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De Novo Design: From Models to Molecules
Gisbert Schneider and Karl-Heinz Baringhaus

Form ever follows function, and this is the law.
Where function does not change, form does not change.

Louis Sullivan, American architect (1896) [1]

Innovative bioactive agents fuel sustained drug discovery and the development of
new medicines. Future success in chemical biology and pharmaceutical research
alike will fundamentally rely on the combination of advanced synthetic and
analytical technologies that are embedded in a theoretical framework that provides
a rationale for the interplay between chemical structure and biological effect.
A driving role in this setting falls on leading edge concepts in computer-assisted
molecular design, by providing access to a virtually infinite source of novel druglike
compounds and guiding experimental screening campaigns. In this chapter, we
present concepts and ideas for the representation of molecular structure, suggest
predictive models of structure–activity relationships, and discuss approaches that
have proved their usefulness and will contribute to future drug discovery by
generating innovative bioactive agents. We also highlight some of the current
prohibitive aspects of fully automated de novo design that will require attention
for future methodological breakthroughs. This chapter provides an introduction to
important pillars of de novo drug design, whereas the subsequent contributions
presented in this book offer in-depth treatments of current trends, methods, and
approaches together with numerous practical examples. We are confident that the
reading will inspire.

1.1
Molecular Representation

Ever since the first atomic models of molecules have been conceived, scientists
have used such models, and their associated concepts and language, to come
up with innovative chemical agents that possess sought properties [2]. So far,
we tend to think of a molecule in terms of sticks and balls when it comes
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Figure 1.1 Atomic models of molecular
structure as depicted in John Dalton’s sem-
inal book entitled A New System of Chem-
ical Philosophy (1808). Panel (a) presents
the ‘‘arbitrary signs chosen to represent
the several chemical elements or ultimate

particles.’’ Panel (b) might be considered as
an early molecular design study, as it depicts
Dalton’s view of various arrangements of
water molecules. Note the similarity between
these archaic philosophies and contemporary
molecular models.

to visualize chemical structure. No doubt, simplistic representations have their
justification for describing certain aspects of molecular constitution, configuration,
and conformation and provide an intuitive access to ‘‘molecular architecture’’
(Figure 1.1). However, they fall far short of relating functional aspects to the
objects we recognize as molecules. In the end, it is the desired function we wish
to get from a molecular structure. ‘‘Form follows function’’ – this credo of modern
architecture and industrial design is equally valid for molecular design, in particular
in medicinal chemistry and chemical biology striving for new chemical entities
(NCEs) as biologically active lead compounds and eventually future drugs.

Ideally, one would like to obtain a compound with a desired function directly
from a design hypothesis, for example, a mathematical model that serves as a
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blueprint, without the need for exhaustive screening and meticulous optimization.
In fact, de novo design means generating new molecules with desired properties
‘‘from scratch.’’ The concept of using transition functions that assign new states to
objects, thereby observing emergent system properties [3, 4], has been well researched
in fields such as complexity analysis, dynamical system, game theory, and systems
biology [5]. In molecular design, we use models of the molecular world and expect
a trustworthy model to correctly reflect aspects of the real world, so it can be
used for predicting new molecules that possess the target property reflected in
the model (Figure 1.2a). De novo design theory is tightly related to solving the
inverse quantitative structure–activity relationship (SAR) problem or – to paraphrase
from a philosophical point of view – finding the ‘‘Urbild,’’1) that is, the structural
archetype associated with a molecular representation. In terms of mathematics,
one tries to find an element x that is related to the value ξ : ξ = f (x). In molecular
design, x is a molecular structure from the set of all compounds (usually referred
to as chemical space) and ξ is the representation (descriptor) of x computed by
function f [8]. Typically, the representation of a compound is a real numbered
value or set of values (vector representation), although other, for example, symbolic
forms of representations have been suggested [9]. It is essential to realize that
the representation of a chemical structure is always uniquely defined by the
mapping function f , while there may exist – if defined – many possibly infinite
numbers of molecules that have the exact same descriptor values (Figure 1.2b). As
a basic illustration of this important point, consider the total charge descriptor of a
molecule containing N atoms, which is computed as ξ = f (x) = ∑N

i=1 qi, where qi

is the partial charge of atom i. Accordingly, it is easy to determine the total charge
for a given molecular structure, but it there may be numerous chemically feasible
compounds featuring the same total charge.

Generally speaking, molecular de novo design aims at generating new compounds
that can be mapped to well-defined, preferred representations, that is, sets of
descriptor values that characterize compounds with the desired biological or
pharmacological activity. The challenge hereby is twofold, namely to

1) define a set of mathematical functions that characterize compounds with
desired properties (i.e., they belong to the same equivalence class), and

2) for a given molecular representation, find corresponding Urbild compounds.

Consequently, as a prerequisite for successful design, we need an adequate
representation of molecular structures and their physicochemical properties to
allow the extraction of features that are responsible for a certain compound
property or pharmacological activity (=function). Ideally, we need to understand
the behavior of a molecule in different environments (e.g., in solution and in
complex with a receptor) over time. Consequent physical treatment of molecular
properties and dynamics can in principle be achieved based on solutions of the

1) The Urbild concept has multiple references and partly different meaning in mathematics and
philosophy. See, for example, Refs. [6, 7].
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Figure 1.2 (a) Models of chemical space.
(Adapted from Ref. [4].) Molecules in chem-
ical space (real world) are lumped into an
equivalence class (dotted circle) according
to a structure–activity relationship model.
In computer-based molecular design, appro-
priate algorithms act as transition functions
so that changes of model states are faith-
fully reflected in the adaptation of molecular
structure and function. (b) Molecular repre-
sentation and design. A function f : X → Y
transforms a molecular structure x to its

corresponding molecular descriptor ξ . One
may call x the ‘‘Urbild’’ of ξ . In molecu-
lar design applications, molecules are often
mapped to numerical descriptor values by
surjective functions, meaning that multi-
ple elements of X might be turned into
the same element of Y by applying f . This
property of many molecular descriptor sets
is exploited by de novo design, which aims
at finding new molecules in X that can be
mapped to pharmacologically meaningful
representations.

Schrödinger equation (Eq. (1.1)).

Ĥ� = E� (1.1)

where Ĥ is the Hamilton operator defining the operations that need to be performed
with the set of wave functions � (psi) of the particles of a molecular system and
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E is the system’s potential energy. Of note, the square of the absolute value of the
wave function, |�|2, may be interpreted as a probability density, thereby providing
a probabilistic access to the rigid, finite ‘‘balls and sticks’’ of classical molecular
models. The Schrödinger equation provides a rigorous theoretical foundation for
ab initio quantum chemical (QC) and quantum mechanical (QM) calculations,
which are grounded on a solid physical and mathematical framework without
the necessity for empirical values or heuristics. Such calculations represent the
formally most accurate way of calculating states and energies of molecular systems,
allowing an assessment of conformational preferences, chemical reactivity, inter-
action potential, and so on. The problem is, however, that exact solutions of the
Schrödinger equation cannot be obtained for molecules that are more complex than
H2

+, which currently renders druglike compounds with an average molecular mass
of 300–500 Da out of reach. For such molecules of interest, approximations and
generalizations are required that prohibit exact solutions to be found. For example,
the Born–Oppenheimer approximation treats atom nuclei as fixed, and only the
movement of electrons is considered. A further approximation is the Hartree–Fock
method that is grounded on solving the Schrödinger equation for each electron
of the molecular system individually, thereby leading to single-electron wave func-
tions (orbitals). Semiempirical approximations resulted in the Hückel theory of
molecular orbitals (MOs), which can be used to derive a number of important
molecular descriptors, for example, partial atomic charges and the electrostatic
potential. Finally, combinations of methods that treat different parts of a system at
different levels of precision permit QM calculations even for large molecular sys-
tems. While ‘‘rigorous’’ approaches seem perfectly suited for in-depth behavioral
analysis of molecules and allow for fine-grained design and optimization, their
application is currently limited because of high computational cost.

A drastic step in molecular modeling is in fact to neglect time-dependent
behavior. Typically, molecules are treated as two-dimensional (2D) molecular
graphs or as static three-dimensional (3D) space-filling rigid bodies with a defined
surface (Figure 1.3). While such simplistic models may help us understand some
basic aspects of conformational preference and molecular shape, it is important to
keep in mind that they represent only crude approximations of the ‘‘true nature’’
of molecules. As we always work with models, it is of greatest importance that an
appropriate molecular representation is applied to compound design. A molecular
representation that allowed for successful drug design in one project is not
necessarily generally applicable. Rather, it should always be considered as a context-
dependent model with a local validity domain only. In general, abstraction-based
object models use computation to implicitly solve complex underlying equation
systems because closed-form mathematical models are unavailable or difficult to
derive.

There actually are only very few molecular representations used in molecular
design that are unambiguously related to their associated chemical Urbild. An
example is given by the topological distance matrix Dtopo that contains distance
values as numbers of bonds connecting all pairs of atoms of a molecular graph
along the shortest path (Table 1.1). As we will discuss later, contemporary de
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Figure 1.3 Commonly used models of molecular structure. (a) Acetylsalicylic acid is shown
as a two-dimensional chemical graph, (b) the corresponding indexed molecular graph, (c) a
computed ensemble of low-energy conformations, (d) and a crystal structure model with its
(e) vdW and (f) SAS surfaces. For a definition of molecular surfaces, see Figure 1.4.

Table 1.1 Topological distance matrix of acetylsalicylic acid (cf. Figure 1.3b).

Dtopo 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 1 2 3 2 1 2 3 3 3 4 5 5
2 0 1 2 3 2 3 4 4 4 5 6 6
3 0 1 2 3 4 5 5 3 4 5 5
4 0 1 2 3 4 4 2 3 4 4
5 0 1 2 3 3 1 2 3 3
6 0 1 2 2 2 3 4 4
7 0 1 1 3 4 5 5
8 0 2 4 5 6 6
9 0 4 5 6 6

10 0 1 2 2
11 0 1 1
12 0 2
13 0

novo design often relies on machine learning models that compute the mapping
function f (x) implicitly, for example, by kernel-function approaches, rather than
employing precalculated descriptor values.

