
1
Development of Sustainable Biocatalytic Reduction Processes
for Organic Chemists
Roland Wohlgemuth

1.1
Introduction

Among the different factors contributing to a good chemical manufacturing process,
the process efficiency and specifically volume–time output in terms of reactor
capacity and cycle time, respectively, have been given the largest weight – among the
conversion costs, with material cost being the second [1]. Raw materials or
intermediates with a higher oxidation state than the target products are often
preferred to oxidations on an industrial scale due to process safety and toxicity
concerns [2] and therefore have to be transformed in one or more reduction
processes to the desired oxidation state; the importance to use as few redox steps
as possible in a multistep synthesis has been outlined in the concept of redox
economy [3–5]. Nonselective reductions often require additional protection–depro-
tection steps influencing process economy and leading to waste that scales stoichi-
ometrically with increasing production. Therefore, the reduction of the number of
synthetic steps by highly selective and sustainable reduction processes in organic
synthesis is of key importance and has influenced the development of reduction
processes, reagents, and tools (see Figure 1.1 for route selection in reductions). The
variety of reducing agents, from simple molecular hydrogen with chiral or nonchiral
catalysts in catalytic hydrogenations to reducing equivalents from inorganic or
organic reagents with the required reducing power for the specific reduction, has
enabled a large number of selective reduction reactions. The scope of reducing
agents has been greatly expanded from the use of hydrogen gas in catalytic
hydrogenation, the preparation of nongaseous reducing agents like lithium alumi-
num hydride and sodium borohydride, to the development of highly selective
boranes by HC Brown, representing a milestone of organic synthesis and optically
active organoboranes and providing versatile synthetic methodologies for asym-
metric reductions of prochiral ketones, whereby the chiral auxiliary is recovered in
an easily recyclable form [6–8]. With the growing importance of safety, health, and
environment aspects, the nature of the reducing agents, the transition from
stoichiometric to catalytic reductions, and the development of sustainable chemistry
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have received increased attention [9]. Among the many synthetic methodologies
available for reduction reactions, biocatalysis [10–20] has become an attractive choice
in organic chemistry due to progress in understanding fundamental structure–
function relationships and engineering of enzymes, their applications to organic
synthesis, and developing novel enzymes to solve synthetic challenges in organic
chemistry.
Key advances over the past 10 years have established biocatalysis as a practical,

robust, and sustainable methodology in both laboratory and industrial chemical
syntheses of bulk and specialty chemicals for a variety of industries [21–22]. The
biocatalysts in the BRENDA database [23], which contains functional biochemical
and molecular enzyme data and about 62 000 unique fully characterized reactions,
can be searched according to EC subclasses for known reduction reactions in various
ways. The widely used differentiation between alcohol dehydrogenases and carbonyl
reductases or ketoreductases is based on the directional preference, expressed as the
ratio of the reaction rate constants for the reduction and the oxidation direction,
which have been for the first time reengineered by active site redesign of a parent
dehydrogenase into an effectively “one-way” reductase [24]. Ready-to-use biocata-
lysts in the form of whole cells or isolated enzymes have become practical tools for
the organic chemist to perform enzymatic reductions with high selectivity [25].

Figure 1.1 Biocatalytic reduction processes
and the optimization of the redox state changes
and the number of one-pot reaction steps over
the synthetic sequence, whereby additional

criteria like material costs, yields, and step
combinations in one-pot reaction play a role in
route selection.
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1.2
Biocatalytic Reductions of C¼O Double Bonds

The synthetic applications of the biocatalytic reduction of C¼O double bonds are
also described in detail in Chapter 4, while Chapter 6 describes the use of protein
engineering to develop novel enzymes for the improved reduction of C¼O double
bonds.

