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Networks in Biological Cells

Modern molecular and cell biology has worked out many important cellular
processes in more detail, although some other areas are known to a lesser extent.
It often remains to understand how the individual parts are connected, and this
is exactly the focus of this book. Figure 1.1 displays a cartoon of a cell as a highly
viscous soup containing a complicated mixture of many particles. Certainly,
several important details are left out here that introduce a partial order, such as
the cytoskeleton and organelles of eukaryotic cells. Figure 1.1 reminds us that
there is a myriad of biomolecular interactions taking place in biological cells at
all times and that it is pretty amazing how a considerable order is achieved in
many cellular processes that are all based on pairwise molecular interactions.

The focus of this book is placed on presenting mathematical descriptions
developed in recent years to describe various levels of cellular networks. We
will learn that many biological processes are tightly interconnected, and this is
exactly where many links still need to be discovered in further experimental
studies. Many researchers in the field of molecular biology believe that only
combined efforts of modern experimental techniques, mathematical modeling,
and bioinformatics analysis will be able to arrive at a sufficient understanding of
the biological networks of cells and organisms.

In this chapter, we will start with some principles of mathematical networks and
their relationship with biological networks. Then, we will briefly look at several
biological key players to be used in the rest of this book (cells, compartments, pro-
teins, and pathways). Without going into any further detail, we will directly move
into the field of network theory with the amazing “small-world phenomenon.”

1.1 Some Basics About Networks

Network theory is a branch of applied mathematics and more of physics that
uses the concepts of graph theory. Its developments are led by application
to real-world examples in the areas of social networks (such as networks of
acquaintances or among scientists having joint publications), technological
networks (such as the World Wide Web that is a network of web pages and
the Internet that is a network of computers and routers or power grids), and
biological networks (such as neural networks and metabolic networks).
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2 Principles of Computational Cell Biology

Figure 1.1 Is this how we should view a biological cell? The point of this schematic picture is
that about 30% of the volume of a biological cell is taken up my millions of individual proteins.
Therefore, biological cells are really “full.” However, of course, such pictures do not tell us much
about the organization of biological processes. As we will see later in this book, there are many
different hierarchies of order in such a cell.

1.1.1 Random Networks

In a random network, every possible link between two “vertices” (or nodes) A and
B is established according to a given probability distribution irrespective of the
nature and connectivity of the two vertices A and B. This is what is “random”
about these networks. If the network contains n vertices in total, the maximal
number of undirected edges (links) between them is n × (n− 1)/2. This is because
we can pick each of the n vertices as the first vertex of an edge, and there are (n− 1)
other vertices that this vertex can be connected to. In this way, we will actually
consider each edge twice, using each end point as the first vertex. Therefore, we
need to divide the number of edges by 2.

If every edge is established with a probability p ∈ [0, 1], the total number of
edges in an undirected graph is p × n × (n− 1)/2. The mathematics of random
graphs was developed and elucidated by two Hungarian mathematicians Erdös
and Renyi. However, the analysis of real networks showed that such networks
often differ significantly from the characteristics of random graphs. We will turn
back to random graphs in Section 6.3.

1.1.2 Small-World Phenomenon

The term small-world phenomenon was coined to describe the observation
that everyone in the world is linked to some other person through a short chain
of social acquaintances. In a small-world experiment, the psychologist Stanley
Milgram found in 1967 that, on average, any two US citizens randomly picked
were connected to each other by only six acquaintances. Vertices in a network
have short average distances. Usually, the distance between the nodes scales
logarithmically with the total number, n, of the vertices.

In a paper published in the journal Nature in 1998, the two mathematicians
Duncan J. Watts and Steven H. Strogatz (Watts and Strogatz, 1998) reported
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that small-world networks are common in many different areas ranging from
neuronal connections of the worm Caenorhabditis elegans to power grids.