As most drug–receptor interactions are reversible and dominated by noncovalent
interactions, the concepts of molecular surfaces and surface properties are relevant
for drug design. Surfaces define an ‘‘inside’’ and an ‘‘outside’’ of a molecule and
facilitate modeling of molecular objects as 3D bodies with a finite shape and vol-
ume. Thus, it is convenient to describe a molecule by a continuous spatial function.
Grounded on the work of Lee and Richards, the solvent-accessible surface (SAS)
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Figure 1.4 Definition of molecular surfaces.
For calculation of the solvent-accessible
molecular surface (SAS), several concepts
exist. The SAS was originally defined by Lee
and Richards [10] as the area traced out
by the center of a probe sphere represent-
ing a solvent molecule as it is rolled over
the van der Waals (vdW) surface (left). This
SAS is slightly displaced from the vdW sur-
face. The contact surface (Connolly surface),
instead, consists of the part of the vdW sur-
face that is directly accessible to the probe
sphere plus the reentrant surface that covers
the gaps between the atoms. The figure on
the right presents a model of the complex

formed between 2H-benzoimidazol-2ylamine
and human tryptase (PDB ID: 2 fpz) with the
contact surface of the protein molecule in
blue and the vdW surface of the ligand in
gray. The latter is incompletely drawn so that
the molecule’s stick model becomes partly
visible. Note that there are surface clashes
because of close proximity (d = 2.6 Å) of the
ligand’s primary amine and the side chain
of Asp189, which forms a strong charge-
assisted hydrogen bridge (not shown). It is
recommendable to check X-ray complexes for
potential modeling artifacts before using the
structural models in ligand design studies.

in its various implementations probably is the most frequently used surface repre-
sentation in drug design (Figure 1.4). For most current drug design applications,
Connolly’s definition is employed [11]. The ‘‘Connolly algorithm’’ uses a virtual
solvent molecule represented as a probe sphere that is rolled over the molecule’s
van der Waals (vdW) surface. The radius of the sphere is often chosen to be 1.4 Å,
which corresponds to half the vdW diameter of a water molecule. The resulting
trace defines the SAS as the contact surface, which consists of parts of the vdW sur-
face and the smoothing trace of the probe sphere. More recently, these rigid surface
models have been increasingly abandoned in favor of probabilistic surface repre-
sentations allowing to consider multiple conformations, time-dependent change,
and uncertainty in structural modeling. For example, atoms may be represented
by Gaussian functions with a width that corresponds to the atom’s vdW radius
or effective diameter. In this way, molecular surfaces are analytically computed as
a mixture of Gaussians, which allows for quantitative flexible shape comparison
between molecules [12, 13]. Overall, more than 2000 QM and empirical descriptors
have been devised over recent decades [8], approximating characteristic features of
molecular structure and molecular recognition, namely
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• molecular shape,
• molecular distributions, and
• molecular interactions.

Although 2D molecular design methods have become a common standard, a
molecule consists of a 3D shape, and ideally one would like to construct new
compounds as spatial objects. Consequently, numerous molecular 3D descrip-
tors and alignment methods have been proposed. Examples include CoMFA
(comparative molecular field analysis) [14], Randic molecular profiles [15], 3D-MoRSE
code (3D-molecule representation of structures based on electron diffraction) [16], invari-
ant moments and radial scanning and integration [17], radial distribution function
descriptors [18], WHIM (weighted holistic invariant molecular descriptors) [19], USR
(ultrafast shape recognition, based on statistical moments) [20], ROCS (rapid overlay
of chemical structures, based on Gaussian densities) [21], VolSurf (volumes and sur-
faces of 3D molecular fields) [22], GETAWAY (geometry, topology, and atom weights
assembly) [23], and shrinkwrap surfaces [24], to name some prominent representa-
tives. As an illustrative example of how contemporary shape representation looks
like, we selected spherical harmonics descriptors of molecular surfaces. Spher-
ical harmonics have been used in molecular modeling and design as a global
feature-based parameterization method of molecular shape [25]. The spherical
harmonics decomposition can be viewed as a generalization of the Fourier decom-
position to three dimensions. They are solutions to Laplace’s differential equation
in spherical coordinates of the object to be represented. In other words, spherical
harmonics can be used to model the shape of a molecular structure at different
levels of sophistication, that is, different levels of model abstraction from the exact
atomic structure of the molecular object. As illustrated in Figure 1.5, an ellipsoid
shape roughly approximates a 3D conformation of the cyclooxygenase-2 (COX-2)
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Figure 1.5 Molecular shape representation
by spherical harmonics. (a) Spherical har-
monics of different order and degree, with
negative real (blue), positive real (red), neg-
ative imaginary (green), and positive imagi-
nary (yellow) parts of the function. (b) The

reconstruction of the molecular surface of
selective cyclooxygenase-2 inhibitor SC-558
(PDB ID: 6cox) using spherical harmonics
of order up to l = 9. Detail increases with
higher order of the mathematical function.
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inhibitor SC-558. Expanding this simplistic representation yields more and more
fine-grained resolution. Spherical harmonics descriptors of molecular shape and
volume have successfully been applied to, for example, molecular similarity search-
ing and protein pocket analysis and comparison [26]. Such approaches have the
appeal to extend our classical view of solid and static molecular surfaces and allow
for the consideration of essential dynamic molecular properties for drug design,
for example, conformational flexibility [27] and 3D pharmacophores of molecular
fragments [28].

1.2
The Molecular Design Cycle

In the beginning of a drug design project, one may be faced with several scenarios
depending on the already available knowledge about the drug target and its ligands
and SARs. The aim is to boil down the number of relevant compounds for
biochemical assaying as efficiently as possible, which means with a minimum
expense of substance, time, and money. In silico automation of the whole design
process is one way to go.

Understanding SARs is essential not only for ‘‘wet’’ medicinal chemistry but
equally for successful computational optimization of a pharmacologically or other-
wise biologically active substance. Once an SAR model is available, it is possible
to perform rational drug design. Most importantly, any successful application of
artificially optimizing systems requires a fundamental characteristic of the under-
lying fitness landscape (search space), namely the principle of strong causality [29].
For the field of drug design, this concept has been reformulated as the chemical
similarity principle by Maggiora and Johnson [30]. Systematic compound optimiza-
tion therefore requires a smooth response function or neighborhood behavior, so
that small changes in molecular structure result in only small changes of biological
function. A fitness function (scoring function and objective function) guiding the
molecular design process must therefore be chosen and constructed wisely. Other-
wise, any systematic optimization will likely fail. Fitness landscapes in molecular
design possess characteristic features [31], which one encounters while optimizing
a molecular structure, and are dominated by large unexplored areas (Figure 1.6).
For example, there may be perceived ‘‘activity cliffs’’ or regions of ‘‘flatland.’’ The

Figure 1.6 A ‘‘fitness landscape’’ featuring a plateau-like global optimum, several local
optima, and many uncharted areas (fog) that elude straightforward optimization.
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overall shape of a fitness landscape is determined by the molecular representation
chosen and the underlying specific SAR of the receptor–ligand interaction under
investigation [32]. Accordingly, the search for optima is often limited to finding
a local optimum in proximity to the start position rather than converging on the
global optimum.

The response of a linear system to small changes in its parameters, that is,
alterations of molecular structure, is usually in direct proportion to the stimulation
resulting in a ‘‘smooth’’ response. For nonlinear systems, however, a small change
in the parameters can produce a large qualitative difference in the output. In other
words, the designed new molecules do not behave as expected. There are many
observations of such behavior in drug design, and we have to assume that SARs
are generally nonlinear. As we do not know a priori which parts of a molecule
are crucial determinants of bioactivity, we tend to believe that any small change
of structure will only slightly affect molecular function. This way of thinking is
often not appropriate, and the definition and quantitative description of chemical
similarity is a critical issue for molecular design. Therefore, a robust model of the
underlying SAR is a prerequisite for rational optimization. Of note, such a model
does not (and most likely will not) necessarily have to be interpretable in terms
of ‘‘simple’’ features. Rather, we should accept ‘‘black box’’ mathematical models
for the purpose of automated molecule optimization and de novo design. The task
for the molecular designer is to use such a complex model to come up with clear
chemical rules for synthesis.

Computers are not required for de novo design. In fact, we can easily conceive of
a Gedanken experiment, which demonstrates the process of structure generation
by inductive learning as an instance of adaptive model building (formulation of
a new or modified hypothesis) and assessing the value of the model (testing of
the hypothesis). The Bongard problem2) shown in Figure 1.7 exemplifies such an
adaptive optimization process [33]. With increasing knowledge about the structure
of the search space including the number of compounds that have been tested
experimentally up to a point and the distribution of actives and inactives, better
models are formed resulting in higher hit rates during activity determination.
While the human mind can do very well in this game, mathematical model
building can synergistically assist in decision making. It is important to realize
that not only the actual compound construction process is adaptive but also the
model building process. However, in practical molecular design studies, often a
static SAR model is used and the software searches for compounds that satisfy
the model. As we will explore later (Section 1.3), there are algorithmic concepts of
parallel model refinement and compound design. For the further interested reader,
we recommend a general introduction to the theory of complex adaptive systems
by Miller and Page [34].

De novo molecule design produces novel molecular structures with desired
properties based on model of the fitness landscape. In this attempt, a medicinal

2) Solution to the Bongard-problem of Figure 1.7 Left: Both dots at same side of neck. Right: Dots at
different sides of neck.
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20

Figure 1.7 Bongard problem number 20
[33], as an example of inductive model
building. Which feature separates the two
classes of ‘‘molecules’’? Find the classifier
(‘‘structure–activity relationship’’ model)!

While doing the exercise, rationalize the
steps of creating a vocabulary (how to repre-
sent the molecules) and adaptive hypothesis
modification and testing (how to formulate
and test the model).

chemist – and equally de novo molecule design software – is confronted with a
virtually infinite search space, both in terms of possible models and possible
chemical structures. Instead of the systematic construction and evaluation of each
individual compound, navigation in the molecular design process relies on the
principle of local optimization, that is, only a fraction of all potential screening
candidates are actually constructed and evaluated and the design process converges
on a local or ‘‘practical’’ optimum. Just like two medicinal chemists are likely to
propose different molecules as ‘‘promising solutions,’’ multiple runs with different
de novo design software tools will likely produce different compounds because of the
nature of the model and search algorithm employed. The trick is to incorporate as
much chemical knowledge as possible about the structure of the fitness landscape
into the design algorithm.