1.2.1
Biocatalytic Reductions of Ketones to Alcohols

The biocatalytic asymmetric reduction of ketones to alcohols has been of great interest
to organic chemists overmanydecades [26–28].A large rangeof reactionswith an even
larger number of ketone substrates carrying a variety of substituent functional groups
has been developed. Microbial reduction of phenylglyoxylic acid to mandelic acid by
yeast has been found more than a century ago [29]. The investigation of the absolute
stereochemical course of hydride transfer to carbonyl groups of decalin derivatives in
reductions by microorganisms like Curvularia falcata has led Vladimir Prelog to
rationalize these numerous experimental facts by a simple scheme connecting the
substrate orientation in the plane of the carbonyl group with the spatial hydride
transfer relative to this plane, later called Prelog’s rule (Figure 1.2), for the absolute
configuration of the obtained chiral alcohols [30,31]. Prelog’s rule states that the
alcohols that were formed by the microbial reductions studied had all the (S)-
configuration and explains this fact by the pro-R hydride transfer from the cofactor
to the Re-face of the carbonyl group, a property not only of the microbial reducing
agents used but also of the oxidoreductase enzymes [32,33]. The later discoveries of
microorganisms and alcohol dehydrogenases, for example, from Mucor javanicus
[34,35],Pseudomonas sp., and Lactobacillus kefir [36,37], with the pro-R hydride transfer
from the cofactor to the opposite Si-face of the carbonyl group leading to alcohols with
the (R)-configuration are described to have anti-Prelog enantioselectivity. The catalytic
asymmetric reduction of prochiral cyclohexanones to their corresponding axially
chiral (R)- and (S)-alcohols is a reduction where chiral transition metal catalysts
fail, but where excellent enantioselectivity has been achievedwith alcohol dehydrogen-
ases and the reversal of enantioselectivity by directed evolution [38].
The form of the biocatalysts used has varied widely from whole cells like baker’s

yeast [39], Geotrichum candidum [40], or recombinant microorganisms expressing
the desired alcohol dehydrogenase or ketoreductase, extracts, or isolated enzymes
thereof [41,42] to the isolated animal-derived enzymes like horse liver alcohol
dehydrogenase (HLADH) [43] and isolated enzymes from microorganisms like
Saccharomyces cerevisiae [44], Thermoanaerobium brockii [45], and L. kefir [46]. The
progress in the development and production of recombinant and engineered
alcohol dehydrogenases or ketoreductases [47,48] has accelerated its use in
laboratory and industrial-scale processes [49–55]. A recombinant short-chain
alcohol dehydrogenase RasADH from Ralstonia sp. overexpressed in Escherichia
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coli has been shown to reduce ketones with two bulky substituents to the
corresponding optically highly enriched alcohols with very high stereoselectivity
according to Prelog’s rule [56]. The search efforts for highly active and enantio-
selective carbonyl reductases that have a broad substrate range and tolerate high
substrate and product concentrations have been shortened by the progress in
bioinformatics and protein engineering, and a carbonyl reductase from Kluyver-
omyces thermotolerans able to reduce a variety of arylketones to alcohols at high
concentrations and high ee values according to anti-Prelog’s rule has been found
by genome mining [57]. Substituent effects in a series of ketoreductase-catalyzed
reductions of aryl ketones have been evaluated on activity and enantioselectivity
for different isolated recombinant ketoreductases [58,59]. Reducing enzymes like
the alcohol dehydrogenases and carbonyl- or ketoreductases have become excel-
lent tools for ketone reduction in organic synthesis (see Figure 1.3 for selected

Figure 1.2 Prelog’s rule: stereospecific product formation by alcohol dehydrogenase-catalyzed
ketone reduction, assuming the large group having higher priority in CIP rules than the small
group.
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reductions), which in the case of ketone reductions outperform other ketone
reduction chemistries and make them a method of first choice [60–65].
Biphasic reaction media, which are advantageous for poorly water-soluble ketones

and for reactions at higher substrate concentrations, have been developed for the

Figure 1.3 Selected biocatalytic reductions of ketones to alcohols.
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asymmetric reduction of ketones with in situ cofactor regeneration, whereby both
the alcohol dehydrogenase and the formate dehydrogenase remain stable [66].
Since many oxidoreductase reactions depend on the nicotinamide cofactors
NADþ/NADHand NADPþ/NADPH, efficient in situ cofactor regeneration systems
have been engineered [67], which can be scaled up.
Dicarbonyl reductases, including diketoreductases, a-acetoxyketone reductase,

and sepiapterin reductase, are of preparative interest for the direct production of
chiral diols by the biocatalytic reduction of two carbonyl groups [68]. The increasing
number of suitable and accessible dehydrogenases/reductases makes the enzymatic
reduction processes attractive to a growing number of organic chemists due to
robust enzymatic reduction technologies, which over many decades have been
established and translated into industrial processes for the synthesis of chiral
alcohols [69].
The biocatalytic reduction of the keto group to the alcohol group proceeds with a

great tolerance of other functional groups in the substrate, for example, the
enantioselective reductions of ketoesters to chiral hydroxyesters [70–73] or of
2-ketoacids to chiral a-hydroxy acids [74]. The substrate selectivity of transition
metal- and lactate dehydrogenase-catalyzed enantioselective reductions of several
3-aryl-2-oxopropanoic acids has been compared [74].