1.1.3 Scale-Free Networks

Only one year after the discovery of Watts and Strogatz, Albert-László Barabási
from the Physics Department at the University of Notre Dame introduced an
even simpler model for the emergence of the small-world phenomenon (Barabási
and Albert 1999). Although Watts and Strogatz’s model was able to explain the
short average path length and the dense clustering coefficient of a small world
(all these terms will be introduced in Chapter 6), it did not manage to explain
another property that is typical for real-world networks such as the Internet:
these networks are scale-free. In simple terms, this means that although the vast
majority of vertices are weakly connected, there also exist some highly intercon-
nected super-vertices or hubs. The term scale-free expresses that the ratio of
highly to weakly connected vertices remains the same irrespective of the total
number of links in the network. We will see in Section 6.4 that the connectivity
of scale-free networks follows a power law. If a network is scale-free, it is also a
small world.

In this paper, Barabási and Albert presented a strikingly simple and intuitive
algorithm that generates networks with a scale-free topology. It has two essential
elements:

• Growth. The network is started from a small number of (at least two) connected
vertices. At every iteration step, a new vertex is added that forms links to m of
the existing vertices.

• Preferential attachment. One assumes that the probability of a link between
a newly added vertex and an existing vertex i depends on the degree of i (the
number of existing links between vertex i and other vertices). The more con-
nections i has already, the more likely the new vertices will link to i. This behav-
ior is described by the saying “the rich become richer.” Let us motivate this on
the fictitious example of the early days of air traffic. Initially, one needs to build
two airports so that a first regular flight connection can be established between
them. Eventually, a third airport is established. Most likely, initially, only one
new flight will go to either one of the existing airports. Now, the situation is
unbalanced. Now, there exists one airport that is connected to two other cities,
and the airports of those cities are only connected to one city. There is a cer-
tain chance that, after some time, the “missing” connection between the new
airport and the other airport would be introduced, which would lead to a bal-
anced situation again. Alternatively, a fourth airport could emerge that would
also start by establishing only one flight to one of the existing airports. Now,
the airport that already has two connections would have an obvious practical
advantage because passengers taking this route simply have more options to
carry on. Therefore, the chance that this flight is established is higher than for
the other connections. Exactly, this idea is captured by the concept of prefer-
ential attachment.

The same growth mechanism applies, for example, to the World Wide Web.
Obviously, this network grows constantly over time, and many new pages are
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added to it every moment. We know from our own experience that once a new
web page is created, its owner will most likely include links to other popular pages
(hubs) on the new page so that the second “rule” is also fulfilled.

In the early exciting days of network theory when the study of large-scale
networks took off like a storm, it was even suggested that the scale-free net-
work model may be something like a law of nature that controls how natural
small-world networks are formed. However, subsequent work on integrated
biological networks showed that the concept of scale-free networks may rather
be of theoretical value and that it may not be directly applicable to certain
biological networks. For the moment, we will consider the idea of network
topology (scale-free networks and small-world phenomenon) as a powerful
concept that is useful for understanding the mechanism of network growth and
vulnerability.

1.2 Biological Background

Until recently, the paradigm of molecular biology was that genetic informa-
tion is read from the genomic DNA by the RNA polymerase complex and is
transcribed into the corresponding RNA. Ribosomes then bind to messenger
RNA (mRNA) snippets and produce amino acid strands. This process is called
translation. Importantly, the paradigm involved the notion that this entire
process is unidirectional, see Figure 1.2.

DNA
(a)

(b)

(c)

Genetic
information

Genetic
information

Molecular
structure

Molecular
structure

Biochemical
function

Biochemical
function

Phenotype
(symptoms)

Phenotype
(symptoms)

Molecular
interactions

RNA

Central paradigm of molecular biology

Central paradigm of structural biology

Central paradigm of molecular systems biology

Protein
Phenotype
(symptoms)

Figure 1.2 (a) Since the 1950s, a paradigm was established, whereby the information flows
from DNA over RNA to protein synthesis, which then gives rise to particular phenotypes.
(b) The emergence of structural biology – the first crystal structure of the protein myoglobin
was determined in 1960 – emphasized the importance of the three-dimensional structures
of proteins determining their function. (c) Today, we have realized the central role played
by molecular interactions that influence all other elements.
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1.2.1 Transcriptional Regulation

It is now well established that many feedback loops are provided in this system
too, e.g. by the proteins known as transcription factors that bind to sequence
motifs on the genomic DNA and mediate (activate or repress) transcription of
certain genomic segments. Important discoveries of the past 20 years showed
that cellular mRNA concentrations are also largely affected by small RNA snip-
pets termed microRNAs and that the chromatin structure is shaped by epigenetic
modifications of the DNA and histone proteins that control the accessibility of
genomic regions. The cellular network therefore certainly appears much more
complicated today than it did 60 years ago.