In computational de novo design, a virtual search agent mimics a medicinal
chemist, and fitness functions perform virtual assays. In the ideal case, such an
‘‘in silico laboratory’’ suggests readily synthesizable, potent molecular structures.
Positive design restricts this virtual optimization process to small regions of chemical
space that have a higher probability to find molecules with the desired properties.
Negative design, in contrast, defines criteria that help to prevent adverse properties
and unwanted chemical structures. It is vital to understand that de novo design will
rarely yield novel lead structures with nanomolar activity in the first place. Instead,
generated structures will often represent molecules that require significant further
chemical optimization. The molecular design cycle in Figure 1.8 pinpoints the basic
steps of adaptive design, and Figure 1.9 illustrates an example of molecular design
that started from weakly active compound 1 and by iterative structural refinement
(intermediate 2) ended with the potent and selective compound 3. While this
example was performed as interplay between computational molecular modeling
and human decision making, all parts of the molecular design cycle can be per-
formed in silico, thereby enabling fully automated de novo molecule design. Basically,
the following three questions have to be addressed by a de novo design program:
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Figure 1.8 (a,b) Adaptive molecular
design cycle, and an artistic inspiration
of adaptive optimization. (M.C. Escher’s
‘‘Development I’’ ©2012 The M.C. Escher
Company-Holland. All rights reserved.
www.mcescher.com.) Initial models of the fit-
ness function are simplistic and coarse. They
are iteratively refined in consecutive rounds
of virtual or real compound synthesis and

testing – similar to the evolving shapes in
the Escher artwork. Different molecular rep-
resentations are required to properly capture
the respective levels of abstraction from the
atomistic chemical structure in each pass
through the cycle, for example, connectiv-
ity, shape descriptors, molecular fragments,
pharmacophore features, and charge models.

H
N N

N

N N

S
O

OH

CI

H
N N

N

S
O

OH

CI

PPARα = 36 μM
PPARγ = 53 μM1

PPARα = 19 μM
PPARγ = 1.5 μM

2
PPARα = 0.03 μM
PPARγ = 1.05 μM

3

H
N N

N

S
O

OH

CI

Figure 1.9 Example of adaptive molecu-
lar design. Pirinixic acid (left) was deriva-
tized to yield a potent agonist of peroxisome
proliferator-activated receptor subtype alpha
(PPARα, right) in two design steps. The
depictions above the chemical structures

represent adaptive ‘‘design models’’ used for
compound selection. Each step adds detail
so that the initially coarse model is iteratively
refined to obtain a specific structure–activity
relationship.

1) How to assemble candidate compounds? (problem of construction)
2) How to represent molecules and assess their quality? (problem of scoring)
3) How to navigate in search space? (problem of optimization)

There are many implementations of de novo design algorithms using com-
binations of methods for performing these tasks. No matter how the various
programs try to solve these challenges, almost all of them follow the fundamental
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concept of mimicking the iterative adaptive process of drug discovery: molecules
are generated, subsequently tested for activity, and the test results form the basis of
the next round of (virtual) the synthesis. Search and assembly strategies correspond
to the intellectual and technical work of a chemist, whereas scoring complies with
testing the compounds for activity in a biological assay. According to Koza, artificial
adaptive systems need to possess common essential elements [35], namely

• structures that undergo adaptation,
• initial structures (starting solutions),
• fitness measure that evaluates the structures,
• operations to modify the structures,
• state (memory) of the system at each stage,
• method for designating a result,
• method for terminating the process, and
• parameters that control the process.

The most important aspect of adaptive optimization probably is the system’s
‘‘memory.’’ Keeping track of the past progress during an optimization process and
learning from previous experience helps us make informed decisions for planning
the next steps. Memory turns a blind or random search into rational design. There
are many ways to implement memory in a molecular design program, and several
instances are presented in the subsequent chapters of this book. Importantly, for
molecular design, the memory should be adaptive, that is, it should enable large
steps toward an optimum in flat regions of the fitness landscape but at the same
time allow for fine-tuning a solution by small structural variations near the summit
of an activity hill. A straightforward algorithm that implements an implicitly
adaptive memory is the evolution strategy, which was conceived by Rechenberg
in the late 1960s and paved the way for genetic algorithms, genetic programming,
and many other adaptive optimization techniques. The simplest so-called (1, λ)
evolution strategy can be formulated in just a few lines of pseudo-code:

1 Initialize parent (ξP, σP, FP);
2 For each generation:

3 Generate λ variations (ξV, σ V, FV) of the parent (ξP, σP, FP):
4 σV = abs(σ P + G);
5 ξV = ξP + σ V × G;
6 Calculate fitness FV;
7 Select best variation according to FV;
8 (ξP, σP, FP)= (ξV, σV, FV)best;
9 End.

This stochastic algorithm is based on the interplay between variation (lines 4–5)
and selection (lines 7–8) operators (Figure 1.10). The (μ, λ) notion implies the
number of parents μ and offspring, λ, and the fact that the parent(s) do not
participate in selection, that is, ‘‘death’’ after producing offspring. (Note that in a
(μ + λ) strategy the parents participate in the selection). In the above-mentioned
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Figure 1.10 (a–c) Population-based opti-
mization. In the example, compound library
of 10 molecules (red balls) converges on
the optimum of a fitness landscape model,
guided by a (1, 10) Evolution Strategy. The
arrows indicate the ‘‘winning compound’’
with the greatest fitness value F among
all members of the population. This best

solution survives and acts as the single par-
ent (black ball) of a new generation. The
width of the distribution of offspring (step-
size σ ) in each generation is adaptive, that
is, here it automatically assumes small val-
ues close to the optimum. Note that the
parent compound does not participate in the
selection of the winner.

pseudo-code, a molecular structure is represented by ξ (the molecular descriptor
vector), its memory is the so-called stepsize parameter σ , and F its fitness value.
G is a Gaussian-distributed pseudo-random number.3) There are three essential
ingredients to this algorithm:

1) Each individual object undergoing optimization consists of three variables (ξ ,
σ , and F) (line 1).

2) New solutions (individuals and molecules) are generated as a mutation of
the parent object (lines 4 and 5). Note that the stepsize values differ for each
object, as they are variations of the parental value. There are other methods for
stepsize mutation than the one shown here.

3) The stepsize value of the best (fittest) member of the generation n is passed on
to the parent of the next generation n + 1, thereby the new parent inherits the
memory of the most successful stepsize from the previous generation (line 8).
This rule implements the ability of the process to adapt the local structure of
the fitness landscape.

1.3
Receptor–Ligand Interaction

Ideally, one would directly compute the affinity of a newly designed molecule to
its macromolecular target(s) [36] (cf. Chapter 16). The resulting fitness landscape
guiding the de novo design process would then be expressed as a function relating
the free energy of binding (Gibbs energy) �G to a given molecular representation

3) Approximately Gaussian-distributed, zero-centered pseudo-random numbers can be computed by
the Box–Muller method: G(i, j) = √−2 ln(i) sin(2π j), where i and j are pseudo-random numbers
in ]0,1].
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ξ (descriptor space). In fact, we will see later in several chapters of this book that
such predictive functions may (i) either be developed from scratch (empirical or
knowledge-based approach), provided that a sufficient number of accurate reference
examples are available, or (ii) be derived from first principles (physically motivated
approach). In general, we aim at designing noncovalent ligands, as the complex
formation between drug molecules and their macromolecular targets is governed
by noncovalent interactions. Covalent binders exist and have their applications – for
example, in antitumor therapy – but typically reversible pharmacological effects are
desirable, as covalent binding of drugs or their reactive metabolites can lead to
various forms of drug toxicity. The reversible bimolecular interaction between a
protein P and a ligand L forming the complex PL (Figure 1.11) can be formulated
in a simplified manner (Eq. (1.2)):

R + L
kon−−−−⇀↽−−−−
koff

RL (1.2)

Note that this scheme does not consider any other interactions that accompany
the formation of a receptor–ligand complex in vivo, for example, migration of a
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Figure 1.11 Energy diagram for a reversible
bimolecular interaction between a recep-
tor macromolecule and a small-molecular
ligand. Changes in energy (energy coor-
dinate) lead to changes in the ‘‘reaction
coordinate.’’ �Ea and �Ed denote the acti-
vation energies required for association
(forward reaction = complex formation) and

dissociation (backward reaction). �E is the
overall change in energy for the interaction,
which is here negative by definition, that is,
the energy level of the receptor–ligand com-
plex is below the energy level of the free
interaction partners. The activated complex
represents a transient state of loose associa-
tion between the receptor and the ligand.
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ligand to the active site, activation of second messenger transduction processes, or
interaction with the solvent, membrane, and other macromolecules.

The free energy change �G that accompanies a receptor–ligand interaction
has been defined by J. W. Gibbs in 1873 and is often referred to as Gibbs energy
(Eq. (1.3)).

�G = �H − T�S (1.3)

The free energy change is governed by two contributions: the enthalpic and entropic
terms. The change in enthalpy �H corresponds to the molecular forces involved
in the receptor–ligand interaction, whereas the change in entropy T�S can be
understood as the amount of energy in a reaction system that cannot be used
to do thermodynamic work or – from a statistical point of view – as the change
in the degrees of freedom (uncertainty) of a molecular system. Generally, an
overall increase in entropy favors the formation of a ligand–receptor complex,
whereas an overall increase in enthalpy disfavors the interaction. Any reversible
ligand–receptor interaction is the result of enthalpic and entropic contributions,
which partially compensate each other. Depending on the dominating forces, one
distinguishes between the enthalpy-driven and entropy-driven formations of a
receptor–ligand complex.

The experimentally accessible equilibrium constant of an interaction, Keq, is
directly related to the change of Gibbs energy for a given receptor–ligand complex.
It is defined as the quotient of the rate constant of the forward binding kon and the
backward dissociation koff (Eq. (1.4)). The square brackets indicate concentrations
of the receptor–ligand complex [RL], the free receptor [R], and the ligand [L].
The reciprocal of the equilibrium constant is termed the dissociation constant, Kd

(Eq. (1.5)). The terms binding constant or inhibition constant, denoted as K i, are more
often used as synonyms for the dissociation constant. Note that this definition is not
consistently used in the literature, and confusion easily arises from the improper
use of these terms. The meaning of Kd can be explained at the molecular level:
If the free ligand concentration reaches the value of Kd, then 50% of the ligand
binding sites of the receptor are occupied.

