Index

a
absorbed moisture 182
accelerated testing 143–144
acrylonitrile butadiene styrene (ABS) 10, 11, 55, 97
amorphous polymer 4, 12, 13, 15–18, 27–29, 31, 32, 37, 146, 149, 157, 163, 167, 195, 213
strength properties 29
amorphous thermoplastics 4, 12, 18, 31, 95, 148
application temperature range 166
Arrhenius equations 26, 143
atactic polymer 11, 22, 32
attenuated total reflection (ATR) 60

b
backscattering electrons (BE) 210
ball hardness measurement 107
ball indentation hardness 106–107, 111–113
ball/pin indentation method 179
bending creep modulus 125
bending stress 102–104, 125, 169, 177
bending strip method 175, 177, 178
bending test
 four-point bending 102
 stress-strain curves 104
 three-point bending test 101
Berkovich pyramid 108
Birefringence 212, 213
brittle and ductile polymer 98
brittle polymers 93, 103
bulk deformation 30
Buoyancy method 54, 56–57
calcination tests
determine, filler content 164
solution viscosity measurements 165
test setup 166
calcium hydride (CaH₂) 183
calliper 187
capillary viscometer 69–71, 77, 78, 81, 84
CARREAU model 68
cathodic sputtering process 211
Charpy impact test 116–118
color pigmented PA66 resin 38
chemical reaction equation 184
chemical testing
chemical resistance investigation 173
ESCR
 bending strip method 177–179
 polymeric material 175
tensile creep test 176–177
 colour pigmented PA66 resin 38
 Complex modulus 33, 76, 152–154, 156
 complex shear modulus 71, 76, 112
 complex stiffness 154, 155, 158
 compression test
 permissible length, compression test 99
 compressive modulus 100, 101
 compressive strain 100, 101
 compressive strength 100, 101
 compressive yield stress 100, 101
 computer tomography (CT) 48
computer tomography (CT) (contd.)
non-destructive measuring and
testing procedure 191
principle 192
cone-plate measuring arrangements
71, 72
contactless measurement methods
CT 191–194
light stripe projection method 191
non-probing measurements 190
X-ray tomography devices 189–191
coordinate measuring technique 190
copolymeric polyoxymethylene (POM)
20, 95
copolymers 9–11, 20, 30, 32, 33, 55
Cox–Merz relationship 76
creep modulus 24, 27, 123–125
curves 124
creep rupture tests 121, 123, 129, 176,
177
creep strain 121–123, 125
cross-linked networks 31, 40
crystalline lamellae 18, 21, 29, 44
crystallite melting temperature 18
crystallization
exothermal process 19
isothermal 20
crystallization process 4, 20
d
degree of polymerization 6, 7
density, polymers
floating (suspension) method 54–56
gradient method 57
measurement, Buoyancy method
56–57
physical properties, PE 54
polymeric material, physical property
54
pycnometer method 57–58
differential scanning calorimetry (DSC)
48, 53
dynamic differential calorimeter 146
dynamic heat flux differential
calorimetry 145
semi-crystalline polymer 151
specific heat capacity 144, 145
thermogram, crystallisable
thermoplastic material 150
thermogram, of amorphous polymer
149
thermogram, of curable polymer
149
thermogram, of semi-crystalline
polymer 150
digital microscope 201, 207–208
dilatometry 48, 161–164
dioctylphthalate (DOP) 33, 34
dipole-dipole interactions 15
DMA measurements 140, 142, 153,
155, 156, 182
drop test 114, 118
DSC measurement 144, 146–150, 181,
182
ductile amorphous polymer 28, 29
ductile-brittle transition 113, 142
ductile polymers 90, 93, 97, 98, 103