1.2.2
Biocatalytic Reductions of Aldehydes to Alcohols

Biocatalytic reductions of furfural to furfuryl alcohol by yeast have been first
described more than a century ago [75] and continue to attract interest even today
(see Figure 1.4 for selected reductions) despite the efficient industrial chemo-
catalytic reduction processes. One area where biocatalytic reductions are of particu-
lar interest is the flavor and fragrance industry and an efficient biocatalytic process
for the reduction of cinnamyl aldehyde to the aroma chemical cinnamyl alcohol has
been developed using recombinant whole cells overexpressing an alcohol
dehydrogenase from L. kefir and a glucose dehydrogenase from Thermoplasma
acidophilum [76]. The product cinnamyl alcohol was obtained in 77% yield with a
high substrate concentration of 166 g/l cinnamyl aldehyde and with the reaction
reaching 98% conversion [76]. Chiral metallocenic alcohols have been obtained from
racemic 1-formyl-2-methyl derivatives of tricarbonyl (cyclopentadienyl) manganese
and (benzene) tricarbonyl chromium in a kinetic resolution with HLADH [77].
HLADH has also been used in the highly enantioselective biocatalytic reduction of
2-arylpropionic aldehydes to (2S)-2-aryl-propanols [78]. High yields have been
achieved in a dynamic kinetic resolution process (DKR) by coupling the
HLADH-catalyzed reduction to a chemical racemization step. The racemization
step is represented by the keto–enol equilibrium of the aldehyde and can be
controlled by modulating pH and reaction conditions. A new glycerol
dehydrogenase from the acetic acid bacterium Gluconobacter oxydans shows a broad
substrate spectrum in the reduction of different aliphatic, branched, and aromatic
aldehydes with the highest activities observed for the conversion of D-glyceraldehyde
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in the reductive direction [79]. The kinetic resolution of racemic glyceraldehyde has
been achieved and enantiopure L-glyceraldehyde was obtained on preparative scale.
Coexpression of this glycerol dehydrogenase from G. oxydans and the enzyme for
cofactor regeneration, glucose dehydrogenase from Bacillus subtilis, in E. coli BL21
(DE3) facilitated the access to L-glyceraldehyde with high enantioselectivity at 54%
conversion. The whole-cell catalyst shows several advantages over the cell-free
system like a higher thermal, a similar operational stability, and the ability to
recycle the catalyst without any loss of activity, making the whole-cell catalyst more
efficient for the production of enantiopure L-glyceraldehyde [80]. A new NADPH-
dependent aldehyde reductase from Oceanospirillum sp. has been demonstrated to
reduce a variety of substituted benzaldehydes and aliphatic aldehydes with high
chemoselectivity, as shown by the chemoselective reduction of aldehydes in the

Figure 1.4 Selected biocatalytic reductions of aldehydes to alcohols.
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presence of ketones, for example, the selective reduction of the aldehyde functional
group in 4-acetylbenzaldehyde or in the mixture of hexanal and 2-nonanone [81]. A
kinetic resolution of racemic 2-methyl valeraldehyde utilizing an evolved ketore-
ductase for the enantioselective reduction of the (R)-enantiomer and a scalable
method for the separation of the desired product from the (S)-enantiomer of the
starting material yielded the important chiral intermediate (R)-2-methylpentanol
with high volumetric productivity [82].

1.2.3
Biocatalytic Reductions of Carboxylic Acids to Aldehydes

The reduction of carboxylic acids to aldehydes is of preparative interest and a
number of microbial carboxylic acid reductases (CARs) (aldehyde oxidoreductases)
have been found since the discovery of the tungsten-containing CAR that reduced
nonactivated carboxylic acids to the corresponding aldehydes with no further
reduction of the aldehydes to alcohols [83]. The reduction of vanillic acid to the
aldehyde vanillin has been achieved in vitro with the CAR fromNocardia sp. [84] and
as part of a de novo biosynthesis in yeast [85]. A CAR from Mycobacterium marinum
has been discovered that can convert a wide range of aliphatic fatty acids (C6–C18)
into corresponding aldehydes [86].

