Contents

List of Contributors XV Preface XXI A Personal Foreword XXIII

Section 1 General Concept for Target-based Safety Assessment 1

v

1	Side Effects of Marketed Drugs: The Utility and Pitfalls of Pharmacovigilance 3
	Steven Whitebread, Mateusz Maciejewski, Alexander Fekete,
	Eugen Lounkine, and László Urbán
1.1	Introduction 3
1.2	Postmarketing Pharmacovigilance 6
1.3	Polypharmacy and Pharmacological Promiscuity of Marketed
	Drugs 9
	References 15
2	In Silico Prediction of Drug Side Effects 19
	Michael J. Keiser
2.1	Large-Scale Prediction of Drug Activity 20
2.1.1	Networks of Known and New Target Activity 21
2.1.1.1	Predicting Drug Off-Targets by Statistical Chemical Similarity 21
2.1.1.2	Representing Drugs Computationally for Rapid Comparison 23
2.1.2	Resources for Multiscale Inquiry 25
2.1.2.1	Ligands to Targets 25
2.1.2.2	Perturbing Biological Systems (Phenotypes) 25
2.1.2.3	Functional and Biological Annotations (Diseases) 27
2.1.2.4	Adverse Reactions as Drug-Induced Diseases 29
2.2	Multiscale Models of Adverse Drug Reactions 30
2.2.1	Inferring Adverse Reactions 31
2.2.1.1	From Off-Targets to Antitargets 31
2.2.1.2	Systematic Antitarget Prediction and Testing 32
2.2.1.3	Finding Side Effects sans Targets 33
2.2.2	Forward Perturbation and Prediction of Mechanisms 33

1	Contents

2.2.2.1	Forward Synthetic Behavior in Cell and Whole-Organism Model Systems 33
2.2.2.2	The Road Ahead 36 References 36
3	Translational Value of Preclinical Safety Assessment: System Organ Class (SOC) Representation of Off-Targets 45 Mateusz Maciejewski, Eugen Lounkine, Andreas Hartmann, Steven Whitebread, and László Urbán
3.1	Introduction 45
3.2	Terminology: Medicinal Dictionary for Regulatory Activities (MedDRA) 46
3.2.1	Correct Use of MedDRA Terminology at Different Phases of Drug Discovery 48
3.2.2	Determination of Symptoms Associated with a Target 50
3.3	Data Interpretation: Modifying Factors 52
3.3.1	Access to Organs 52
3.3.2	Off-Target Promiscuity: Target Interactions (Synergies and
	Antagonism) 53
3.4	Conclusions 53
	References 54
4	Pathological Conditions Associated with the Disturbance of the 5-HT System 57 Daniel Hoyer
4.1	Introduction 57
4.2	From "St. Anthony's Fire" to Ergot Alkaloids, the Serotonin Syn- drome, and Modern 5-HT Pharmacology 59
4.3	Appetite-Reducing Agents, Fenfluramine, and Other 5-HT Releasers 61
4.4	Gastrointestinal and Antiemetic Indications, the $5-HT_3/5-HT_4$ Receptor Links 63
4.5	Antipsychotics and the 5-HT ₂ /Dopamine D_2 Link (and Many Other 5-HT Receptors) 65
4.6	Antimigraine Medications of Old and New and the 5 -HT _{1B/1D} Receptors 67
4.7	Antidepressants/Anxiolytics Acting at 5-HT and Other Transporters 69
4.8	Conclusions 71 References 72
Continu 2	Hamatia Cida Effecta 01
Section 2	Hepatic Side Effects 81
5	Drug-Induced Liver Injury: Clinical and Diagnostic Aspects 83 John R. Senior
5.1	Introduction 83
5.1.1	Postmarketing Hepatotoxicity versus Hepatotoxicity in Development 84