ductile prismatic polymeric material
90
dumbbell specimen 90
durometer hardness Shore A vs.
complex shear modulus 112
durometer/shore hardness 110–112
dynamic differential calorimeter 146
dynamic mechanical analysis (DMA)
48, 74, 139, 152–158, 182
gamma factor, measurements 153
measurement modes 156
multi-frequency measurements 155
temperature sweep 156
viscoelastic properties 152
dynamic-mechanical-thermal analysis
(DMTA) 152
dynamic stress loading conditions 129
e
elastic deformation (Hookean
behaviour) 75
elastic properties 30–32, 47, 48, 70, 71,
74, 152, 154
elastomers 1, 3, 5, 22, 31, 40–43, 45, 65, 88, 95, 96, 105, 110, 112, 142, 152, 163, 166, 167, 197, 204, 206
electric discharge machining (EDM) 188
electromagnetic lenses 209
energy dispersive X-ray spectroscopy (EDX) 210, 211
engineering stress 28, 29, 90
engineering stress-strain behaviour 28
entropy elasticity 8
environmental stress cracking resistance (ESCR)
 ball/pin indentation method 179
 bending strip method 177–179
 indicator properties 178
 material resistance 174
 polymeric material 175
 tensile creep test 176–177
 test methods 175
epoxy resin (EP) 95
equilibrium moisture content 182
ethylene 6
exothermic crosslinking reaction 149
extrinsic plasticization 33, 34
extrusion moulding processes 13
falling dart test 118–120
fatigue tests of polymers 127
flexural creep strain 125
flexural fatigue tests 130–131
floating (suspension) method 54–56
float-sink test 56
force or displacement-controlled mechanical load 152
Fourier transformation IR spectroscopy (FT-IR spectroscopy) 59, 60
friction coefficient 133, 135–136
friction law 136
friction wheel method 136
geometrical inspection
 processing and post-processing
 shrinkage 195–197
sizes and tolerance
 contactless measurement methods 189–191
 measurement techniques 189
tactile measurement methods 188–189
warpage 197–198
Hagenbach time correction 83, 85, 86
Hagen–Poiseuille law 81
harmonic stress loading 153
heat deflection temperature (HDT) 142, 169–171
heteronucleation 4
high density polyethylene (PE-HD) 95
high pressure capillary viscometry (HPCV) 48
capillaries, of different geometries 80
determined flow function 82
measuring methods 80
homonucleation 4
homopolymer 6, 9–11, 33, 97, 168, 169
hydrogen bonds 15
hydrolysis-sensitive hygroscopic polymer 79
hygroscopic plastics 86
hygroscopic polymer 79, 182, 183, 187
hysteresis, development of 36
identification of polymers 53
impact loading
 bending impact tests 115–120
 impact strength values 113
tensile impact test 114–115
indentation hardness tests 105, 109, 110
indenter geometry 106
infrared spectroscopy (IR) 47, 53
ATR 60
infrared spectroscopy (IR) (contd.)
 FT-IR spectroscopy 59
 MIR 58
 optical spectroscopy process 58
 injection molding process 4
 injection moulded thermoplastic components 44
 injection moulding processes 4, 9, 13, 44, 45
 interlaminar shear strength measurement (ILS) 101, 103
 intermolecular bonds 12, 15, 17, 21, 28, 33
 International Rubber Hardness Degree (IRHD) 112–113
 intramolecular chemical bonds 15
 intrinsic viscosity 84
 IR-Spectra, thermoplastics 61
 isochronous stress-strain curves 25, 123, 124
 isochronous stress-strain diagram 123–125
 isotactic polymers 11
 isotactic polypropylene (iPP) 4
 isothermal crystallization 19, 20
 isotropic materials 105
 Izod impact test 118