This brings us to the world of gene regulatory networks. Collecting the
required information on the regulation of individual genes is a subject of intense
active research. For example, the ENCODE project for human cells and the
modENCODE project for the model organisms C. elegans and Drosophila
melanogaster mapped the binding sites of hundreds of transcription factors
throughout the genomes. Also, the FANTOM initiative started in Japan is a
worldwide collaborative project aiming at identifying all the functional ele-
ments in mammalian genomes. However, occupancy maps of transcription
factors alone are not being considered as compelling evidence of biologically
functional regulation. To really prove or disprove which gene is activated or
repressed by a particular transcription factor (or microRNA), one could create
a knockout organism lacking the gene coding for this transcription factor and
see which genes are no longer expressed or are now expressed in excess. Such
genome-wide deletion libraries have actually been produced for the model
organism Saccharomyces cerevisiae. However, in this way, we can only discover
those combinations that are not lethal for the organism. Also, pairs or larger
assemblies of transcription factors often need to bind simultaneously. It simply
appears impossible to discover the full connectivity of this regulatory network
by a traditional one-by-one approach. Fortunately, modern microarray and
RNAseq experiments probe the expression levels of many genes simultaneously.
Ongoing challenges are the noisy nature of the large-scale data and the fact
that genes actually do not interact directly with each other. Analysis of gene
expression data will be discussed in Chapter 8.

In this book, we will be mostly concerned with the following four types
of biological cellular networks: protein–protein interaction networks, gene
regulatory networks, signal transduction networks, and metabolic networks. We
will discuss them at different hierarchical levels as shown in Figure 1.3 using the
example of regulatory networks.

1.2.2 Cellular Components

Cells can be described at various levels in detail. We will mostly use three different
levels of description:

(a) Inventory lists and lists of processes.
• Proteins in particular compartments
• Proteins forming macromolecular complexes
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• Biomolecular interactions
• Regulatory interactions
• Metabolic reactions

(b) Structural descriptions.
• Structures of single proteins
• Topologies of protein complexes
• Subcellular compartments

(c) Dynamic descriptions.
• Cellular processes ranging from nanosecond dynamics for the association

of two biomolecules up to processes occurring in seconds and minutes
such as the cell division of yeast cells.

We will assume that the reader has a basic knowledge about the organic
molecules commonly found within living cells and refer those who do not to
basic books on biochemistry or molecular biology. Depending on their role in
metabolism, the biomolecules in a cell can be grouped into several classes.

Transcription factor

Basic unit Motifs Modules

SIM

MIM

Target gene and

binding site

(a)

(b)

(c)

FFL

Figure 1.3 Structural organization of transcriptional regulatory networks. (a) The “basic unit”
comprises the transcription factor, its target gene with a DNA recognition site, and the
regulatory interaction between them. (b) Units are often organized into network “motifs” that
comprise specific patterns of inter-regulation that are overrepresented in networks. Examples
of motifs include single-input/multiple output (SIM), multiple input/multiple output (MIM),
and feed-forward loop (FFL) motifs. (c) Network motifs can be interconnected to form
semi-independent “modules,” many of which have been identified by integrating regulatory
interaction data with gene expression data and imposing evolutionary conservation. The next
level consists of the entire network (not shown). Source: Babu et al. (2004). Drawn with
permission of Elsevier.
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1. Macromolecules including nucleic acids, proteins, polysaccharides, and cer-
tain lipids.