1.2.4
Biocatalytic Reductions of Carboxylic Acids to Alcohols

A selective biocatalytic hydrogenation of a broad range of carboxylic acids to the
corresponding primary alcohols has been achieved by Pyrococcus furiosus without
reducing isolated carbon–carbon double bonds [87]. By the combination of a CAR
from M. marinum with an aldehyde reductase, fatty alcohol concentrations of
350mg/l have been achieved [86]. A range of short-chain carboxylic acids from
acetic acid to n-caproic acid were converted into their corresponding alcohols using
Clostridium ljungdahlii and Clostridium ragsdalei as biocatalysts and syngas as energy
and electron source [88]. A new Acinetobacter species has been found to reduce the
carboxy functional group in 5-cis,8-cis,11-cis,14-cis-arachidonic acid to 5-cis,8-cis,11-
cis,14-cis-arachidonyl alcohol [89]. Further details on biocatalytic reductions of
carboxylic acids to alcohols can be found in Chapter 2.

1.3
Biocatalytic Reductions of C¼C Double Bonds

Catalytic asymmetric reductions of carbon–carbon double bonds can be done in a cis-
or trans-fashion and generate up to two new chiral centers. The biocatalytic
asymmetric reduction of carbon–carbon double bonds occurs with exclusive
trans-stereospecificity [90] except for some rare cases of cis-stereoselectivity. Bio-
catalytic reductions are therefore complementary to the high standard of transition
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metal-catalyzed cis-hydrogenation and an increasing number of successful synthe-
ses have been achieved (see Chapter 3 for further details) over the last few years
using cloned enoate reductases [91,92], making this an established methodology
with many benefits (see Figure 1.5 for selected C¼C double bond reductions). The
oxygen-stable enoate reductases 12-oxophytodienoate reductase isoenzymes OPR1
and OPR3 from tomato and the “old yellow enzyme” homolog YqjM from B. subtilis
have been found to reduce a remarkably broad range of activated alkenes bearing an

Figure 1.5 Selected biocatalytic asymmetric reductions of C¼C double bonds.
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electron-withdrawing group like a,b-unsaturated aldehydes, ketones, maleimides,
and nitroalkenes with absolute chemoselectivity and excellent ee values up to >99%
[93]. An interesting novel nicotinamide-independent asymmetric reduction of acti-
vated carbon–carbon double bonds was developed by direct hydrogen transfer from a
sacrificial enone as hydrogen donor, catalyzed by enoate reductases [94]. The known
substrate scopes of a large number of old yellow enzymes and old yellow enzyme-like
biocatalysts include a large library of a,b-unsaturated activated alkene compounds
typically containing electron-withdrawing or electron-activating groups such as alde-
hyde, acyclic and cyclic ketones, carboxylic acid, ester, and nitro functionalities [95].
The (R)- and (S)-citronellal enantiomers have been prepared by ene reductase-
catalyzed reductions from citral [96–99]. Ene reductase-catalyzed reduction of
2-hydroxy-methylacrylic acid methylester and its O-allyl, O-benzyl, and O-TBDMS
derivatives yielded the corresponding (R)-3-hydroxy-2-methylpropionic acid methyl-
esters with excellent enantioselectivities of up to >99% ee [90,100]. An interesting
example for preparing two enantiomeric 2-methyl-3-aryl-propanols has been demon-
strated by controlling the starting alkene regioisomer [102]. Substrate control has also
been investigated in the ene reductase-catalyzed reduction of carbon–carbon double
bonds of b-cyano-a,b-unsaturated esters [103]. Excellent productivity improvements
in the OYE3-catalyzed reduction of (E)-2-ethoxy-3-(p-methoxyphenyl)prop-2-ene-1-al
to (S)-2-ethoxy-3-(p-methoxyphenyl)propion-1-aldehyde have been obtained by com-
bining the use of overexpressed OYE3 with the in situ SFPR technology, making it a
practical and simple process with ready-to-use isolated enzymes [104]. The use of
protein engineering to develop novel enzymes for the improved reduction of C¼C
double bonds is described in Chapter 5.