\textbf{k}
Knoop hardness test 108–110

\textbf{l}
Lambert law 59
Lamellar shear flow 14
light microscope (LM) 48, 199, 201–208
digital microscope 207–208
reflection light microscopy 201
sample preparations
 grinding and polishing 204–205
 microtome slices / thin sections 205–207
 morphology, of moulded parts 203
 transmission light microscopy 201
light stripe projection method 191
linear polyethylene (PE) 21
linear viscoelastic materials 67, 95
long term dynamic test–fatigue test
 flexural fatigue tests 130–131
tension-compression test 130
viscoelastic materials 126
long term static loading
 creep and relaxation, polymeric materials 120
 creep test
 creep modulus curves 124
 setup 121
 tensile creep strength 123
tensile test 121
 relaxation test 125–126
loss modulus 16, 76, 77, 154

\textbf{m}
macro molecular 10
 properties 50
macromolecule 6
macroscopic morphology 44
manometric moisture determination 184
mass, determination of 181–182
master curve 157
measurement of melt flow rate 48, 77–80, 168
mechanical deformation behaviour 25, 87
mechanical fatigue 37
mechanical testing
 impact loading 113–120
 mechanical properties, sample 87
 normal stresses 87
 quasi-static loading
 mechanical strength 88
 stress-strain behaviour 88
tensile test 89
 shear stresses 87
melt flow behaviour 65, 77–79, 82
melting polymers 12–15
melt mass flow rate (MFR) 77–80
melt processing 6, 39, 42, 78, 114, 134, 147, 182
melt volume flow rate (MVR) 48, 77–80
metallocene catalysts 9, 11, 21
micro-and nano-hardness measurements 105
micro indentation hardness testing 109
microtome 207
microtomy 206
mid-infrared (MIR) spectra 58
migration induced shrinkage 196–197
modulus of elasticity 95
Mohs scale 105
moisture content
manometric determination of 183
molar mass distribution 69
molecular weight distribution (MWD) 8–10, 17, 47, 65, 68
monomeric repeat units (MUs) 5
morphology 44
moulding compounds, test methods 54
multi-frequency measurements 155
multiphase polymer systems 11

n
Newtonian flow behavior 67
Newtonian fluids 14, 67, 74, 81
nitrogen atmosphere (N₂) 158, 159
non-crosslinked polymers 173
non-uniform material properties 4
nucleation 4, 151

o
optical testing methods
light microscope
optical imaging 201
reflection light microscopy 201
transmission light microscopy 201
microscopic testing 199
visual inspection 199–201
orthotropic behaviour 49, 165
oscillating rheometer 75
oxidation reactions 79

p
phenolic resin (PF) 95, 183
phosphorus pentoxide (P₂O₅) 183
physical-mathematical model 122
physical testing
mass, determination of 181–182
water absorption, determination of
equilibrium moisture content 182
manometric method 185
volatile content 183
plastic deformation 15, 16, 28, 29, 42, 118
plasticization methods 32–34
plasticized polyvinylchloride (PVC-P) 55, 95
plastics
material selection 39–40
melting polymers
flow properties 14
polymeric materials 2
polymers
cross-linked polymer 3
elastomers 1
thermoplastic 1
thermoplastic elastomers 1
principle of polymerization 5
resins
colour pigmented PA66 resin 38
composition of 38
pure polymers 37
structure and behaviour
homopolymer 6
homopolymer and copolymer 9–11
polymer blends 11–12
synthetic/semi-synthetic organic solid 1
plate-plate measuring arrangements 72, 73
Poisson's ratio 31, 88, 96, 97
polarization optics 212–213
rubber-like materials 95
stress-strain diagram 92
tensile stress 90
yield stress 93
quasi-static tests 89

r
rate of crystallization 20
reflection-light microscopy 199, 201, 205, 207
relaxation process 15, 16, 26, 27, 157
rheological testing
polymer melt 66
rheometry
advantage and disadvantage, capillary viscometer 71
measurement principle 71
rheological measurement 71
rotational method 71–72
viscometry
HPCV 80–82
MFR 78–80
solution viscometry 82–86
rheometry 70
measurement 70
oscillation method
def ormation and torque behaviour 75
rotational method
cone-plate measuring arrangements 72
plate-plate measuring arrangements 72
rotational rheometer 71–73, 75
rubber-like materials 95
rubbery property 31
semi-crystalline polymers 4, 150, 151, 163, 167, 195, 201, 202
semi-crystalline thermoplastics 4, 5, 163, 166
shear deformation 66, 67, 74, 75
shear flow 14, 66, 67
shear loading 66, 155
shear stress 13, 14, 66, 67, 69, 73–76, 81, 87, 88, 101, 103, 104
shear thinning 9, 14, 15, 39, 65, 67, 68, 78
shear thinning behaviour 68
shear velocity 9, 13, 14, 39
shish-kebab-like oriented crystallinity 19
shore hardness testing 111
shrinkage values 196
singlephase polymer systems 11
size exclusion chromatography (SEC) 47
sliding process 133, 134
softening behaviour 161, 168
solidification
isothermal crystallization 19
partially crystalline polymer 21
rate of crystallization 20
reverse, of solid melting 19
symmetrical spherulites 19
solution viscometry
hygroscopic plastics 86
intrinsic viscosity 84
thermogravimetric analysis 86
viscosity, polymer 82
spherulite 19, 20, 169
Staudinger index 84
stereoregularity 21
stereoregular polymers 11
stereospecific polymerization reaction 11
stERIC hindrance 21, 22
stERIC order, types 12
storage modulus 76, 154
strain-controlled fatigue test 127, 128
strain, determination of 179
stress-controlled fatigue test 127
scanning electron microscopy (SEM) 20
sputtering device 211
secondary electrons (SE) 210
self-nucleation of the material 151
semi-crystalline plastics 134
stress distribution 98, 102, 105, 114, 212
stress relaxation 24–26, 125, 126
stress-strain curve 94
styrene-acrylonitrile (SAN) 97, 213
styrene butadiene (SB) 10
syndiotactic polymer 11, 21, 32