Keq ≡ kforward

kbackward
= [RL]

[R] • [L]
(1.4)

Kd = [R] • [L]

[RL]
(1.5)

The Gibbs energy change of a bimolecular interaction is calculated from Eq. (1.4):

�G = �G◦ + RT ln
(

[RL]

[R] • [L]

)
(1.6)

where �G◦ is the standard free energy change of interaction, that is, the change
of Gibbs free energy that accompanies the formation of the complex from their
component elements at equilibrium standard state (the ‘‘standard state’’ is by
definition at 25 ◦C and a pressure of 100 kPa; for elements, �G◦ ≡ 0), R is the
gas (or molar) constant (R = 1.99 cal × mol−1 × K−1 = 8.31 J × mol−1 × K−1), and
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T is the absolute temperature in Kelvin (T =◦C + 273.15). �G = 0 at steady-state
(equilibrium) conditions of the interaction, so that Eq. (1.5) relates the standard free
energy change to the dissociation constant of a reaction. An important consequence
of Eq. (1.5) is that it permits to calculate the energy of a receptor–ligand interaction
from the experimentally obtained equilibrium constant.

�G◦ = −RT ln
(

[RL]

[R][L]

)
= −RT ln(Keq)

= −RT ln
(

1

Kd

)
= RT ln(Kd) = 2.303 • RT log(Kd) (1.7)

To get an idea of the order of magnitude of �G◦ for a strong ligand–receptor
interaction at body temperature (37 ◦C + 273.15 = 310.15 K): for Kd = 10 nM
(=10−8 mol × l−1), �G◦ is −47.4 kJ × mol−1. As a rule of thumb, the experimentally
determined binding constant assumes values between 10−3 mol × l−1 (millimolar
range) and 10−12 mol × l−1 (picomolar range), corresponding to Gibbs energy
values between approximately −17 and −70 kJ × mol−1 in aqueous solution.

The enthalpic term can be attributed to noncovalent interaction energies resulting
from the formation and disruption of

• hydrogen bridges (also termed hydrogen-bonds; with ionic interactions and cova-
lent bonds as extreme forms of hydrogen bridges [37]),

• arene–arene (aromatic) and arene–charge interactions, and
• dispersive interactions between dipoles or induced dipoles (vdW interactions).

Hydrogen-bonding and aromatic interactions are usually considered as directed
and dispersive (lipophilic) interactions as undirected. In a simplistic view, which
still dominates de novo design, hydrogen-bonding patterns are often considered
to critically influence the selectivity of a ligand–receptor interaction because of
their directed nature. Reality, however, is more complex as hydrogen-bonding
interactions can have vastly different energies, between 0.25 and 40 kcal × mol−1,
and the more appropriate term would be hydrogen bridge to express this fact
(Figure 1.12). According to Desiraju, ‘‘a hydrogen-bond, X–H···A, is an interaction
wherein a hydrogen atom is attracted to two atoms, X and A, rather than just one
and so acts like a bridge between them’’ [37]. Critical revision of our current view of
receptor–ligand interaction is required for progress in de novo design. Often, we
limit the design process to modeling enthalpic interactions by playing with sticks
and colored balls. The reality is more subtle and delicate. In addition, it should
always be kept in mind that an X-ray structure downloaded from the Protein Data
Bank (PDB) or obtained through own experiments is nothing but a model that
was obtained by fitting simplistic molecule representations into observed electron
densities. An X-ray structural model is not reality – it can nevertheless be extremely
useful for de novo design when appropriately used.

The overall entropic contribution to ligand binding results from the changes
of the degrees of freedom of all interaction partners on the complex formation.
It is important to keep in mind that ligand–receptor interactions do not take
place in vacuum. Drug–receptor interactions typically occur in aqueous solution,
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Figure 1.12 The strength of hydrogen bridge can be very different depending on the inter-
acting atoms and their local environment. (This depiction was adapted from Ref. [37].)

and solvent molecules contribute to the entropic term of Eq. (1.3). The accurate
determination of the role of water molecules in a ligand–receptor interaction still
is one of the biggest challenges in molecular modeling and design. Figure 1.13a
shows a sketch of a drug–protein interaction in water. Both the free ligand and
the protein are fully solvated before complex formation. Water molecules undergo
hydrogen-bonding interactions with other water molecules, the ligand, and the
amino acid residues at the protein surface. On ligand binding, the ligand and the
protein surface residues interact with each other forming favorable interactions,
but at the same time, their conformational freedom is reduced (reduction of
entropy). The bound ligand conformation is often referred to as the bioactive
conformation, although this is not necessarily correct (also note that the ligand
conformation observed in a complex needs not necessarily correspond to the
lowest energy conformation in vacuum or solvent [38, 39], and conformational
sampling techniques are required for proper evaluation of a meaningful conformer
ensemble [40, 41]). The loss of degrees of freedom of the receptor and the ligand
during complex formation is countered by an increase of entropy resulting from the
release of receptor-bound water molecules into the bulk solvent. In particular, the
release of water from hydrophobic surface patches inside the binding pocket into
the solvent contributes favorably to the entropy term. This ‘‘hydrophobic effect’’
can be the driving force of ligand–receptor association. Water molecules adopt
an entropically unfavorable ordered structure near hydrophobic surfaces because
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Figure 1.13 (a) Schematic of the
ligand–receptor binding process, during
which all species coexist in a solvated state.
The interaction between the ligand and
the protein surface involves the release
of water molecules from the binding cav-
ity into the solvent as well as the loss of
conformational mobility of both ligand and

receptor. (b) Water molecules of the first
solvation layer around a peptide-like ther-
molysin inhibitor (PDB ID: 3t74). Note the
five water molecules around the terminal
methyl group of the ligand. Structurally small
modifications of the ligand can cause mas-
sive rearrangements of the surrounding
water network.

they cannot form polar contacts with the protein at these sites. Once removed
from these strained structures, their degrees of freedom are markedly increased
(entropic contribution), and newly formed contacts with bulk water (enthalpic
contribution) additionally contribute to an overall negative change of free energy.
The contribution of the hydrophobic effect to complex formation is approximately
proportional to the size of the lipophilic surface area shed by the ligand, which is
often in the range of 80–200 J/(mol × Å2).

As a general guideline for ligand design, hydrophobic surface patches of the
ligand-binding pocket should be covered by hydrophobic parts of the ligand. The
bound ligand conformation always tends to maximize the lipophilic interaction
between lipophilic parts of the ligand and corresponding parts of the binding
pocket.

In a series of elegant thermodynamic and crystallographic studies, Klebe and
coworkers [42] deciphered hydrogen-bonding networks of water molecules in
ligand binding sites and characterized the effects of their rearrangement on ligand
affinity. It turned out that while structurally slightly different ligands virtually
adopted the identical binding mode, large observed enthalpy/entropy changes are
related to rearrangements of the first bound ligand solvation layer (Figure 1.13b).
Consequently, it is insufficient to consider only the ligand and a structural model
of the receptor (binding pocket). Contiguously connected water networks must be
considered for receptor-based de novo design – especially, if one is interested in
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obtaining accurate quantitative �G estimations. The influence of solvent molecules
on the observed, measured activity of a ligand could also help to explain ‘‘activity
cliffs’’ and ‘‘magic methyls,’’ that is, cases when the chemical similarity principle
seemingly does not hold [43].

Many proteins also contain so-called structural water: deeply buried water
molecules below the surface. On average, approximately one water molecule per
amino acid is found in the high-resolution X-ray structures deposited in the PDB
[44]. It is generally assumed that ‘‘freezing in’’ a water molecule in a fixed position
inside a protein generates a significant entropic cost. These water molecules are
believed to stabilize the protein structure by forming strong hydrogen bonds with
polar amino acid residues. Surprisingly, computational studies by Fischer and
Verma [45] revealed the opposite: the protein actually becomes more flexible. They
found that ‘‘ . . . this effect must be common in proteins, because the large entropic
cost of immobilizing a single water molecule (−T�S = 20.6 kcal × mol−1 [ . . . ] for the
lost translational and rotational degrees of freedom) can only be partly compensated by
water–protein interactions, even when they are nearly perfect [ . . . ] leaving no room for
a further decrease in entropy from protein tightening.’’ What makes this observation
so important for the calculation of protein–ligand interaction energies and protein
structure-based de novo drug design is the necessity to consider protein flexibility
when generating novel ligands by matching them with binding sites.

One can expect immediate progress for receptor-based de novo design from
a combination of flexible pocket models with advanced methods for shape and
pharmacophore matching (cf. Chapter 4). Such a scoring scheme could include
extended pharmacophoric features allowing, for example, for ‘‘strong,’’ ‘‘medium,’’
and ‘‘weak’’ hydrogen bridges, better consideration of arene–arene interactions
and geometries, as well as explicit solvent molecules, and would allow for moderate
pocket and ligand adaptation during the actual ligand construction, thereby possibly
avoiding artifact ligand poses [46].

Consequently, studying, understanding, and predicting binding energies are of
seminal importance for molecular design. Figure 1.14 presents experimentally
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Figure 1.14 Thermodynamics of ligand binding in medicinal chemistry projects. (Adapted
from Refs. [47, 48].) Highly potent ligands are often structurally complex and obtained by
entropy-driven optimization. (a) Nheavy: number of non-hydrogen atoms and (b) pKd: nega-
tive logarithm of the dissociation constant Kd.
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measured binding thermodynamics of compounds that were optimized by medic-
inal chemistry. Apparently, for ligands exceeding approximately 30 non-hydrogen
atoms, �G is increasingly less driven by enthalpic contributions, and entropic
effects clearly govern complex formation of highly potent compounds with their
macromolecular target exhibiting a Kd value in the single-digit nanomolar range
(pKd > 8) [48]. These thermodynamic data suggest that the overall potency that can
be obtained through the formation of specific directed interactions is limited. In
fact, numerous SAR studies reveal that favorable binding enthalpy is more difficult
to achieve for highly potent ligands, which in turn affects the target selectivity of
the compounds [49].

1.4
Modeling Fitness Landscapes

As we will see in more detail in throughout this book, there are numerous metrics
and indices that can be used to compute a single value expressing an estimate
of the drug- and lead-likeness of bioactive compounds using a pKd estimate (cf.
Chapters 2 and 11) [47]. These values may even be considered for preliminary
compound prioritization in de novo design. Among the most prominent ones are
the ligand efficiency [LE, Eq. (1.8)] [50], which relates a compound’s potency to
its size expressed as the number of non-hydrogen atoms (Nheavy), and one of its
derivatives, the ligand-efficiency-dependent lipophilicity [LELP, Eq. (1.9)] that corrects
LE by the influence of lipophilicity (logP) on potency [51].

