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From Traditional Medicine to Modern Drugs: Historical
Perspective of Structure-Based Drug Design

1.1
Introduction

The drug design and discovery process of today is a highly interdisciplinary
research endeavor [1–3]. Advances in molecular biology, synthetic chemistry, and
pharmacology, as well as technological breakthroughs in X-ray crystallography and
computational methods have brought dramatic changes to medicinal chemistry
practices during the late twentieth century. Drug design efforts based upon the
three-dimensional structure of a target enzyme have become the hallmark of mod-
ern molecular design strategies. This structure-based design approach has revolu-
tionized the practice of medicinal chemistry and recast the preclinical drug
discovery process. Many of the FDA-approved drugs have evolved through struc-
ture-based design strategies. By 2012, as many as 35 newly approved drugs have
emanated from structure-based design. The post-genomic era holds huge promise
for the advancement of structure-based design of drugs for new therapies. Human
genome sequencing has now revealed that there are an estimated 20,000–25,000
protein-coding human genes, and each gene can code for one protein. These pro-
teins are responsible for carrying out all the cellular functions in the human body.
These proteins can also be involved in disease pathologies, providing unique
opportunities and challenges for structure-based design of new drugs. It may be
appropriate to review briefly how the first half of the twentieth century was shaped
and enriched by a number of seminal discoveries and the advent of new technolo-
gies, all of which left an important imprint on today’s drug discovery and medici-
nal chemistry. A number of previous reviews have provided some insight [4,5].

1.2
Drug Discovery During 1928–1980

The history of medicinal chemistry is marked by examples in which the discovery
of novel drugs relied upon serendipity and clinical observations. It is interesting to
consider the role of chance in unexpected and accidental scientific discoveries.
This serendipity is not simply luck. Rather, it is a process of finding significance
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and value in the lucky coincidence. As Pasteur observed, “Chance favors the pre-
pared mind.” Without engaging creative thinking and analysis, accidents do not
lead to discoveries. The discovery of penicillin is a famous example of serendipity
[6,7]. Alexander Fleming departed for a vacation in the summer of 1928. He left a
bacterial culture of Staphylococcus aureus on his laboratory bench. When he
returned a month later, he found that the culture was contaminated by a patch of
blue-green mold that caused the lysis of bacteria. Fleming later demonstrated that
the mold, Penicillium notatum, produced an active ingredient that he called penicil-
lin. The discovery of penicillin was particularly fortunate since the penicillin that
landed on Fleming’s bacterial culture was not ordinary Penicillium! If it were, it
would not have produced penicillin in high enough concentrations to cause the
lysis of bacteria.
The discovery of penicillin was not mere luck. Much more subsequent investi-

gation was required before it could be used as an antibiotic. More than a decade
later in the 1940s, Howard Florey and Ernest Chain, with their Oxford team,
unveiled its therapeutic potential. During this time, fermentation methods were
developed that allowed the effective application of penicillins (Figure 1.1) for the
treatment of bacterial infections in humans. Bactericidal penicillin rapidly
replaced the bacteriostatic sulfonamide drugs used until then for the treatment of
some bacterial infections.
The discovery of bacteriostatic sulfonamides has its own interesting story of ser-

endipity and intuition [8]. The dye industry was advanced and promoted chemical
manufacturing to develop new dyes. German chemists working with azo dyes
observed that certain dyes could preferentially stick to and stain bacterial colonies.
Could this serve as a way to target bacteria? In 1935, the German biochemist
Gerhard Domagk, assisted by a group of chemists, synthesized and tested hun-
dreds of dyes and finally discovered, by a trial-and-error approach, the potent
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Figure 1.1 Structures of penicillins G and V and semisynthetic penicillins.
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antibacterial activity of Prontosil rubrum (Figure 1.2). Subsequent studies revealed
that the active moiety of the compound was the 4-aminobenzenesulfonamide moi-
ety. Introduction of substituents at both the p-aniline and the sulfonamide groups
led to the development of new sulfanilide derivatives with broad-spectrum activity,
improved pharmacokinetic properties, and lowered therapeutic side effects. The
synthesis of new derivatives became less important due to the discovery and intro-
duction of penicillin and subsequently discovered antibiotics.
Research on sulfonamide derivatives, however, continued. Close observation of