2. The building blocks of macromolecules include sugars as the precursors of
polysaccharides, amino acids as the building blocks of proteins, nucleotides
as the precursors of nucleic acids (and therefore of DNA and RNA), and fatty
acids that are incorporated into lipids. Interestingly, in biological cells, only a
small number of theoretically synthesizable macromolecules exist at a given
time point. At any moment during a normal cell cycle, many new macro-
molecules need to be synthesized from their building blocks, and this is metic-
ulously controlled by the complex gene expression machinery. Even during a
steady state of the cell, there exists a constant turnover of macromolecules.

3. Metabolic intermediates (metabolites). Many molecules in a biological
cell have complex chemical structures and must be synthesized in several
reactions from specific starting materials that may be taken up as the energy
source. In the cell, connected chemical reactions are often grouped into
metabolic pathways (Section 1.3).

4. Molecules of miscellaneous function including vitamins, steroid hormones,
molecules that can store energy storage such as ATP, regulatory molecules,
and metabolic waste products.

Almost all biological materials that are needed to construct a biological cell are
either synthesized by the RNA polymerase and ribosome machinery of the cell
or are taken up from the outside via the cell membrane. Therefore, as a minimum
inventory, every cell needs to contain the construction plan (DNA), a processing
unit to transcribe this information into mRNA (polymerase), a processing unit to
translate these mRNA pieces into protein (ribosome), and transporter proteins
inside the cell membrane that transport material through the cell membrane.

1.2.3 Spatial Organization of Eukaryotic Cells into Compartments

Organization into various compartments greatly simplifies the temporal and
spatial process flow in eukaryotic cells. As mentioned above, at each time point
during a cell cycle, only a small subfraction of all potential proteins is being
synthesized (and not yet degraded). Also, many proteins are only available in
very small concentrations, possibly with only a few copies per cell. However,
localizing these proteins to particular spots in the cell, e.g. by attaching them to
the cytoskeleton or by partitioning them into lipid rafts, their local concentra-
tions may be much higher. We assume that the reader is vaguely familiar with the
compartmentalization of eukaryotic cells involving the lysosome, plasma mem-
brane, cell membrane, Golgi complex, nucleus, smooth endoplasmic reticulum,
mitochondrion, nucleolus, rough endoplasmic reticulum, and cytoskeleton.

An important element of cellular organization is the active transport of
macromolecules along the microtubules of the cytoskeleton that is carried out
by molecular motor proteins such as kinesin and dynein. Here, we will not
address the activities of molecular motors because this is rather a research topic
in biophysics.
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Table 1.1 Data on the genome length and on the number of protein-coding and RNA genes
are taken from the Kyoto Encyclopedia of Genes and Genomes database (April 2018); data on
the number of putative transporter proteins are taken from www.membranetransport.org.

Organism

Length of
genome
(Mb)

Number of
protein-
coding
genes

Number
of RNA
genes

Number of
transporter
proteins

Prokaryotes
Mycoplasma genitalium G37 0.6 476 43 53
Bacillus subtilis BSN5 4.2 4 145 113 552
Escherichia coli APEC01 4.6 4 890 93 665

Eukaryotes
Saccharomyces cerevisiae S288C 1.3 6 002 425 341
Drosophila melanogaster 12 13 929 3 209 662
Caenorhabditis elegans 100.2 20 093 24 969 669
Homo sapiens 3 150 20 338 19 201 1 467

1.2.4 Considered Organisms

Table 1.1 presents some statistics of the organisms considered in this book.