VI

Contents VII

5.1.2	Isoniazid – If It Were Newly Discovered, Would It Be Approved Today? 85
5.2	Special Problems of Postmarketing Hepatotoxicity 89
5.2.1	Voluntary Monitoring after Approval for Marketing 90
5.2.2	Prediction of Serious, Dysfunctional Liver Injury 90
5.2.3	Severity of Liver Injury Is Not Measured by Aminotransferase
501	Elevations 91
5.2.4	Attempts to Standardize Terminology 91
5.2.5	What Is the "Normal" Range, or the "Upper Limit
	of Normal"? 92
5.2.6	Diagnostic Test Evaluation 93
5.2.7	Determination of the Likely Cause of Liver
	Abnormalities 94
5.2.8	Treatment and Management of DILI in Practice 95
5.3	Special Problems for New Drug Development 95
5.3.1	How Many? 95
5.3.2	How Much? 96
5.3.3	How Soon? 97
5.3.4	How Likely? 97
5.3.5	Compared with What? 97
5.3.6	ROC Curves 98
5.3.7	eDISH: Especially for Controlled Trials 99
5.3.8	Test Validation and Qualification 100
5.4	Closing Considerations 101
5.4.1	A Handful of "Do Nots" 101
5.4.2	Need to Standardize ALT Measurement and Interpretation
	of Normal Ranges 102
5.4.3	Research Opportunities 102
	References 103
6	Mechanistic Safety Biomarkers for Drug-Induced Liver Injury 107 Daniel J. Antoine
6.1	Introduction 107
6.2	Drug-Induced Toxicity and the Liver 110
6.3	Current Status of Biomarkers for the Assessment of DILI 111
6.4	Novel Investigational Biomarkers for DILI 113
6.4.1	Glutamate Dehydrogenase (GLDH) 114
6.4.2	Acylcarnitines 115
6.4.3	High-Mobility Group Box-1 (HMGB1) 116
6.4.4	Keratin 18 (K18) <i>116</i>
6.4.5	MicroRNA-122 (miR-122) 117
6.5	Conclusions and Future Perspectives 118
	References 120

7	In Vitro Models for the Prediction of Drug-Induced Liver Injury
	in Lead Discovery 125
	Frederic Moulin and Oliver Flint
7.1	Introduction 125
7.2	Simple Systems for the Detection and Investigation of Hepatic
	Toxicants 130
7.2.1	Primary Hepatocytes 130
7.2.1.1	Cells 131
7.2.1.2	Cell Culture Conditions 131
7.2.1.3	Toxicity Endpoints 132
7.2.1.4	Limitations of Hepatocyte Cultures 133
7.2.2	Liver-Derived Cell Lines 135
7.2.2.1	HepG2 135
7.2.2.2	HepaRG 136
7.2.3	Differentiated Pluripotent Stem Cells 137
7.2.3.1	Embryonic Stem Cells 137
7.2.3.2	Induced Pluripotent Stem Cells 138
7.3	Models to Mitigate Hepatocyte Dedifferentiation 140
7.3.1	Liver Slices 140
7.3.2	Selective Engineering of Metabolism 141
7.4	Understanding Immune-Mediated Hepatotoxicity 144
7.4.1	Use of Inflammatory Cofactors 145
7.4.2	Innate Immune System and Inflammasome 147
7.5	Conclusions 148
	References 149
0	Transportant in the liver 150
8	Transporters in the Liver 159 Bruno Stieger and Gerd A. Kullak-Ublick
8.1	Introduction 159
8.2	Role of Organic Anion Transporters for Drug Uptake 159
8.2 8.3	Drug Interaction with the Bile Salt Export Pump 160
8.4	Susceptibility Factors for Drug–BSEP Interactions 161
8.5	Role of BSEP in Drug Development 162
0.0	References 163
9	Mechanistic Modeling of Drug-Induced Liver Injury (DILI) 173
	Kyunghee Yang, Jeffrey L. Woodhead, Lisl K. Shoda, Yuching Yang,
	Paul B. Watkins, Kim L.R. Brouwer, Brett A. Howell, and Scott Q. Siler
9.1	Introduction 173
9.2	Mechanistic Modules in DILIsym [®] version 3A 175
9.2.1	Oxidative Stress-Mediated Toxicity 175
9.2.2	Innate Immune Responses 178
9.2.3	Mitochondrial Toxicity 179
9.2.4	Bile Acid-Mediated Toxicity 181
9.3	Examples of Bile Acid-Mediated Toxicity Module 184