side effects led to the development of new uses and expansion of this class of
compounds. The clinical observation that sulfa drugs induced hypoglycemia was
followed by studies aimed at maximizing this side effect and dissociating it from
the bacteriostatic activity. This led to the advent of oral hypoglycemia drugs for the
treatment of diabetes. In 1940, Mann and Keilin discovered the inhibitory activity
of sulfanilamide against carbonic anhydrase. This key discovery paved the way for
the subsequent development of diuretic sulfonamides [9].
The discovery of the antidepressant agent iproniazid is also due to the clinical

observation of a “side effect” [10]. Both isoniazid (Figure 1.3) and its isopropyl-
substituted derivative iproniazid were originally developed as tuberculostatic
drugs. However, it was observed that in contrast to isoniazid, patients treated with
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Figure 1.2 Structures of prontosil and its derivative.
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iproniazid experienced elevation of mood. Subsequent studies clarified that the
antidepressant activities of iproniazid were due to the inhibition of the centrally
active enzyme monoamine oxidase (MAO). Iproniazid was approved in 1958 for
the treatment of depression. There are also more recent examples of clinical
observations leading to the discovery of new drugs. Sildenafil or Viagra, a drug
used for the treatment of erectile dysfunction, was originally developed for the
treatment of angina [11,12]. Minoxidil [13,14], originally developed as an antihy-
pertensive agent, was later approved for the treatment of hair loss.
Serendipity also played a role in the discovery of Librium, the first antianxiety

benzodiazepine, but it did not happen by accident [15,16]. In 1954, Dr. Leo Stern-
bach was actively involved in the development of new tranquilizers in the New
Jersey laboratories of Hoffmann-La Roche. He decided to explore the chemistry of
benzheptoxdiazines, a class of compounds he had synthesized 20 years ago in
search of new dyes but whose biological activity was unknown. His research group
synthesized 40 new derivatives and determined that they were six-membered ring
compounds such as 11 and 12 (Figure 1.4) rather than seven-membered ring com-
pounds 13 and 14, as was originally thought. Pharmacological testing showed
these compounds were inactive. As their project on tranquilizers was coming to
an end, during their laboratory cleanup work, they realized two of their earlier
crystalline derivatives had never been submitted for pharmacological evalua-
tion. They decided to send them for biological testing. One of the compounds
that resulted from the reaction of a quinazoline derivative 15 with methyl-
amine showed potent sedative and hypnotic effects. This compound was supe-
rior to phenobarbital. Subsequent structural work on the compound led to its
characterization as benzodiazepine derivative chlordiazepoxide (17, Figure 1.5)
known as Librium. This resulted from a rearrangement of the original benzo-
fused six-membered heterocycle to afford a benzo-fused seven-membered
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Figure 1.4 Structures of benzheptoxdiazines and quinazoline-3-oxides.
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heterocycle 17. This discovery led to the subsequent development of a host of
benzodiazepines, including diazepam (18, Valium).
Natural products have long served as a key source for the development of

numerous new drugs. Biological screening of natural products has proven to be
extremely useful. The anticancer agent Taxol was discovered in the 1970s as a
result of a project implemented in 1960 by the American National Cancer
Institute consisting of the biological screening of extracts arising from various nat-
ural sources [17]. One of the extracts showed promising anticancer activity
against a wide range of tumors in mice. After the initial discovery, the active com-
pound was isolated from the Taxus brevifolia and in 1972 its chemical structure
(19, Figure 1.6) was fully characterized [18]. Another important anticancer treat-
ment resulting from the screening of natural products was camptothecin (20),
which was isolated from Camptotheca acuminata [19]. A number of camptothecin
derivatives have been approved and are used in cancer chemotherapy.
The antimalarial drug artemisinin (21, Figure 1.7) [20] is also the result of a

screening campaign. After a heavy outbreak of malaria in the 1950s, the spread of
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drug-resistant malaria strains raised huge treatment concerns. A Chinese national
project implemented a campaign aimed at discovering, isolating, and characteriz-
ing natural products as potential antimalarial leads. Phytochemist Tu Youyou and
his colleagues found that the extract of the traditional Chinese herbal remedy Arte-
misia annua was effective in a mouse model against malaria. Later, the sesqui-
terpene lactone artemisinin was characterized as the active ingredient and its
semisynthetic derivatives, such as artemether (22), are used for the treatment of
multidrug-resistant malaria.
During the 1970s, a number of other important natural products were also

introduced as new drugs. Natural products compactin and mevinolin were iso-
lated from Penicillium citrinum and Aspergillus terreus, respectively. Both these nat-
ural products showed very potent inhibitory activity of HMG-CoA reductase,
responsible for biosynthesis of cholesterol in human liver. Mevinolin (lovastatin)
and derivatives of mevinolin (Zocor) were introduced for the treatment of athero-
sclerosis by lowering cholesterol levels and inhibiting the enzyme HMG-CoA
reductase [21,22].