1.3 Cellular Pathways

1.3.1 Biochemical Pathways

Metabolism denotes the entirety of biochemical reactions that occur within
a cell (Figure 1.4). In the past century, many of these reactions have been
organized into metabolic pathways. Each pathway consists of a sequence of
chemical reactions that are catalyzed by specific enzymes, and the outcome of
one reaction is the input for the next one. Unraveling the individual enzymatic
reactions was one of the big successes of applying biochemical methods to
cellular processes. Metabolic pathways can be divided into two broad types.
Catabolic pathways disintegrate complex molecules into simpler ones, which
can be reused for synthesizing other molecules. Also, catabolic pathways
provide chemical energy required for many cellular processes. This energy
may be stored temporarily as high-energy phosphates (primarily in ATP) or as
high-energy electrons (primarily in NADPH). Conversely, anabolic pathways
synthesize more complex substances from simpler starting reagents by utilizing
the chemical energy generated by exergonic catabolic pathways.
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The traditional biochemical pathways were often derived from studying simple
organisms where these pathways constitute a dominating part of the metabolic
activity. For example, the glycolysis pathway was discovered in yeast (and
in muscle) in the 1930s. It describes the disassembly of the nutrient glucose
that is taken up by many microorganisms from the outside. Figure 1.5 shows
the glycolysis pathway in Homo sapiens as represented in the KEGG database
(Kanehisa et al. 2016).
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Nucleotide sugars
metabolism
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interconversions
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D-Glucose
(extracellular)
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2-Hydroxy-
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1.1.1.1

1.1.1.2

1.1.1.71

1.1.99.8
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Figure 1.5 The glycolysis pathway as visualized in the KEGG database is connected to many
other cellular pathways. Source: From http://www.genome.ad.jp/kegg.
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1.3.2 Enzymatic Reactions

Enzymes are proteins that catalyze biochemical reactions so that they proceed
much faster than in aqueous solution, e.g. by factors of many thousands to billions
of times. As is the case for any catalyst, the enzyme remains intact after the
reaction is complete and can therefore continue to function. Enzymes reduce the
activation energy of a reaction, but this affects forward reaction and backward
reaction in the same manner. Hence, the relative free energy difference and the
equilibrium between the products and reagents are not affected. Compared to
other catalysts, enzymatic reactions are carried out in a highly stereo-, regio-,
and chemoselective and specific manner.

For the binding reaction P+L ↔ PL of a protein P and a ligand L, the binding
constant kd:

kd = [P] ⋅ [L]
[PL]

determines how much of the ligand concentration [L] is bound by the protein
(with concentration [P]) under equilibrium conditions. [PL] is the concentra-
tion of the protein:ligand complex. The binding constant has the unit M. In the
case of a “nanomolar inhibitor,” for example, where a blocking ligand binds to
a protein with a kd in the order of 10−9 M, the product of the concentrations
of free protein and of free ligand is 109 times smaller than the concentration of
the protein–ligand complex. Thus, the equilibrium is very strongly shifted to the
complexed form, and only a few free ligand molecules exist. The binding constant
kd is also the ratio of the kinetic rates for the backward and forward reactions, koff
and kon. The units of the two kinetic rates are M−1 s−1 for the forward reaction
and s−1 for the backward reaction.

Understanding the fine details of enzymatic reactions is one of the main
branches of biochemistry. Fortunately, in the context of cellular simulations,
we need not be interested with the enzymatic mechanisms themselves. Here,
instead, it is important to characterize the chemical diversity of the substrates
a particular enzyme can turn over and to collect the thermodynamic and
kinetic constants of all relevant catalytic and binding reactions. A rigorous
system to classify enzymatic function is the Enzyme Classification (EC)
scheme. It contains four major categories, each divided into three hierarchies of
subclassifications.

1.3.3 Signal Transduction

Here, we denote by signal transduction the transmission of a chemical signal
such as phosphorylation of a target amino acid. Signal transduction is a very
important subdiscipline of cell biology. Hundreds of working groups are looking
at separate aspects of signal transduction, and large research consortia such as
the Alliance of Cell Signaling have been formed in the past. In humans, about
70% of all proteins get phosphorylated at specific residues in certain conditions.
Many proteins can be phosphorylated multiple times at different amino acids.
A phosphorylation step often characterizes a transition between active and
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inactive states. The fraction of phosphorylated versus unphosphorylated proteins
can be detected experimentally by mass spectrometry on a genome-wide level.