1.4
Biocatalytic Reductions of Imines to Amines

The enantioselective reduction of imines provides an interesting strategic route to
chiral amine functions in the construction of a target molecule and is therefore of
great synthetic interest. While several oxidoreductases catalyzing asymmetric reduc-
tion of water-soluble substrates have been found over the last decades, it is only
recently that the synthetic applications have attracted attention [105,106]; Figure 1.6
shows selected imine reductions to amines (see also Chapter 2 for further details).
Imine-reducing strains of Streptomyces sp. have been identified by screening to
reduce 2-methyl-1-pyrroline with high (R)- and (S)-selectivity [107]. The correspon-
ding whole-cell biocatalysts have been shown to reduce 2-methyl-1-pyrroline to (R)-2-
methylpyrrolidine with high enantioselectivity (99.2% enantiomeric excess), while
the other enantiomer (S)-2-methylpyrrolidine was obtained with lower enantiose-
lectivity (92.3% enantiomeric excess) at 91–92% conversion [107]. The responsible
isolated enzyme (R)-imine reductase of Streptomyces sp., a homodimer consisting of
32 kDa subunits and dependent on NADPH, also reduced 2-methyl-1-pyrroline to
(R)-2-methylpyrrolidine with 99% enantiomeric excess in a nearly complete conver-
sion [108]. Interestingly, under neutral conditions of pH 6.5–8.0, the 2-methyl-1-
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pyrroline was reduced, while (R)-2-methylpyrrolidine was oxidized under alkaline
pH of 10–11.5 [108]. A NADPH-dependent (S)-imine reductase from Streptomyces
sp., a homodimer consisting of 30.5 subunits, catalyzed the enantioselective
reduction of 2-methyl-1-pyrroline to the corresponding (S)-amine with 92.7% ee,
of 1-methyl-3,4-dihydroisoquinoline to its corresponding (S)-amine with 96% ee,
and of 6,7-dimethoxy-1-methyl-3,4-dihydroisoquinoline to the corresponding (S)-
amine with >99% ee [109]. A recombinant form of the NADPH-dependent imine
reductase from Streptosporangium roseum strain DSM 43021 has been coexpressed

Figure 1.6 Selected biocatalytic asymmetric reductions of imines to amines.
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with NADP-dependent glucose dehydrogenase to catalyze the synthesis of optically
active (S)-amines from imines [110]. The thiazolinyl imine reductase PchG from
Pseudomonas aeruginosa reduces the C¼N double bond of a thiazoline ring to the
thiazolidine ring in the synthesis of pyochelin [111] and the thiazolinyl imine
reductase Irp3 from Yersinia enterocolitica catalyzes the NADPH-dependent reduc-
tion of a C¼N double bond in the center thiazoline ring of an intermediate to make
the thiazolidine ring of the product in the synthesis of yersiniabactin [112].

1.5
Biocatalytic Reductions of Nitriles to Amines

Contrary to the predictions based on sequence analysis, a new nitrile reductase,
queF, has been discovered that catalyzes the NADPH-dependent four-electron
reduction of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine
(preQ1), a late step in the biosynthesis of queuosine A [113]. The reduction of a
nitrile is unprecedented in biology, and the enzyme from B. subtilis has been
characterized and a chemical mechanism for this enzyme-catalyzed reduction has
been proposed [114,115]. The expression and characterization of queF from E. coli
K-12 (EcoNR) has also been demonstrated to reduce its natural nitrile substrate
preQ0 at 37 �C and pH 7 to the corresponding amine product preQ1 [116]. A nitrile
reductase from Geobacillus kaustophilus has been cloned, expressed, and characte-
rized and a range of common nitriles that have been tested as substrates showed a
narrow substrate range for the wild-type enzyme [117]. Mutants were investigated
regarding the natural substrate preQ0 as well as a range of preQ0-like substrates,
whereby a distinct substrate dependence of the wild-type enzyme activity was
observed and two nonnatural preQ0-like substrates could be reduced to their
corresponding amino compounds. Selected nitrile reductions to amines are shown
in Figure 1.7 (see Chapter 2 for further details).