LE = −RT ln(Kd orpKd)

Nheavy
(1.8)

LELP = log P

LE
(1.9)

Still, compound optimization from primary hits to pharmaceutical lead structures
by organic synthesis is largely guided by the chemical feasibility and tractability
of the candidate compounds, and the specific knowledge and intuition of the
medicinal chemists involved. In this context, it is advisable to start a molecular
design project by sampling compounds from chemical space to obtain a reasonably
diverse pool for modeling activity landscapes. Maximum diversity methods aim at
covering the variability of the complete compound pool within a carefully chosen
small subset. Cell- and dissimilarity-based clustering and partitioning methods are
often employed for this purpose. Diverse compound sets often represent reasonable
starting points for screening campaigns, whereas focused libraries, in contrast,
typically contain substances only from a certain region (activity island) of the
chemical space. Generic filtering steps for drug- and lead-like compounds in
conjunction with target-specific prediction and selection tools have been shown
to be suited for designing activity-enriched focused libraries [47]. A selection of
unwanted fragments and substructures are shown in Figure 1.15. For example,
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Figure 1.15 Examples of functional groups and substructures that are usually undesirable
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vated, for example, to obtain covalent inhibitors.

the REOS (rapid elimination of swill) approach is well suited for eliminating clearly
undesirable compounds [52].

Once a set of reference compounds is available, one may start with actual
modeling an activity landscape from these data. Fitness landscapes offer a mod-
eling approach that assists synthetic chemists in decision-making and molecular
design by visualizing and rationalizing structure–activity and structure–property
relationships. A common theme and often a necessity are the transformation of
raw data to a new coordinate system, where the axes of the new space repre-
sent ‘‘factors’’ or ‘‘latent variables’’ – features that might help explain the shape
of the original data distribution. Fitness landscapes and their visualization have
been a research topic in computational medicinal chemistry for approximately two
decades [53]. For example, principal component analysis (PCA) [54] and projection to
latent structures (PLS) [55] yield linear, statistically interpretable SAR models and
data projections from typically high-dimensional descriptor spaces. The underlying
mathematical models and the solutions provided by nonlinear projection are often
more accurate, but at the same time evade immediate chemical interpretation.



1.4 Modeling Fitness Landscapes 23

Despite this apparent drawback, nonlinear projection techniques such as the self-
organizing map (SOM, Kohonen network) [56], multidimensional scaling (MDS) [57],
and stochastic proximity embedding (SPE) [58] – to name just some of the most
prominent approaches – have demonstrated their particular usefulness for fitness
landscape modeling. Their appeal lies in the ability to appropriately reflect the
typically nonlinear dependencies between a structural (constitution-, topology-, or
conformation-based) molecular representation and some measured bioactivity or
property. Visualization of fitness landscapes at various project stages provides a
selection criterion that is based not only on the actives found so far, but equally
accounts for the inactive compounds.

In a proof-of-concept study, researchers at ETH and Roche pursued an advanced
approach to fitness landscape visualization that results in easily interpretable biolog-
ical response surfaces in chemical space (LiSARD, ligand-induced structure–activity
relationship display) [59]. The LiSARD algorithm generates interactive graphics that
can be used as intuitive roadmaps for molecular design and optimization. As a first
practical application, they analyzed human somatostatin receptor subtype 5 recep-
tor (hSST5R) antagonists. This class-A G-protein-coupled receptor is involved in
several physiological processes, for example, N-methyl-d-aspartate (NMDA) recep-
tor activation and control of hormonal secretion [60]. In a chemogenomics study
aimed at finding nonpeptide hSST5R antagonists, approximately 3000 compounds
of which the majority belonged to four structural classes were synthesized and
tested [61]. Figure 1.16 demonstrates the adaptive nature of the corresponding land-
scape models. Depending on the number of compounds synthesized and tested,
increasingly more fine-grained landscape models are obtained. In the example,
using two-thirds of the data, the final shape of the landscape is clearly visible.
Keep in mind that even the first approximate landscape model computed from
only 100 compounds correctly structures chemical space into desired (blue) and
‘‘tabu’’ regions (red). Having access to such knowledge at an early project stage
provides valuable information for hit prioritization and helps focus on relevant
areas in chemical space so that optimized lead structures can be identified faster.
Monitoring the SAR landscape over project duration certainly is a desirable feature
for medicinal chemists to explore innovative structural variations of a chemotype,
avoid walking in circles, and escape areas with potential off -target liabilities. In
fact, multiple activities and properties can be displayed simultaneously in fitness
landscapes, thereby enabling multidimensional optimization with the aim to avoid
compounds that have an undesired pharmacological activity and property profile.
Figure 1.17 shows such landscapes that were obtained from combining the individ-
ual landscapes for on- and off -targets. Such guidelines for ‘‘polypharmacological’’
design consider multiple targets (or properties) simultaneously. The de novo design
process will aim at generating molecules that occupy the regions of predicted high
activity without the need for separate fitness functions.

Avoiding undesired properties or regions in a fitness landscape is referred to
as negative design, whereas ‘‘positive design’’ describes the attempt to engineer
molecules that exhibit a desired property or function. These terms were originally
coined by Richardson for the field of protein engineering and design but have now
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Figure 1.17 Examples of ‘‘polypharmaco-
logical’’ fitness landscapes. Two such land-
scapes (b) resulted from combining different
target-specific landscapes (a). The individ-
ual landscapes were modeled using activity
data for selected GPCRs (CB2, cannabinoid
receptor 2; 5HT2c, serotonin receptor 2c; A1,

adenosine receptor 1; and beta2AR, beta-2
adrenergic receptor). Plus signs designate
desired target activity (on-targets), and minus
signs indicate off -targets. Arbitrary mixtures
of activity landscapes are possible, so that
the design tasks can be combined in a sin-
gle fitness landscape.

entered the world of small-molecule design [62]. After first-pass filtering of candi-
date compounds to eliminate the bulk of unwanted molecules (negative design),
we can apply target-specific focused design. This can be done on the fly during the
actual compound construction process, or post hoc by evaluating the in silico gen-
erated compounds. Automated compound classification and scoring enables rapid
computational compound processing. The process requires appropriate predictive
functions that perform pattern recognition and feature extraction.

A straightforward filtering routine that is specific for the molecular design
task at hand, uses binary classifiers solving two-class problems for elimination
of potentially unwanted molecules from a compound library or enrich a library
with molecules predicted to reveal some kind of desired activity. The basic idea
is to define two classes of compounds, one sharing a desired property (the
positive set) and another lacking this property (the negative set). Consequently,
a binary classifier is obtained for rapid first-pass compound scoring. Currently,
four classifier systems are most often used in these applications: the naı̈ve Bayes
approach, feedforward artificial neural networks, support vector machines (SVMs),
and Gaussian process (GP) models. These methods originate from the field of
machine learning and virtual screening [63–65], which has massive impact on
molecular de novo design methodology and enabled adaptive fitness landscape
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modeling [66]. It is convenient to formulate these classifiers in terms of adaptive
learning machines that improve with additionally available data. During first stage,
the learning machine is presented with labeled samples, which are basically n-
dimensional vectors with a class membership label attached (e.g., ‘‘active’’ = 1
and ‘‘inactive’’ =−1). The learning machine generates a classifier function for
prediction of the class label assigned to the input coordinates (pattern). During
the second stage, the generalization ability of the model is tested. Numerous
performance indices have been suggested to obtain a realistic estimate of the
prospective model accuracy [67]. It is common to use Matthews’ correlations
coefficient [68], the receiver-operator characteristic (ROC), area under the curve
(AUC) [69], and the Boltzmann-enhanced discrimination of receiver operating
characteristic (BEDROC) metric for this purpose [70]. Considering the pitfalls
of such performance indices [71], it might not always be wise to employ the
‘‘best-performing’’ model owing to well-known issue arising from overfitting and
erroneous estimation of a model’s applicability domain, that is, its portion of
chemical space for which reliable predictions can be made [72, 73]. Irrespective of
the scoring strategy chosen, we must not forget that our current understanding
of the physical forces governing ligand–receptor interaction is incomplete, and
gaining a decimal point in computational precision is meaningless if the underlying
model does not translate into compounds with improved activity.

1.4.1
Näıve Bayes Classifier

The naı̈ve Bayes classifier is a fast and simple yet surprisingly effective classification
algorithm with numerous applications in virtual screening and molecular design
[74]. It is based on the assumption of conditional independence of features. The
basic idea behind the naive Bayes classifier is Bayes theorem: Let C and X denote two
events, then P(C|X) = P(X |C)P(C)/P(X). If we define C as the hypothesis (target
class) and X with the data (compound to be classified), the previous equation
relates the posterior probability P(C|X) of the hypothesis given the data to the
prior probability P(C), the probability of the data given the hypothesis P(X |C), and
the probability of the data P(X). In other words, P(C|X) is our ‘‘belief’’ in the
hypothesis after we have seen the data, given the data, and our prior ‘‘belief.’’
This can be paraphrased as ‘‘posterior = likelihood × prior/evidence’’ [75]. In the
Bayesian interpretation, ‘‘probability’’ indicates the degree of personal belief in a
proposition, in contrast to the frequentist interpretation of probability as the relative
frequency of occurrence of an event. A characteristic of the Bayesian approach is
the concept of prior and posterior probability distributions, which measure what
is known about a variable before and after the data have been considered. The
naı̈ve Bayes classifier is cheap to train and evaluate. Importantly, it also allows the
addition of training samples later on by adjusting the relative frequencies used
to estimate the probabilities. Another advantage is that it computes probabilities
instead of plain ‘‘predictions.’’ Thereby, one also obtains a measure of confidence
into the prediction. Although the assumption of conditional feature independence
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is normally not valid in practice, naı̈ve Bayes classifiers often work well anyway,
even in high dimensions. This is owed to the fact that the order of magnitude of the
probabilities is more important for classification than their exact values – as long
as the dependencies between the molecular descriptors within a class are not too
strong, the naı̈ve Bayes classifier will perform reasonably well. Another effect of
the conditional independence assumption is that redundant descriptors will have
greater influence on the prediction, reducing performance. This caveat needs to be
considered and can be alleviated by feature selection. Hopkins and coworkers [76]
demonstrated a recent application of the approach for the polypharmacological de
novo design of G-protein-coupled receptor (GPCR) ligands (cf. Chapter 12).