1.3.4 Cell Cycle

The cell cycle describes a series of processes in a prokaryotic or eukaryotic cell
that leads from one cell division to the next one. The cell cycle is regulated by two
types of proteins termed cyclins and cyclin-dependent kinases. In 2001, the Nobel
Prize in Physiology or Medicine was awarded to Leland H. Hartwell, R. Timothy
Hunt, and Paul M. Nurse who discovered these central molecules. Broadly speak-
ing, a cell cycle can be grouped into three stages termed interphase, mitosis, and
cytokinesis. These can be further split into the following:

• The G0 phase. This is a resting phase outside the regular “cell cycle” where the
cells exist in a quiescent state.

• The G1 phase. This is the first growth phase for the cell.
• The S phase for the “synthesis” of DNA. In this phase, the cellular DNA is

replicated to secure the hereditary information for the future daughter cells.
• The G2 phase is the second growth phase. This is also a preparation phase for

the subsequent cell division.
• The M phase or mitosis and cytokinesis cover the processes to divide the cell

into two daughter cells.

There exist several surveillance points, the so-called checkpoints, when the cell
is inspected for potential DNA damage or for lacking ability to perform critical
cellular processes. If certain conditions are not fulfilled, checkpoints may pre-
vent transitioning to the next state of the cell cycle. We will see in Chapter 15
how cellular processes may dynamically regulate each other. In Section 15.2, we
will discuss an integrated computational model that simulated the nine-minute
long cell cycle of the simple organism Mycoplasma genitalium almost in molec-
ular detail. Very important for the cell cycle are phosphorylation reactions of the
central cell cycle regulators.

1.4 Ontologies and Databases

1.4.1 Ontologies

“Ontology” is a term from philosophy and describes a structured controlled
vocabulary. Why have ontologies nowadays become of particular importance in
biological and medical sciences? The main reason is that, historically, biologists
worked in separate camps, each on a particular organism, and each camp dis-
covered a gene after gene, protein after protein. Because of this separation, every
subfield started using its own terminology. These early researchers did not know
that, at a later stage, biologists wished to compare different organisms to transfer
useful information from one to the other in a process termed annotation.
Thus, proteins deriving from the same ancestor may have been given completely
different names.
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It would require many years of intensive study for anyone of us to learn these
associations. Instead, researchers have realized quite early that it would be
extremely useful to generate general electronic repositories for classification
schemes that connect the corresponding genes and proteins belonging to
different organisms and that provide access to functional annotations.

1.4.2 Gene Ontology

One of the most important projects in the area of ontologies is the gene ontol-
ogy (GO) (www.geneontology.org). This collaborative project started in 1998
as a collaboration of three databases dealing with model organisms, FlyBase
(Drosophila), the Saccharomyces Genome Database (SGD), and the Mouse
Genome Database (MGD). In the meantime, many other organizations have
joined this consortium. In the GO project, gene products are associated with
molecular functions, biological processes, and cellular components where they
are expressed in a species-dependent manner. A gene product may be connected
to one or more cellular components; it may be involved in one or more biological
processes, during which it executes one or more molecular functions. GO has
become widely used together with the analyses of differential gene expression or
enriched pathways. We will revisit the gene ontology in Section 8.6.

1.4.3 Kyoto Encyclopedia of Genes and Genomes

Initiated in 1995, the Kyoto Encyclopedia of Genes and Genomes (KEGG) is
an integrated bioinformatics resource consisting of three types of databases for
genomic, chemical, and network information (http://www.genome.jp/kegg).
KEGG consists of three graph objects called the gene universe (GENES, SSDB,
and KEGG Orthology databases that contain more than 14 million genes from
280 eukaryotic, 2800 bacterial, and 171 archaeal genomes), the chemical universe
(COMPOUND, GLYCAN, and REACTION databases that contain more than
17.000 chemical compounds and more than 9.700 reactions), and the protein
network (PATHWAY database) (Table 1.2). The gene universe is a conceptual
graph object representing ortholog/paralog relations, operon information, and
other relationships between genes in all the completely sequenced genomes.
The chemical universe is another conceptual graph object representing chemical
reactions and structural/functional relations among metabolites and other
biochemical compounds. The protein network is based on biological phenom-
ena, representing known molecular interaction networks in various cellular
processes.

