already exists in the separate atoms. It is generally found that
dynamic correlation in a molecule is larger than the sum of the dynamic correlations
in the separate atoms, presumably because there is more space available for the
electrons to avoid each other in the molecule than in the separate atoms. The data
in the first three rows in Table 1.4 confirm this general trend for the molecules
treated in the present section by furnishing a comparison of the FORS binding
energies with the experimental binding energies (The experimental energy for
B2 is from Bytautas et al. [30] the others are from Feller and Sordo [31]). It can

Table 1.4 Dynamic correlation contributions to bond energies (mh).

H2 B2 C2 N2 O2 F2

De FORS –152.3 –97.7 –228.2 –339 –151.1 –30.4
De Experiment –174.5 −107.9a −230.1b −364.1b −191.6b −60.9b

% Dynamic correlation 13 9.5 0.8 7 21 50
De FORS+c –228.2 –360.5 –192.5 –63.9

aFrom Bytautas et al., Ref. [30]
bFrom Feller and Sordo, Ref. [31]
cSee second and third but last paragraphs of Section 1.6.4.
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be inferred that the bonds in B2, C2, N2, O2 are dominated by covalent bonding
of the FORS wave functions, that is, by the interactions in the orbital space of
the (optimized) minimal basis sets, which are the ones that were analyzed in the
preceding sections.

In F2, on the other hand, about half of the binding energy is due to a lowering of
the dynamic correlation energy upon molecule formation. This does not invalidate
the analysis of the FORS wave function in the preceding sections, which elucidates
that part of the binding that is the result of the interactions within the orbital space
of the minimal basis sets.

Remarkably, the binding energy is recovered within 3 mh when the dynamic
correlation is simply accounted for by an extended MCSCF calculation that provides
one correlating orbital for each of the six valence orbitals containing lone pairs.
These correlating orbitals were shown in the lower panel set in Figure 1.16. The
second row of Figure 1.19 exhibits the resolution of the dissociation curve obtained
with this wave function in terms of contributions that are analogous to those
formulated in Sections 1.6.3 and 1.6.4. It is apparent that even in this case, the
basic pattern of the interatomic and intra-atomic contributions is the same as that
obtained for the FORS wave function, which is shown in the first row of that
figure.

In fact, analogous MCSCF calculations, based on wave functions with N valence
electrons in N valence orbitals, yield good binding energies for N2 and O2 as well, as
shown in the last row of Table 1.4, where they are denoted as FORS+ calculations.2)

For the C2 molecule, the minimal basis set FORS wave function provides already
one orbital for each electron and this is presumably the reason why, here, the FORS
calculation recovers the binding energy within 3.5 mh. All of these energies were
calculated at the optimized equilibrium geometries.

A more extreme case is presented by the molecule Be2, which would not exist
without the help of the dynamic correlation interactions. However, as the detailed
analysis of this bond by the present authors [32] showed, even in this case the
contributions of the minimal basis set interference interactions are in fact essential
for the existence of the bond.

1.7
Conclusions

As Robert Mulliken noted in the remark quoted at the beginning of this chapter,
chemical bonding is more complicated than one would like it to be – a not
uncommon experience in the sciences. The following précis summarizes the
essential conclusions regarding covalent binding that emerge from the detailed
analyses of the seven molecules examined in the preceding sections.

2) For the O2 molecule, 14 orbitals are used, that is, the additional 3s, 3px, 3py (but not 3pz) orbitals
are added. This is because the separated atom calculation must be performed in cylindrical
symmetry, which is done by a state-averaged MCSCF calculation involving the px as well as the py

orbital.
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1) Electronic ground states in atoms and molecules are determined by the optimal
compromise in the variational competition between the electrostatic potential
pulling the electrons toward the nuclei and the intrinsic kinetic delocalization
drive of electron waves, which resists localization toward nuclei. Bonding
occurs when the molecule offers a variational compromise with an energy
lower than that available in the separated atoms.

2) The formation of a covalent bond is a consequence of the kinetic energy
lowering that results from valence electrons delocalizing over several atoms.
Such delocalization occurs between open-shell atoms, that is, atoms in which
the number of valence electrons is less than twice the number of valence-shell
minimal basis set orbitals, because some valence electrons can then exploit
valence orbitals on several atoms by partial occupation.