1.4.2
Artificial Neural Network

Feedforward neural networks (also called multilayer Perceptrons, MLPs) are a type
of artificial neural networks that have found widespread application in virtual
screening and de novo molecular design [77] and were pioneered in the field of
chemistry by Gasteiger and coworkers [78]. They are universal function approximators
modeled loosely after biological nervous systems [79]. The design of MLPs follows
concepts of natural nervous systems such as neurons, axons, dendrites, and parallel
information processing. An MLP is made up of basic units called neurons, which
are organized into layers (Figure 1.18). An input layer, where each input neuron
represents a descriptor, one or more hidden layers and an output layer, which
produces the prediction result. The neurons of different layers are fully connected
to each other. Depending on the allowed connections, one differentiates between
feedforward networks, which correspond to acyclic directed graphs, and recurrent
networks, where cycles are allowed. Numerous variations of this principle have
been conceived over the past two decades. Among them, associative networks,
that is, combinations of an ensemble of feedforward MLPs and the k-nearest
neighbor technique, might be particularly useful for drug discovery and design
[80]. Another idea is to combine several MLPs (also in combination with other
prediction models) by a jury network (Figure 1.18). Such a cascaded machine-
learning model has the advantage to often be more robust than the individual
first-stage models.

1.4.3
Support Vector Machine

The SVM belongs to a class of machine-learning algorithms for classification
and regression that are based on the ‘‘kernel trick’’ [81]. The latter is a general
method, which allows algorithms that can be formulated in terms of inner products
(also dot product, scalar product) to be systematically extended to nonlinear cases.
For example, kernel PCA is such a nonlinear descendant of standard linear PCA
[82]. In kernel-based classifier learning, a hyperplane, which optimally separates
the training samples in a (nonlinearly) transformed space defined by the kernel
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Descriptor space A Descriptor space B Descriptor space C 

Jury network

Hidden layer

Output layer

Fitness value 

··· ··· ···

Figure 1.18 Cascaded neural network model
that combines three first-stage models,
whose output values are fed into a jury net-
work. In this example, three different molec-
ular representations (descriptor spaces A,

B, and C) are fed into separate feedforward
neural networks, so that the jury predic-
tion (‘‘fitness value’’) represents a weighted
model of these descriptor worlds.

function, is found by solving a convex quadratic optimization problem. Of note,
the solution depends only on a subset of the training samples, the support vectors,
which define the optimal hyperplane, that is, the one with maximal margin
(Figure 1.19). SVMs have received considerable attention in drug discovery and
design [83], mainly because of solid theoretical foundations as well as good and
robust performance in practice. They offer a method of choice for classification,
as compound datasets are often not linearly separable in the chosen descriptor
space, because either the molecular representation does not provide appropriate
information or the problem is ill-posed [84].

1.4.4
Gaussian Process

GP models originate from Bayesian statistics and have only recently been added
to the molecular designer’s toolbox. Their first applications in molecular modeling
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Figure 1.19 Linear separation of two
classes of molecules (indoles, filled squares;
piperidines, open squares) in a two-
dimensional descriptor space (clog P, molar
refractivity). The dashed line is the optimal
hyperplane, with corresponding support vec-
tors highlighted (circled). SVMs implicitly
work in very high-dimensional spaces that
allow for a linear separation of data that are
nonlinearly related in the original descriptor

space (kernel trick). Note that in the simpli-
fying example shown the computation was
done on standardized descriptors; otherwise,
the difference in scale between the values of
the two descriptors would have given more
weight to molar refractivity, leading to a dif-
ferent hyperplane and support vectors. This
hyperplane would have also separated the
two classes, but with a worse generalization
performance on new samples.

were quantitative structure–activity relationship (QSAR) regression models aimed
at predicting aqueous solubility [85], blood–brain barrier penetration [86], and
hERG (human ether-á-go-go related gene) inhibition [87]. Meanwhile, they repre-
sent a method of choice if quantitative property and activity predictions are required
[88], with continuously increasing numbers of applications in drug design. For
example, compound 4 (Figure 1.20) was identified as a subtype-selective agonist of
transcription factor peroxisome-proliferator-activated receptor-gamma (PPARγ) by
a predictive GP model that was trained with known PPAR ligands [89]. A particular
advantage of GPs is that they provide error estimates with their predictions [90].
In GP modeling of molecular properties, one defines a kernel function to model
molecular similarity. Compound information enters GP models only via this func-
tion. This is done by computing molecular descriptors (physicochemical property
vectors) or by graph kernels that are defined directly on the molecular graph. From
a family of functions that are potentially able to model the underlying SAR (prior),
only functions that agree with the data are retained. The weighted average of the
retained functions (posterior) acts as predictor, and its variance as an estimate of
the confidence in the prediction (Figure 1.20). Variance is small near reference
data, that is, for molecules similar to known ligands, and increases with growing
distance. Importantly, the predictions and confidence estimates can be calculated
analytically.
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Figure 1.20 (a) Nonlinear Bayesian regres-
sion with Gaussian processes starts with
a family of functions that map input data
to activity (predicted value). (b) This prior
is then combined with measured data
(crosses). Only functions close to the
observed data are retained. Averaging

over the remaining functions yields the
final predictor (solid line) and its vari-
ance (shaded area) as confidence estimate
(domain of applicability). Compound 4 was
identified as a subtype-selective PPARγ ago-
nist using a Gaussian process model.

1.5
Strategies for Compound Construction

While virtual screening of large compound collection may be used for finding
active compounds and, to a limited extent, performs scaffold hopping from known
drugs or other bioactive reference compounds, a structure generator is required
to conceive of innovative molecules that have not been synthesized or suggested
before [72]. Ideally, one would perform an exhaustive enumeration of all possible
molecular structures with a certain number of non-hydrogen atoms. The most
common elements in drugs are C, N, O, P, and S (Table 1.2), and their coordination
is well known. In fact, Reymond and coworkers compiled a large collection of virtual
molecule structures containing up to 17 non-hydrogen atoms following this idea
[92, 93]. The resulting ‘‘chemical universe databases’’ (GDB) contain up to 166 bil-
lion organic molecules, of which more than 99% have never been synthesized. This
observation clearly demonstrates that there is ample opportunity for drug design.
Further advances in computer hardware technology and distributed computation
will undoubtedly facilitate complete analyses of such huge numbers of molecules.
The GDB approach follows an atom-based construction strategy. De novo design
methods additionally rely on fragment-based compound assembly and construct
molecules on the fly, rather than precompiling a database for virtual screening.
Both approaches have obvious advantages and drawbacks, which are discussed in
depth in Chapters 5, 6, 10, 13–15, and 17. Probably the most compelling arguments
for using fragments for molecular design are their inherent biomorphic qualities
(fragments bind macromolecular targets with a high LE), and the possibility to
directly employ fragments as synthons for organic synthesis (reaction-driven de
novo design; cf. Chapter 10). Thereby, a design algorithm suggests not only new
bioactive compounds but also a motivated synthesis pathway, and has access to a
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Table 1.2 Relative occurrence of element types in 12 647 drugs and pharmaceutical lead
compounds (COBRA (Collection of Bioactive Reference Analogs) database v12.6) [91].

H C O N F S Cl P Other Σ

46.2% 40.0% 6.2% 5.6% 0.8% 0.6% 0.4% 0.1% 0.1% 100%

Growing 

Linking 

Merged hit Optimized hit

Optimized hitExpanded hit

Growing 

Growing 

Primary hits

Figure 1.21 Strategies for fragment growing and linking. (Adapted from Ref. [95].) Open
symbols indicate experimentally determined or computationally suggested start frag-
ments (primary hits), filled symbols are newly added fragments, and lines represent linker
moieties.

significantly larger chemical space than enumerated compound databases. It is gen-
erally assumed that fragment-based approaches, in contrast to strictly atom-based
construction methods, offer a shortcut to generate new ligands in a chemically
more meaningful way and also dramatically reduce the total size of the search
space. If fragments commonly occurring in drugs are used for molecular assembly,
the designed compounds will have a chance of being druglike, chemically stable,
and synthetically feasible [94]. The most frequently applied fragment assembly
strategies are growing and linking (Figure 1.21).

A general assumption of fragment-based compound assembly is that frag-
ment contributions to the ligand binding energy are additive [96]. This principle
approximately holds true if the binding mode and orientation of the individ-
ual fragments are only marginally perturbed in the de novo generated product.
Still, there are numerous reports of unexpected ligand binding modes and
nonadditive, that is, nonlinear, fragment contributions to �G [97, 98]. Non-
additivity can result in strong discrepancies between the computed sum of
fragment affinities, A + B, and the affinity of the ligated compound AB [99,
100]. Such an example is presented in Figure 1.22 [101]. Here, the experimentally
determined free energy of binding �G of the product AB, a potent factor Xa
inhibitor (K i = 2 nM), exceeds the sum of the individual fragment contributions
by −14 kJ × mol−1, although only a single bond was used as a fragment linker.
For further information on rigorous free-energy-based molecular design, see
Chapter 16.
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Figure 1.22 Fragment superadditivity: the
experimentally determined free energy of
binding �G of the product AB, a potent
factor Xa inhibitor (Ki = 2 nM), exceeds the
sum of the individual fragment contributions,

A + B, by −14 kJ × mol−1. A single bond was
added as linker (dashed line). The cartoon
shows the enzyme–ligand complex (PDB
ID: 4a7i). Interacting residue side chains are
highlighted.

As a shortcut to obtain reliable estimations of binding energies during frag-
ment linking, one might explicitly account for the effect of linker elements
during the construction process. Possibly though, the evaluation of the full lig-
and product rather than fragments only is obligatory. Despite the great appeal
of fast algorithmic solutions for fragment-based exhaustive or global combi-
natorial product evaluation that implement the additivity principle, the actual
practical applicability of these techniques can hardly be assessed a priori. As
a workaround, both stochastic and deterministic local optimization strategies
that score the full product have become a frequently pursued molecular design
strategy. It is fair to say that the compound assembly task in de novo design
can be regarded as solved. Even if these techniques do not guarantee finding
the globally (computed) best solution in chemical space, they still identify new
bioactive ligands with good success rates. In fact, an adaptive trade-off between
conservative and exploratory designs can be helpful in hit identification. For
example, the ligand-based fragment-growing tool DOGS (design of genuine struc-
tures) can be tuned to a desired ratio of scaffold exploitation/exploration during
candidate compound assembly (cf. Chapter 10) [102]. Similarly, evolutionary
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design algorithms are easily adaptable to produce desired scaffold diversity
[103, 104].