1.4.4 Reactome

REACTOME (reactome.org) is a pathway database. At the moment, it focuses
on human pathways and provides links to the NCBI Entrez Gene, Ensembl,
and UniProt databases; the UCSC and HapMap Genome Browsers; the KEGG
Compound and ChEBI small-molecule databases, PubMed, and Gene Ontology.
Molecular interaction data can be overlayed from the Reactome Functional
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Table 1.2 The three graph objects in KEGG.

Graph Vertex Edge Main databases

Gene
universe

Gene Any association of genes
(ortholog/paralog relation,
sequence/structural similarity,
adjacency on chromosome,
expression similarity)

GENES, SSDB,
KO

Chemical
universe

Chemical
compound
(including
carbohydrate)

Any association of compounds
(chemical reactivity, structural
similarity, etc.)

COMPOUNDS,
GLYCAN,
REACTION

Protein
network

Protein
(including
other gene
products)

Known interaction/relation of
proteins (direct protein–protein
interaction, gene expression
relation, enzyme–enzyme relation)

PATHWAY

Source: After Kanehisa et al. (2016).

Interaction Network and from external databases. Reactome also provides data
on gene expression and supports overrepresentation analysis of functional
terms.

It is worth noting that different databases have been developed according to
different philosophies and provide different coverage. Stobbe and coworkers
recently compared five different databases including KEGG and Reactome and
found significant differences (Stobbe et al. 2014). The considerable financial
pressure of maintaining such databases will decide in the long run, which
resources will survive.

1.4.5 Brenda

Since 1987, the Brenda resource (www.brenda-enzymes.org) has been developed
in the group of Dietmar Schomburg. As of 2007, it is hosted at the Technical
University Braunschweig/Germany. Brenda is a comprehensive information sys-
tem on enzymatic reactions (Table 1.3). Data on enzyme function are manually
extracted from the primary literature.

One may wonder whether all this detail is required by a computational cell
biologist analyzing the network capacities of a particular organism. In some
ways no, in other ways yes. No, if you only want to analyze the pathway space
(Chapter 12). Yes, if you are interested in particular reaction rates or in mod-
eling time-dependent processes (Chapter 13). Computer scientists among the
readers of this text should be aware that the rates of biochemical reactions vary
significantly with temperature and pH and may even change their directions.

1.4.6 DAVID

The DAVID tool developed at the National Institute of Allergy and Infec-
tious Diseases (NIAID, an institute of the NIH) has become a popular and
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Table 1.3 Information stored in the BRENDA system for individual biochemical reactions.

Nomenclature Enzyme names, EC number, common/recommended
name, systematic name, synonyms, CAS registry
number

Reaction and specificity Pathway, catalyzed reaction, reaction type, natural and
unnatural substrates and products, inhibitors,
cofactors, metals/ions, activating compounds, ligands

Functional parameters Km value, K i value, pI value, turnover number, specific
activity, pH optimum, pH range, temperature optimum,
temperature range

Isolation and preparation Purification, cloned, renatured, crystallization
Organism-related information Organism, source tissue, localization
Stability Stability with respect to pH, temperature, oxidation,

and storage; stability in organic solvent
Enzyme structure Links to sequence/SwissProt entry, 3D-structure/PDB

entry, molecular weight, subunits, posttranslational
modification

Disease Disease

user-friendly web service (david.abcc.ncifcrf.gov). With respect to annotating
the function of genes, it supports enrichment analysis of gene annotations,
clustering of functional annotations, mapping to BioCarta and KEGG pathways,
analyzing the association of genes to diseases, and more. It also provides tools
to organize long lists of genes into functionally related groups of genes to
help uncover the biological meaning of the data measured by high-throughput
technologies.

1.4.7 Protein Data Bank

The Protein Data Bank (PDB, later renamed into RCSB, www.rcsb.org) was
established in 1971 at the Brookhaven National Laboratory in the United States.
It started with seven crystal structures of proteins. Since then, it has become
the worldwide repository of information about the three-dimensional atomistic
structures of large biological molecules. It currently holds more than 130 000
structures including proteins and nucleic acids.