effect

tacticity, of polymer 11
tactile measurement methods 188–189
temperature and pressure effects 13
temperature-dependent deformation 16
temperature-dependent mechanical properties 167
temperature-frequency sweep 156–158
temperature sweep 156
tensile impact test
bending impact test
Charpy impact test 118
Charpy or Izod test 115
falling dart test 118
Izod impact test 118
tests arrangement 115
notch intensity 114
test arrangement 115
tensile test 89
tension-compression test 130
thermal ageing behaviour 144
thermal analysis methods 53, 139, 164
thermal dimensional stability
thermo-analytical tests 167
VST 167–169
thermal fatigue 35, 37
thermal linear expansion 162
thermal testing
calcination tests 164–166
classification 139
DMA
measurement modes 156
temperature sweep 156
viscoelastic properties 152
DSC
dynamic differential calorimeter 146
measurement principle 144
specific heat capacity 144
thermogram, of amorphous polymer 148
testing possibilities, thermal analysis 141
test under thermal loading
accelerated testing 143–144
thermo-oxidative ageing process 141
TGA 158–161
thermal ageing behaviour 144
thermo-analytical methods 139, 142
thermogravimetric analysis (TGA) 48,
53, 86, 158–161, 164
measurement, methods 160
polymeric sample 158
principle of TGA 159
type and grades, polyamide materials 160
thermomechanical analysis (TMA) 48
measurements 164
principle of 161
thermal linear expansion 162
thermo-oxidative ageing process 141
thermoplastic 1
polyethylene 6
polyurethane 197
thermoplastic elastomers (TPE) 1, 5,
45, 65, 110, 206
thermoplasts 65
thermoset 1, 3, 35, 149, 166
time dependent deformation
creep modulus 24
elastic constants, two springs 23
Hooke’s law 24
viscoelastic material model 23
time-temperature superposition principle 27, 28, 143, 152, 155,
156, 158
torque moment $M(t)$, 71, 74
total shrinkage (S_T) 195, 196
transmission electron microscope (TEM) 48
transmission light microscope 48, 199, 201, 202
transmission microscopic investigations 204
tribological testing friction coefficient 135–136
sliding process 134
wear testing method 136–137
tribology 133
types of polymers 1
2D tomography 193

U
Ubbelohde type capillary viscometer 83, 84
uniaxial stress-strain behaviour ductile amorphous polymer 28
ductility, effects on 32–35
effect of time and temperature 35
elastic properties 30–32
fatigue behaviour 35
intermolecular bonds 28
stiffness, effects on 32

V
van der Waals forces 15
Vicat softening temperature (VST) 168
principle, of measurement 168
on test sample 167
Vicat softening temperature 169
Vickers hardness measurement 108
viscoelastic deformation 26, 27, 45, 75, 88, 152
behaviour 88
viscoelastic material model 23, 24, 36, 37, 67, 95, 126, 154
viscometer 47, 48, 69–71, 77, 78, 80–85, 165
viscosity number (VN) 47, 77, 83, 84, 86
viscous deformation (Newtonian behaviour) 75
volatile content 181–183

W
wall adhesion 66
warpage 142, 187, 188, 190, 195–198
wavenumber 58, 60–62
wear testing method 137
Weißenberg-Rabinowitsch correction 82
Williams–Landel–Ferry (WLF) equation 27
Wöhler curve 128, 129

X
X-ray radiographic testing 48

Y
yield stress 28, 35, 93, 100, 101
Young’s modulus 87, 92

Z
zero-viscosity 14, 68, 69, 77
Ziegler–Natta catalyst 9