Only a small fraction of all molecules amenable to virtual construction can in
fact be synthesized in a reasonable time frame and with acceptable effort. De novo
design programs tackle this issue by employing rules to guide the assembly process.
Such rules attempt to reflect chemical knowledge and thereby avoid the formation
of implausible or unstable structures. For example, some assembly approaches
prevent connections between certain atom types, and finally the formation of
unwanted substructures [105, 106]. Other strategies employ chemistry-driven ret-
rosynthetic rules capturing general principles of reaction classes. A prominent
example of this kind of rule set is RECAP (retrosynthetic combinatorial analysis
procedure) [107], which is also employed by some de novo design tools. An early
example is DREAM++ conceived by Kuntz and coworkers [108]. The software
SYNOPSIS (synthesize and optimize system in silico) [109] follows a conceptually
even more elaborate approach by connecting available molecular building blocks
using a set of known chemical reactions. This enables the software to suggest rea-
sonable synthesis pathways along with each final compound. Instead of accounting
for synthetic accessibility by explicit reaction-based compound construction, one
can also rely on post hoc synthesis planning with software such as CAESA [110],
SYLVIA [111], or RouteDesigner [112] to come up with synthesis plans for de novo
generated compounds.

1.6
Strategies for Compound Scoring

The first de novo design programs were exclusively based on receptor-based (also
referred to as structure-based) scoring approaches, by which the quality of a designed
compound is assessed by evaluating their potential to interact with a binding site
on the receptor surface (cf. Chapter 4). Consequently, this idea is limited to
target proteins for which there is a 3D structural model. Receptor-based tools
were soon augmented by the development of ligand-based scoring schemes to
circumvent this shortcoming (Table 1.3). Another motivation was the realiza-
tion that – except for highly constrained systems – 3D de novo design ‘‘in situ’’
was too intractable at that time, because of the high computational costs of
conformer generation and the attempt to explicitly consider synthetic tractabil-
ity. The latter was soon partially achieved by the use of straightforward rules
for fragment-based building block assembly (cf. Chapters 5, 6, and 10). While
receptor-based scoring relies on the concept of ligand-pocket complementar-
ity, ligand-based scoring schemes assess the similarity (or distance) to known
reference ligands (templates) that exhibit the desired biological activity. Com-
pounds designed under the objective to show high similarity to the reference
are expected to have an increased probability to exhibit similar pharmacological
properties.
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Table 1.3 Chronological overview of selected de novo drug design software (a software
name is given, otherwise the name of the first author) and the implemented compound scor-
ing strategy.

De novo design method Year of publication Scoring strategy

Receptor-based Ligand-based

HSITE/2D skeletons [113] 1989 X —
3D skeletons [114] 1990 X —
Builder v1 [115] 1992 X —
LUDI [116, 117] 1992 X —
NEWLEAD [118] 1993 X —
SPLICE [119] 1993 X —
GroupBuild [120] 1993 X —
CONCEPTS [121] 1993 X —
SPROUT [122] 1993 X —
MCSS and HOOK [123] 1994 X —
GrowMol [124] 1994 X —
Chemical Genesis [125] 1995 X X
PRO_LIGAND [126] 1995 X X
SMoG [127] 1996 X —
CONCERTS [128] 1996 X —
RASSE [129] 1996 X —
PRO_SELECT [130] 1997 X —
Skelgen [131] 1997 X X
Nachbar [132] 1998 — X
Globus [133] 1999 — X
DycoBlock [134] 1999 X —
LEA [135] 2000 — X
LigBuilder [136] 2000 X —
TOPAS [90] 2000 — X
F-DycoBlock [137] 2001 X —
ADAPT [138] 2001 X —
Pellegrini and Field [139] 2003 X X
SYNOPSIS [101] 2003 X —
CoG [140] 2004 — X
BREED [141] 2004 — X
Nikitin [142] 2005 X —
LEA3D [143] 2005 X —
Flux [144] 2006 — X
FlexNovo [145] 2006 X —
Feher [146] 2008 — X
GANDI [147] 2008 X X
COLIBREE [105] 2008 — X
SQUIRRELnovo [148] 2009 — X
Hecht and Fogel [149] 2009 X X
FOG [106] 2009 — X
MED-hybridize [150] 2009 X —
MEGA [151] 2009 X X
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Table 1.3 (Continued)

De novo design method Year of publication Scoring strategy

Receptor-based Ligand-based

Fragment-shuffling [152] 2009 X X
AutoGrow [153] 2009 X —
NovoFLAP [154] 2010 — X
PhDD [155] 2010 — X
GARLig [156] 2010 X —
DOGS [94] 2010 — X
White and Wilson [157] 2010 — X
Qsearch [158] 2011 — X
EvoMD [159] 2011 — X
Contour [102] 2012 X —
MOEA [160] 2013 — X
Ulrich [161] 2013 X —

(Adapted from Ref. [162].)

1.6.1
Receptor-Based Scoring

Receptor-based approaches are closely related to computational strategies for
automated receptor–ligand docking [163–165]. Both techniques share the objective
to maximize the complementarity of the ligand with the binding site regarding
shape and properties. Although rigorous free energy calculations have become
feasible for drug design (cf. Chapter 16) [166], the most common approaches to
estimate the quality of binding during the design process are the same as for
molecular docking, where three main strategies have emerged [167]:

1) physically motivated force fields,
2) empirical scoring functions, and
3) knowledge-based scoring functions.

Simplistic physical force fields treat molecules as ensembles of spheres (atoms)
connected by springs (bonds). Each spring has optimal values for length, torsion
angles, and angles to other springs. Deviation from these optimal values results in
strain, and accordingly, low strain energies correspond to favorable ligand confor-
mations. Ligand interaction with the receptor is estimated by terms for nonbonded
interactions; most commonly by Coulomb and vdW potentials, sometimes aug-
mented by an explicit term for contributions of hydrogen bridges. A generalized
force-field term for nonbonding interaction computes the interaction energy E
between a ligand and a receptor for a given ligand–receptor complex (binding
pose) (Eq. (1.10)).
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E =
ligand∑

i=1

receptor∑
j=1

[
Aij

r12
− Bij

r6
+ qiqj

εrij

]
(1.10)

where Aij and Bij are parameters expressing repulsion and attraction of vdW
interactions of atoms i and j at distance rij, q is the atomic point charge, and ε is the
dielectric constant of the solvent. Despite its great relevance for the computation
of accurate energies, the latter is difficult to assess for ligand binding pockets and
represents a major source of error for force-field-based scoring in de novo design.

Empirical scoring functions are expressed as weighted sums of several con-
tributing terms, where weights are determined by regression analysis. Weights
are optimized in order to reproduce experimentally measured activity values (e.g.,
pIC50, pKd) of known ligand–receptor complexes. The individual terms represent
different ligand–receptor interactions, which can be determined from a given
binding pose. The free energy of binding is calculated as presented in Eq. (1.11):

�G = �G0

#interaction type∑
i=1

[
�Gi

•counti
•penaltyi

]
(1.11)

where �Gi represents the contribution (adjusted weight) of interaction type i, counti

is the number of times this interaction type is observed in the given receptor–ligand
complex, and penaltyi is a penalty function accounting for deviations from the
ideal interaction geometries for some interaction types such as hydrogen bridges
or aromatic interactions. The penalty must be determined for each observed
interaction type. �G0 is a ground term that is also adjusted during the fitting
process.

Knowledge-based scoring functions rely on discrepancies between observable and
expected distributions of atom pair occurrences. On the basis of the frequencies
of atoms (or functional groups), one can calculate a background probability of
the chance that two atoms (one from the receptor and the other from the ligand)
are placed in a certain distance in a ‘‘random’’ ligand–receptor complex, given
that they do not interact. This is compared to the counts of atom pairs observed
in experimentally explored ligand–receptor complexes (training set) and finally
transformed into interaction scores by an inverse formulation of the Boltzmann
law [168, 169]. Atom pairs that occur more often than expected by chance result
in negative interaction energies (attraction), whereas less frequently observed pairs
score positive (repulsion). Ligand affinity in a given complex with a receptor is
estimated by summing up individual scores of observed atom pairs derived from
the training set. Equation (1.12) calculates the contribution of atom pairs between
atom types i and j at distance r as the interaction energy of the ligand–receptor
complex:

E(i, j) = −kBT ln
pobserved

ij (r)

pexpected
ij (r)

(1.12)
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where kB is the Boltzmann constant, T is the absolute temperature, and pij are
observed and background frequencies of atom pairs of type i and j at distance r.
The total energy of binding is calculated as a sum of these terms for all pairs of
atom types and a range of different distances.

1.6.2
Ligand-Based Scoring

In contrast to computing the complementarity of ligands with the binding site,
ligand-based scoring schemes compare the de novo generated compounds to a
template compound and compute a similarity index for the two molecules in
some descriptor space. For compound comparison, one needs to select a model
for compound representation (molecular descriptors) and a similarity metric.
Some ligand-based de novo design programs rely on pharmacophore models for
quality assessment (cf. Chapter 7). These methods compare molecules according
to their spatial or topological arrangement of potential receptor–ligand interac-
tion centers. Some tools employ pseudoreceptor techniques (cf. Chapter 9) and
related techniques such as molecular field analysis (cf. Chapter 8) for scoring.
These approaches calculate pharmacophoric and steric constraints of a hypothet-
ical receptor pocket based on a 3D conformation of an active ligand or a ligand
ensemble, and assess the score of a new compound by evaluating its comple-
mentarity to this virtual cavity model, thus forming a bridge between receptor-
and ligand-based methods. Ligand-based scoring strategies can be based on either
a single reference or an ensemble of known ligands. For example, a consensus
pharmacophore model can be constructed from a multiple alignment of reference
ligands.

1.7
Flashback Forward: A Brief History of De Novo Drug Design

De novo design methods have been extensively reviewed during recent few years
[170–180]. Here, we highlight some of the milestone developments. It goes
without saying that our selection is subjectively biased, and we refer the reader to
the literature for a broader overview of the field. For summaries of the state of the
art of the computer-assisted design of proteins and nucleic acids, as potential drugs
of the future, see Chapters 18–21 of this volume.

With the first structure-based de novo drug design study published in 1976 [181,
182], the whole game became professional approximately 25 years ago when the
first computer applications were conceived for the purpose of fully automated
molecular design [183–186]. At the time, the most prominent pioneering tools
were ALADDIN [187], CAVEAT [188, 189], GENOA [190], and DYLOMMS [191].
Innovative scoring techniques, such as GRID [192], MCSS [193], DOCK [194],
and CoMFA [14], for ligand–receptor affinity fostered this development. In the
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1990s, de novo design prospered for the first time resulting in groundbreaking
applications [195–199] and algorithms – expressly GROW [200], GrowMol [124],
LEGEND [116, 117], and LUDI [201, 202] representing some of the key players. In
a seminal pioneering study from 1991 [24], Moon and Howe argued that ‘‘Given
detailed structural knowledge of the target receptor, it should be possible to construct a
model of a potential ligand, by algorithmic connection of small molecular fragments, that
will exhibit the desired structural and electrostatic complementarity with the receptor.’’
At the time, searching the space of candidate compounds was considered the
most critical issue of the whole design process – compared to today the available
computer hardware was rather limited. Molecular fragments as building blocks
were primarily used to obtain a manageable search space. Peptides and peptide
mimetics were a preferred molecule class for exploration by design. Currently, we
are witnessing a strong renewed interest in peptide and protein de novo design
(cf. Chapters 18 and 19), driven on the one hand by the realization that peptides
actually represent ideal drug candidates and superb chemical probes, and on the
other hand by modern chemical tricks that improve their pharmacokinetic and
pharmacodynamic properties [203–205].