1.4.8 Systems Biology Markup Language

The last item in this list is a programming language rather than a database.
The systems biology markup language (SBML) has been formulated to allow
the well-defined construction of cellular reaction systems and allow exchange of
simulation models between different simulation packages. The idea is to be able
to interface models of different resolution and detail. Cell simulation methods
usually import and export (sub)cellular models in SMBL language. SBML
builds on the XML standard, which stands for eXtensible Markup Language.
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XML is similar to the HTML language that is used to design websites. The
European Bioinformatics Institute (EBI) provides a compilation of hundreds of
biological models mostly underlying published work at http://www.ebi.ac.uk/
biomodels-main.

1.5 Methods for Cellular Modeling

Table 1.4 presents an overview of the methods in cellular modeling that are cov-
ered in this book.

1.6 Summary

This introductory chapter took a first look at the cellular components that will be
the objects of computational and mathematical analysis in the rest of the book.
Obviously, it was not intended to provide a rigorous introduction, but rather to
whet the appetite of the reader without spending too much time on subjects that
many readers will be very familiar with.

We have seen that the central paradigms of molecular biology (a linear infor-
mation flow from DNA → RNA → proteins) and cellular biochemistry (grouping
of biochemical reactions into major pathways) are being challenged by new dis-
coveries on the roles of small RNA snippets, and by the discovery of highly inter-
connected hub proteins and metabolites that seem to connect almost “everything
to everything.” This is one reason why mathematical and computational analysis
is needed to keep the overview over all of the data being generated and to deepen
our understanding about cellular processes.

1.7 Problems

1. Compare the glycolysis pathways of yeast and Escherichia coli.
Open with a web browser of your choice, the web portals of KEGG (www
.genome.jp/kegg) and REACTOME (www.reactome.org). Find the glycolysis
pathways of S. cerevisiae and E. coli and compare them.

2. Extract details on enzymatic reactions from the BRENDA database.
Go to www.brenda-enzymes.org. Type in “glucose-6-phosphate iso-
merase” as one of the central enzymes of the glycolysis pathway. The EC
number of this enzyme is 5.3.1.9. It interconverts d-glucose 6-phosphate
into d-fructose 6-phosphate and can do this in both directions. Browse the
information collected on the properties of this enzyme in a large number
of organisms. Note that the optimal pH for this enzyme ranges from 3
in Lactobacillus casei to 9.5 in Pisum sativum and that the temperature
optimum ranges from 22 ∘ C in Cricetulus griseus to 100 ∘C in Pyrobaculum
aerophilum. We will leave the understanding how this amazing variability is
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achieved through variation of the protein sequence to the field of enzymol-
ogy. Interestingly, the turnover number of this enzyme (how many molecules
of d-glucose 6-phosphate or d-fructose 6-phosphate react at a single GPI
enzyme per second) ranges from 0.0003 per second in Thermococcus litoralis
to 650 per second in human if d-fructose 6-phosphate is the substrate and
from 6.2 per second in Pyrococcus furiosus to 1700 per second in human if
d-glucose 6-phosphate is the substrate. These rate constants are important
parameters for modeling time-dependent behavior of metabolic networks
and are thus also of relevance for this book.

3. Find protein interaction partners of GPI in yeast.
Go to the web portal pre-PPI (https://bhapp.c2b2.columbia.edu/PrePPI)
and enter the UNIPROT identifier P06744 for human “glucose-6-
phosphate isomerase.” Find the predicted interactions of GPI
with other human proteins. The top hit with the probability 0.99 is
ATP-dependent 6-phosphofructokinase. Explore the list.

4. Discover consequences of GPI mutations in human.
Go to the OMIM database (www.omim.org) and enter “glucose-6-
phosphate isomerase.” Click the top entry “172400” on the next list
and scroll to “allelic variants.” Apparently, different mutations have been
identified in the GPI enzyme of various patients that all led to “hemolytic
anemia.”
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