1.3
The Beginning of Structure-Based Drug Design

During the late 1970s, rational design evolved into a strategy for the discovery and
development of new drugs. With the knowledge of the three-dimensional struc-
ture of drug targets and their site of interaction with a prototype drug molecule or
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ligand, logical molecular design based upon target–ligand interactions began to
take shape. Early during this practice, X-ray structural information was limited.
The X-ray structural data of related enzymes were used to model the target
enzyme. Advances in technology and molecular biology greatly enhanced the
promise of structure-based design. During the 1980s, rapid progress in protein
expression, purification, and protein crystallography provided detailed structural
knowledge of disease-relevant target proteins. The progress of chemical synthesis
was timely as well. New and efficient reagents, protecting groups, catalytic trans-
formations, and multistep chemical synthetic strategies provided the power of cre-
ative design capabilities for structure-based design. Drug design through
structure-based approaches rapidly revolutionized the field of medicinal chemistry
and changed the approach toward the identification and optimization of
novel drugs.
In structure-based design, the shape and the electronic features for the binding

site of a specific target protein are generated early on. Also, the crystal structures
of protein and ligand complexes are determined to obtain information on inter-
molecular interactions within the protein active site. This molecular insight often
provides the bioactive conformation of the ligand for molecular design [23,24].
Starting from this key information, structure-based design strategies allow the opti-
mization of ligand–protein interactions to improve potency, affinity, and selectivity,
while at the same time preserving and optimizing selected drug-like properties.
An early example of rational design utilizing structural information of an

enzyme–inhibitor interaction can be traced to the discovery of the angiotensin-
converting enzyme (ACE) inhibitor, captopril [25]. Although the X-ray structure of
the actual ACE was unknown at that time, the structure of a similar enzyme, car-
boxypeptidase A, had already been determined. Both carboxypeptidase A and ACE
have a number of common features, including the presence of a zinc ion in the
protease active site. Based on this structural knowledge and a number of peptidic
lead ACE inhibitors from snake venoms, investigators at Bristol-Myers Squibb
(BMS) modeled the active site of ACE and rationally designed captopril, the first
FDA-approved ACE inhibitor for the treatment of hypertension in 1981.
The clinical success of ACE inhibitors fueled a great deal of interest in the devel-

opment of inhibitor drugs against renin, an aspartic acid protease [26]. Renin is
responsible for the regulation of blood pressure, and therapeutic inhibition of
renin was considered a promising strategy for the development of novel therapies
for the treatment of hypertension. It was presumed that a successful renin inhibi-
tor would possess fewer side effects than ACE inhibitors due to the exquisite
selectivity of renin for a single physiological substrate. Key information in the
development of renin inhibitors was the understanding of the substrate cleavage
mechanism and the characterization of the endogenous peptide binding site
[27–29]. The X-ray structure of renin was not known; however, a model structure
of renin was created based upon the X-ray structure of related aspartic acid prote-
ases such as Rhizopus chinensis carboxyl proteinase, endothiapepsin, and other
aspartic acid proteases. The X-ray structural studies with peptide inhibitors
also provided the details of molecular interactions. Based upon this knowledge,
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substrate-based inhibitors were developed to mimic the N-terminal portion of
angiotensinogen, in which the scissile peptide bond was modified based on the
transition-state mimetic concept. Subsequent structure-based optimization of the
early renin inhibitors led to the successful modification of inhibitors with
improved drug-like properties, resulting in the discovery of aliskiren in 2007, the
first FDA-approved renin inhibitor for the treatment of hypertension [30,31].
In the late 1980s, the power of structure-based design was unveiled in the con-