The delocalization is manifest when electronic wave functions are expressed
in terms of delocalized bonding orbitals. When the wave functions are equiv-
alently expressed in terms of quasi-atomic orbitals, then the kinetic energy
lowering through delocalization is quantified by the negative interference energy
between the quasi-atomic orbitals involved in the delocalization.3)

3) The kinetic energy lowering through delocalization prevails over a lesser
potential energy increase that is caused by the accumulation of charge in the
bond region, which is associated with delocalization.4)

4) At and near the equilibrium distance, delocalization has the special feature
that it is enhanced by shrinkage of the quasi-atomic wave function components
toward their respective nuclei.5) This additional interatomic delocalization
is therefore coupled with contractions of the quasi-atomic orbitals, whereby
electronic charge is moved from the outer regions into the interatomic region as
well as into the intra-atomic regions. The resulting energy lowering involves
the following subtle interplay between interatomic and intra-atomic energy
changes.

The charge shift into the bond region enhances the interatomic delocalization
and thereby lowers the kinetic energy further. Moreover, this interatomic kinetic
energy lowering weakens the overall kinetic resistance against localization and
thereby allows the nuclear attractions to pull more electronic charge toward
the nuclei. As a result, the intra-atomic potential energy strongly decreases and
the intra-atomic kinetic energy strongly increases until the virial ratio 2T= |V|
is reached, which characterizes the optimal compromise in the variational
competition between kinetic and potential energy at the equilibrium distance.6)

Even though the shift of charge into the intra-atomic region is thus instru-
mental in bringing about the compliance with the overall virial constraint, the
total intra-atomic energy nonetheless increases in accordance with the intra-atomic

3) Interference energies are conceptually related to the resonance energies of molecular orbital and
valence bond theories. However, the resolution of resonance energies into kinetic and potential
components was never examined.

4) Charge accumulation in the bond does not lower the potential energy! See Section 1.4.5.3.
5) Even though the atomic contractions decrease the overlap integral! See Sections 1.4.3 and 1.4.5.5.
6) In accordance with the fundamental analysis in Section 1.2.3.
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variation principle (the intra-atomic kinetic energy increase being stronger
than the intra-atomic potential energy decrease). This intra-atomic energy
increase is however less than the interatomic kinetic energy decrease through
the increased delocalization that drives the contractions.

5) At larger internuclear distances the contraction discussed under item 4) does
not occur and the delocalization discussed under items 2) and 3) is the only
contributor to covalent bonding.7)

6) The detailed changes in the potential interactions that occur when bonds
form are involved and complicated to sort out. It is found, however, that
the total contribution of all interatomic potential interactions is positive, that is,
antibonding in all molecules at all internuclear distances.

The negative sign of the potential contribution to the total binding energy
at the equilibrium geometry is the result of the intra-atomic adjustments
discussed in the second paragraph of item 4) above. Since these intra-atomic
adjustments are consequences of the interatomic kinetic energy attenuation,
the sign of this potential contribution does not indicate what drives bond
formation.8)

7) In as much as delocalization and kinetic energy changes are one-electron
attributes, covalent bonding is the cumulative result of the bonding effects of
the individual bonding electrons. The interelectronic interactions have an adverse
effect on covalent bonding for the following reason.

The delocalization of several electrons over several atoms increases the
interpenetration of the respective electron clouds and, hence, strengthens the
electrostatic repulsions between them, which diminishes the bond energy
compared to what it would be without electron–electron interaction. This
detrimental effect is mitigated, in so far as possible, by the inclusion
of dynamic correlation terms in the wave function. In some molecules,
dynamic correlation contributes a considerable part of the bonding energy.
Nonetheless, the kinetic effects of delocalization are always essential for
covalent bonding.

8) Finally, it should be noted that covalent bonding is not the only kind of chemical
bonding. As Schwarz and coworkers have pointed out [12w, 33], changes in
each of the terms in the electronic energy expression, viz in the kinetic terms, in
the nuclear–electronic interactions, and in the electron–electron interactions
can result in bonding. While covalent bonding is driven by changes in
the kinetic terms, ionic bonding and long-range multipole interactions are
driven by changes in the electron–nuclear interactions. Long-range dispersion
forces, on the other hand, are driven by changes in the electron–electron
interactions [34].

7) This is related to the less stringent form of the virial theorem in this region. See Section 1.2.3.
8) That the actual values of the kinetic and potential energies at the variational minimum generally

do not provide sufficient information to deduce the physical origin of energy differences between
systems was discussed in detail in the last paragraph of Section 1.2.2.
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