1.6
Biocatalytic Deoxygenation Reactions

A selection of biocatalytic deoxygenation reactions is shown in Figure 1.8. The
reducing power of baker’s yeast in an ethanol–water mixture and sodium hydroxide
at 60�C has been found effective for the rapid and selective reduction of a series of
N-oxides like aromatic and heteroaromatic N-oxide compounds [118]. DMSO reduc-
tase from Rhodobacter sphaeroides f. sp. denitrificans catalyzed the (S)-enantioselective
reduction of various sulfoxides and enabled the resolution of racemic sulfoxides for
the synthesis of (R)-sulfoxides with >97% ee [119,120]. Purified dimethyl sulfoxide
reductase from Rhodobacter capsulatus resolved a racemic mixture of methyl p-tolyl
sulfoxide by catalyzing the reduction of (S)-methyl p-tolyl sulfoxide and gave enantio-
merically pure (R)-methyl p-tolyl sulfoxide in 88% yield, while whole cells of E. coli,
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Proteus mirabilis and Proteus vulgaris reduced the same sulfoxide with opposite
enantioselectivity [121]. The resolution of racemic alkylaryl sulfoxides and thiosulfi-
nates bydimethyl sulfoxide reductase from the anaerobic bacteriumCitrobacter braakii
gave the corresponding enantiopure alkylaryl sulfoxides and thiosulfinates [122].
Recombinant ribonucleoside triphosphate reductase from Lactobacillus leichman-

nii has been used for the 20-deoxygenation of ATP to prepare 20-deoxyadenosin-
triphosphate with a high degree of conversion and high yield using 1,4-dithio-DL-
threitol as artificial reducing agent for the ribonucleoside triphosphate reductase
[123]. Good biocatalytic 20-deoxygenation with the same enzyme has also been

Figure 1.7 Selected biocatalytic reductions of nitriles to amines [101].
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observed for the other ribonucleoside-50-triphosphate substrates CTP, GTP, ITP,
and UTP [124].

1.7
Emerging Reductive Biocatalytic Reactions

Newly discovered biocatalytic reductions are emerging as interesting alternative
reactions to well-known chemical reductions (Figure 1.9). Interesting benzoyl
coenzyme A reductases (BCR) from facultatively anaerobic bacteria, which catalyze

Figure 1.8 Selected biocatalytic deoxygenation reactions.
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ATP-dependent dearomatization reaction of aromatic rings to cyclohexa-1,5-diene-1-
carboxyl CoA compounds analogous to Birch reductions, have been investigated
with respect to the stereochemical course and exchange reactions and the findings
indicate that BCR forms the trans-dienyl CoA product [125]. The findings support
the proposed Birch reduction mechanism of BCR [125], opening the emerging area
of biocatalytic Birch reductions. A new tungsten-containing class II benzoyl
coenzyme A reductase from Geobacter metallireducens has been discovered, which
catalyzes the fully reversible ATP-independent dearomatization of benzoyl-CoA to

Figure 1.9 Emerging reductive biocatalytic reactions.
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cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA) at extremely low redox potential
[126,127]. The tetrahydroxynaphthalene reductase is another enzyme of interest for
dearomatization reactions and shows a broad substrate range [128].
In the area of biocatalytic reductive cyclizations, the interesting plant-derived

iridoid synthase generating the bicyclic monoterpene ring has been discovered,
which uses the linear 10-oxogeranial as substrate instead of the geranyl diphosphate
used by all known terpene cyclases [129]. A very interesting novel diphosphate-
independent terpene cyclase from Zymomonas mobilis has been discovered, which
catalyzes the cyclization of the nonactivated citronellal to isopulegol [130], and
squalene–hopene cyclase can be converted by a single amino acid exchange into
citronellal cyclases [131].