The early design studies typically relied on static X-ray structures providing
the essential structural and pharmacophoric feature constraints for in situ lig-
and assembly. Evidently, rigid models of ligand–accommodating receptor cavities
cannot account for induced- or flexible-fit phenomena that may be observed on
fragment binding, which certainly has contributed to a somewhat limited enthusi-
asm and acceptance of de novo design by the medicinal chemistry community at
the time. Some of the current molecular design tools explicitly allow for molecular
flexibility, albeit sometimes at the price of strongly increased needs for computation
time.

With the advent of reaction-driven compound fragmentation and assembly tech-
niques as well as fast substructure-based prediction of ‘‘complexity,’’ the issue of
synthetic feasibility has been partially addressed (cf. Chapter 2). Despite several con-
vincing applications, the accurate computer-based assessment of context-dependent
building block reactivity still remains profoundly challenging – in particular when
rapid estimations for high-throughput applications are mandatory like in de novo
compound construction. The great importance of using a suitable set of frag-
ments for virtual compound generation shall be highlighted exemplarily by two
selected case studies. The first example describes the design of novel inhibitors
of hepatitis C virus (HCV) helicase. Brancale and coworkers [206] equipped the
receptor-based de novo design software LigBuilder [136] with two different sets
of molecular building blocks, which resulted in the initial designs A and B,
respectively. It is evident that the highly complex, unstable compound A is an
attempt to fill the complete binding site, which most likely is a consequence of
poor scoring as larger compounds often yield better scores. Design B – despite
its nondrug-like structure – might be considered as a prototype ligand of HCV
helicase, which was successfully converted into the chemically feasible inhibitor 5
(IC50 = 260 nM).
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Compounds 6 and 7 provide a second example of compound optimization from a
de novo designed prototype to a potent lead structure. The software TOPAS produced
a small series of structural suggestions that were further optimized as potent
inverse agonists of cannabinoid receptor 1 (CB1) [207]. A single known reference
compound served as a template for fragment-based virtual ligand assembly, guided
by a topological pharmacophore model (CATS, chemically advanced template search)
[208]. The initial design 6 had moderate activity (Ki = 1500 nM) but was chosen for
subsequent optimization through iterative modeling, synthesis, and testing, which
eventually led to the benzodioxole 7 (Ki = 4 nM) exhibiting desired in vivo efficacy
[209].
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These selected examples confirm that profound chemical understanding is
essential for successful application of computer-based de novo design tools. One
cannot expect that these software tools deliver potent leads from scratch. Future
drug design tools should incorporate as much medicinal chemistry knowledge
as possible to facilitate candidate selection and increase their acceptance and
utilization for drug discovery.

New algorithms, mainly stemming from the field of machine learning, as well
as technological advances in computer sciences, for example, super computing,
cloud computing, and GPU computing, have promoted a new wave of de novo
design techniques [210]. Old software tools have not gone out of fashion, though.
For example, the receptor-pocket-based LigBuilder software has recently been
applied to come up with new inhibitors such as 8 (IC50 = 6 μM) of eyes absent
homolog 2 (EYA2) protein [211] and 9 (IC50 = 0.4 μM) for VRAF murine sarcoma
viral oncogene homolog B1 (BRAF) kinase [212]. A recent study employing the
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receptor-based design software LUDI yielded kinesin spindle protein (KSP)
inhibitor 10 (IC50 = 0.01 μM) as a potent and novel antimitotic lead [160].
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Despite the sustained success of some of the classic design tools, algorithm
development has not ceased – quite the opposite! As an important advancement,
the de novo design software Contour [213] includes solvation in the scoring process.
Following the kernel trick of SVMs, its scoring function is able to model nonlinear
functions using linear operations in a kernel-induced feature space. Compound
construction by Contour employs an in situ combinatorial fragment-growing
algorithm and was successfully applied to generate the new renin inhibitor 11
(IC50 = 0.5 nM).
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In a multiobjective design study, Ijzerman and coworkers [214] used their
software tool MOEA (multiobjective evolutionary algorithm) to generate subtype-
selective A1 adenosine receptor antagonist 12 (IC50 = 6 μM), which was further
refined to obtain compound 13 (IC50 = 0.3 μM). Again, kernel-based machine
learning was used for the development of tailored scoring functions. SVMs based
on molecular fingerprints for other adenosine receptor subtypes (hA2A, hA2B,
and hA3) served as negative objective functions, and in a combination with
pharmacophore models, the molecular construction algorithm was steered toward
the desired activity.
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The previous example shows that known drug scaffolds can reemerge during
de novo design. This observation provides an excellent starting point for drug
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repurposing [215]. Recently, Schneider and coworkers employed their ligand-
based software DOGS to come up with potent new type-II inhibitors of polo-like
kinase1 (Plk1). Compound 14 (IC50 = 0.2 nM), which had been found previously
by receptor-based virtual screening [216], served as design template, and by
reaction-based fragment assembly, the software suggested compounds 15 and
16, among other designs (Figure 1.23; cf. Chapter 10) [217]. Both molecules were
readily amenable to chemical synthesis, following the one-step synthetic route
(15: reductive amination; 16: amide bond formation) suggested by the software
without necessity for further optimization. While compound 15 represents a
conservative design with a rather similar generic scaffold as the template, com-
pound 16 features a remarkable scaffold hop (blue-colored graph structures in
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Figure 1.23 Receptor-based pharmacophore
matching led to the discovery of compound
14, a nanomolar type II inhibitor of human
polo-like kinase 1 (Plk1). Taking this com-
pound as template for ligand-based de novo
design the software DOGS suggested the
potent compounds 15 and 16, which were

synthesized as detailed by the software. The
designed molecule 16 may be considered as
a structural derivative of the antidepressant
fluoxetine (red-colored substructure in com-
pound 16). Generic graph scaffolds of the
compounds are shown in blue.
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Figure 1.23). Both compounds exhibited low-nanomolar inhibitory activity against
Plk1. Of note, the potential anticancer compound 16 induced significantly delayed
cancer cell proliferation without affecting the vitality of nontransformed cells
(EC50 = 4 μM against HeLa cells) and exhibited no inhibitory effects against a
large panel of activated kinases [218]. Its LE is 0.66 (Eq. (1.8)). The compu-
tationally designed compound is a derivative of the antidepressant fluoxetine
(Prozac®), for which the authors observed a similar but weaker cellular response
profile.

In a similar study by the same authors, DOGS served for ligand-based de
novo design to swiftly discover a new class of compounds efficiently block-
ing aurora A kinase (AurA) [219]. VX-680 is a pan-aurora inhibitor with high
potency against AurA (Ki = 0.6 nM), but its further development was aban-
doned because of observed QT interval prolongation issues in clinical trials.
Thus, taking VX-680 as a template, the software DOGS suggested new chemo-
types mimicking structural and pharmacophoric features of the template. The
suggested designs were acquired by explicit scaffold hopping from the tem-
plate. Compound 17 was synthesized and obtained in good yields following
the synthesis pathway suggested by the software. Biochemical activity testing
demonstrated moderate AurA inhibition by 17 (IC50 ∼ 10 μM). Molecule growing
optimized this primary hit. Adding a molecular fragment resulted in compound
18, which directly blocks AurA (IC50 = 3 μM) and is potently active in cellular
assays.
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These representative studies provide proof of concept for de novo design as a
premier tool for generating pioneering chemotypes in the absence of a structural
model of the target protein and with minimal experimental effort needed. They also
confirm the concept of reaction-driven, template-based de novo design as excellently
suited for the rapid identification of novel bioactive molecules exhibiting a desired
biological activity spectrum.
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1.8
Conclusions

Current drug discovery is fueled by advanced high-throughput screening technol-
ogy, fragment-based and parallel medicinal chemistry. Computer-based de novo
design has only just begun to play a role in this game [170, 220, 221]. Recent
substantial developments that enable de novo design in drug discovery are owed to
reaction-driven compound assembly, multiobjective scoring, and fragment-based
approaches. In the very near future, design software will be directly coupled to
automated compound synthesizers, liquid handling robots, and microfluidic lab-
on-a-chip systems. Once such a fully automated pipeline is realized, rapid feedback
loops will become possible so that truly adaptive machine-learning and computer-
based optimizations are performed. On the basis of the concept of ‘‘active learning,’’
just another idea borrowed from the machine-learning field, autonomous robotic
molecular design machines will support project teams in their attempt to find
new medicines. Irrespective of such futuristic thoughts, tight cooperation between
molecular designers, synthetic chemists, and biologists will remain indispensable
for success. Already we are witnessing an increase in the number of de novo design
applications that go all the way from the initial design via chemical synthesis to
activity determination in both academic groups and pharmaceutical industry. The
story does not end here but has reached out to larger, more complex molecules
such as proteins and nucleic acids. So-called biologicals, biomimetics, and tradi-
tional small organic molecules alike will continue to provide ample opportunity for
medicinal chemistry and chemical biology. Computer-assisted de novo drug design
has the appealing advantage to be theoretically unlimited in compound diversity
and intrinsically innovative. As soon as a surprising but reasonable suggestion of
a candidate compound is made, de novo design has already fulfilled its purpose: to
generate useful ideas and inspire, thereby providing an opportunity to overcome
stalled drug discovery.

It will be most interesting to see how de novo design technology will develop
during the next decade [222–224]. Structural novelty combined with synthetic
feasibility might be more important for a de novo design than actual bioactivity,
which can often be increased by means of medicinal chemistry [225]. In 1987,
Sheridan et al.[ 226] wrote: ‘‘Only a few novel bond ‘frameworks’ in which important
pharmacophore atoms are held in the proper arrangement need to be found to suggest new
areas for drug design and synthesis.’’ This statement is true today as it was in the early
days of computer-based drug design. The primary aim of de novo design tools is to
fuel the creativity of chemists by making surprising and innovative suggestions.
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