text of the structure-based design and synthesis of HIV protease inhibitors for the
treatment of HIV infection and AIDS. The discovery of the key role of HIV prote-
ase in the viral life cycle and the documentation that inhibition of the viral HIV-1
protease resulted in noninfectious virions brought hope and urgency to the thera-
peutic inhibition of HIV protease [32,33]. Knowledge and expertise gained in the
design of renin inhibitors, and the determination of the X-ray structure of HIV-1
protease at the early stages of inhibitor design, led to rapid progress in structure-
based design capabilities [34]. Within a decade, hundreds of X-ray structures of
HIV protease, inhibitor-bound HIV-1 protease, and mutant proteases aided in the
design of conceptually novel inhibitors. In this context, numerous tools and con-
cepts have emerged for the design of novel inhibitors and for addressing issues of
drug resistance [35,36]. The first HIV-1 protease inhibitor, saquinavir, received
FDA approval in 1996. Structure-based drug discovery efforts expanded rapidly in
many other areas. As can be seen in Table 1.1, structure-based approaches contrib-
uted to the approval of 34 new drugs for the treatment of hypertension, HIV/AIDS
chemotherapy, various cancers, and other human diseases through 2012 [37–70].
Structure-based drug design approaches have been widely utilized in the design

and development of inhibitors of protein kinases for the treatment of a range of
human carcinomas [71–73]. Imatinib was the first example of an anticancer drug
specifically directed at inhibiting a drug target Bcr-Abl fusion protein involved in
the pathogenesis of chronic myelogenous leukemia. Detailed structural studies of
imatinib and Abl kinase complexes provided much molecular insight into imati-
nib resistance. The lead compound for imatinib was discovered through high-
throughput screening (HTS). Lead optimization to improve potency, selectivity,
and pharmacokinetic properties led to the discovery of imatinib. The structural
studies paved the way for development of other kinase inhibitors. Once protein
kinases were recognized as important drug targets for the development of anti-
cancer therapies, much effort was directed toward obtaining structural insight
into the binding sites of various protein kinases. X-ray crystallography was central
to the understanding of binding mode of various classes of inhibitors. This molec-
ular insight was extensively utilized in the structure-based design of various
kinase inhibitor drugs.
The full potential of structure-based design has yet to be realized. Progress in

structure-based design of ligands for G-protein-coupled receptors (GPCRs) has
been growing steadily [74–77]. The recent evolution of techniques for X-ray crystal-
lography resulted in the determination of novel GPCR structures at a rapid pace.
Many high-resolution X-ray structures of ligand-bound GPCRs provided important
understanding of the molecular determinants of ligand binding and receptor
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Table 1.1 Drugs derived from structure-based design approaches.
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Table 1.1 (Continued)
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activation, a critical step for designing agonists or antagonists. Recent studies have
been aimed at understanding if this structural information can be effectively
employed for the structure-based design of novel, potent, and selective GPCR lig-
ands. Structure-based design of novel ligands for GPCRs has become an exciting
area of drug development.

1.4
Conclusions

Serendipity and natural product screening may continue to have an important role
in drug design, but it is clear that structure-based design strategies are making a
significant impact on the drug discovery process. The success of this approach is
already evident in 34 FDA-approved drugs on the market through 2012. Numer-
ous other drugs developed using this approach are undergoing clinical trials. No
doubt, the success of structure-based design strategies rests heavily on the struc-
tural knowledge of disease-relevant target enzymes and their families. The notable
success of drug development in the areas of HIV-1 protease, protein kinase, NS3/
4A serine protease, and b-secretase greatly empowered the application of these
strategies in other areas of drug development. With continual advances in technol-
ogy and increasing knowledge of disease mechanisms and protein structures,
structure-based design strategies will find wide applications in drug discovery
endeavors.

Table 1.1 (Continued)
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In the post-genomic era, many new and important drug targets are emerging,
and structure-based design is expected to offer new opportunities for drug devel-
opment. The drug discovery efforts in the area of GPCRs have witnessed signifi-
cant breakthroughs with the availability of high-resolution structures of drug-
relevant GPCRs. Structure-based design efforts have greatly benefited from rapid
progress in lead generation and validation strategies. Fragment-based screening is
providing early structural knowledge of small-molecule leads. Also, virtual screen-
ing has witnessed major improvements with the sophistication of computational
infrastructure, data sets, and analysis tools. Virtual screening is very important as
traditional HTS is often expensive and time consuming and selected compound
libraries may not have enough diversity.
Despite the successful trends of structure-based design strategies, it is impor-

tant to note that the lead optimization and drug design process are driven by
medicinal chemistry efforts. It is this ingenuity and innovation of experienced
medicinal chemists that will fuel the drug discovery of the future. The ever-
increasing knowledge of molecular and structural biology will likely reveal new
exciting drug targets. However, for innovative molecular design and synthesis, the
role of chemical synthesis will be vital for tomorrow’s new treatments. Structure-
based design has not yet reached its full potential and these strategies will
undoubtedly play a major role in the drug discovery endeavors in the rest of the
twenty-first century.
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