1.8
Reaction Engineering for Biocatalytic Reduction Processes

Since the reductant will be oxidized in the biocatalytic reduction process, the
required reducing equivalents should either be inexpensive or otherwise an ade-
quate regeneration system for the reductant has to be utilized. The development of
the most suitable reaction conditions for new enantioselective reductions is decisive
and starts first with the route selection and basic design, and then needs further
experimental verification on a suitable scale as well as an adequate and meaningful
analytical methodology, which is a prerequisite for rapid and straightforward
reaction engineering. The development of a fast and simple batch process with
complete substrate conversion is illustrated by the reaction engineering of the two-
step reduction of dehydrocholic acid (DHCA) to 12-keto-ursodeoxycholic acid
(UDCA) as the key enzymatic steps in the preparation of UDCA [132].
The analysis of reaction enantioselectivity for asymmetric reductions is key for the

process development and an interesting combined use of high-performance liquid
chromatography and circular dichroism has led to an efficient procedure for alcohol
dehydrogenase-catalyzed asymmetric reduction of 1-phenyl-2-propyn-3-trimethyl-
silyl-1-on [133].
The bottleneck of substrate and product toxicity to the microbial cells used for the

reduction has been overcome by the use of a polymeric resin to both supply substrate
to and remove the product from the reactionmixture and therefore themicrobial cells
in the biocatalytic reduction of 3,4-methylene-dioxyphenyl acetone by Zygosacchar-
omyces rouxii to the corresponding (S)-3,4-methylene-dioxyphenyl isopropanol in
>95% isolated yield and with >99.9% enantiomeric excess [134]. This substrate
feed and product recovery (SFPR) design made it possible to increase concentration
from 6 to 40 g/l and to achieve the reaction, product isolation, and resin recycling
within a single piece of equipment at an overall reactor productivity of 75 g/l/day.
Another potential bottleneck to be overcome is the inherent equilibrium problem

associated with the coupled substrate approach to biocatalytic carbonyl reduction
and in situ product removal allowed the isolation of the pure (S)-2-bromo-2-
cyclohexen-1-ol in 88% yield and with 99.8% enantiomeric excess [135].
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The combination of a chemoselective enzymatic reduction step with another
second enzymatic reaction is another opportunity to overcome limitations, for
example, in the case of the enantioselective reduction of prochiral unsaturated
aldehydes by coupling a reduction step with an isolated ene reductase (OYE 2 or
OYE3) together with an oxidation step with HLADH in a cascade system, which
allowed both yields and enantioselectivities to be improved [136].

1.9
Summary and Outlook

The use of biocatalysts for reduction reactions in organic chemistry at the laboratory
scale as well as at the industrial production scale has found its prominent place as a
valuable synthetic toolbox able to compete with the best other synthetic methodolo-
gies available over the last decades. The development of strategies for new reductive
biocatalytic reaction chemistry will benefit from the interdisciplinary interaction and
at the same timemoving the disciplinary frontiers and interfaces between chemistry,
biology, and biotechnology [137–139], between the molecular and engineering
sciences [140], between the analytical and preparative technologies and perspectives.
The future of biocatalytic asymmetric reduction reactions and reductive biotrans-
formations looks very promising due to the tremendous scientific and technological
progress and the inherent chirality of the biocatalysts [141]. The analysis of protein
functions requires the synthesis or isolation of pure enzyme substrates in order to
perform the biocatalytic reactions and measure enzyme activities. The diverse
approaches for the discovery of novel reductive enzyme functions share the
requirement of meaningful, robust, and sensitive analytical methodologies and
will benefit from the standardization of quantitative and reproducible measure-
ments of reductive substrate-to-product conversions and their reporting in publica-
tions [142]. The development and production of highly selective and stable
biocatalysts for reductions, which can also be used for a larger group of substrates,
is instrumental for the expanding adoption of biocatalytic reaction steps by the
organic chemists. The rich diversity of Nature’s small molecules and their bio-
synthesis provide inspirations for a variety of reduction reactions in monomer
biosynthesis, coupling reactions, and tailoring reactions [143].
Reaction engineering and product recovery are equally important and green

chemistry will continue to be a useful central design framework for the translation of
this new knowledge into daily industrial practice of fine and specialty chemical
production [144]. The key element for the success of enzymatic reductions in green
production methods is the continuous process improvement, functional group
tolerance, and chemoselectivity of the particular reduction reaction due to the mild
reaction conditions, the implementation in fine chemical production and the
intensified inclusion in organic, green, and sustainable chemistry, catalysis, and
industrial biotechnology [145,146]. Since the chemical production is highly complex,
diverse, and based on a variety of scientific and technological disciplines, detailed
analyses of existing process challenges in certain industrial production areas and
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research perspectives for green production methodologies are useful [147], but the
exciting developments in bioreductions and reductive biotransformations for
organic chemistry will certainly shape the arsenal of industrial reduction
technologies.
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