Contents IX

- 9.3.1 Troglitazone and Pioglitazone 184
- 9.3.2 Bosentan and Telmisartan 187
- 9.4 Conclusions and Future Directions *190* References *191*
- Section 3 Cardiovascular Side Effects 199
- 10 Functional Cardiac Safety Evaluation of Novel Therapeutics 201 Jean-Pierre Valentin, Brian Guth, Robert L. Hamlin, Pierre Lainée, Dusty Sarazan, and Matt Skinner 10.1 Introduction: What Is the Issue? 201 10.2 Cardiac Function: Definitions and General Principles 203 Definition and Importance of Inotropy and Difference from 1021Ventricular Function 203 10.2.2 Definition and Importance of Lusitropy 207 10.2.3 Components and Importance of the Systemic Arterial Pressure 211 10.2.3.1 Afterload 212 10.3 Methods Available to Assess Cardiac Function 213 10.4 What Do We Know About the Translation of the Nonclinical Findings to Humans? 217 10.5 Risk Assessment 219 10.5.1 Hazard Identification 219 10.5.2 Risk Assessment 221 10.5.3 Risk Management 224 10.5.4 Risk Mitigation 225 10.6 Summary, Recommendations, and Conclusions 227 References 228 11 Safety Aspects of the Ca_v1.2 Channel 235 Berengere Dumotier and Martin Traebert 11.1 Introduction 235 Structure of Ca_v1.2 Channels 235 11.2 α -Subunit of Ca_v1.2 Channel 236 11.2.1 β -Subunit of Ca_v1.2 Channel 236 11.2.2 11.3 Function of Ca_v1.2 Channels in Cardiac Tissue 237 11.3.1 Role in Conduction and Contractility 239 11.3.2 Modulation of Ca_v1.2 Channels 240 11.3.2.1 Voltage- and Calcium-Dependent Facilitation 241 Sympathetic Stimulation and Kinase Regulation 241 11.3.2.2 11.3.2.3 Inactivation 242 11.3.2.4 Regulation by Calmodulin 242 11.3.2.5 Indirect Regulation of Ca_v1.2 Channels 243 11.3.3 Ca_v1.2 and Cardiac Diseases 244 11.4Pharmacology of Ca_v1.2 Channels: Translation to the Clinic 245 11.4.1 Ca_v1.2 Antagonists: Impact on Electromechanical Functions 245 11.5 Prediction of Ca_v1.2 Off-Target Liability 246 11.5.1 Cav1.2 in Cardiomyocytes Derived from iPS Cells 246 References 247

X Contents

12	Cardiac Sodium Current (Na_v1.5) 253 Gary Gintant
12.1	Background and Scope 253
12.2	Structure and Function 255
12.2.1	Molecular Biology 255
12.2.2	SCN5A Mutations Related to Congenital Long QT
	Syndromes 256
12.2.3	Evidence for Multiple Functional Types of Cardiac Sodium
121210	Channels and Heterogeneous Distribution 257
12.3	Physiological Role and Drug Actions 258
12.3.1	Fast Sodium Current (I_{NaF}): Conduction and Refractoriness 258
12.3.2	Late (or Residual or Slow) Sodium Current (I_{NaL}) 259
12.3.3	Drug Effects on I_{NaF} 261
12.3.3.1	Voltage-Dependent Block 262
12.3.3.2	Use-Dependent Block (and Tonic Block) 262
12.3.3.3	Models of Block and Classification Schemes Based
12.0.0.0	on Antiarrhythmic Drug Effects 263
12.3.4	Indirect Modulation of I_{NaF} 264
12.3.4	Methodology 265
12.4.1	Use of Human Stem Cell-Derived Cardiomyocytes 266
12.5	Translation of Effects on I_{NaF} : Relation to Conduction Velocity
12.5	and Proarrhythmia 268
12.6	Conclusions 269
12.0	References 270
	References 270
13	Circulating Biomarkers for Drug-Induced Cardiotoxicity: Reverse
	Translation from Patients to Nonclinical Species 279
	Gül Erdemli, Haisong Ju, and Sarita Pereira
13.1	Introduction 279
13.2	Cardiac Troponins 280
13.3	Natriuretic Peptides 282
13.4	Novel/Exploratory Biomarkers: H-FABP, miRNA, and Genomic
	Biomarkers 285
13.5	Regulatory Perspective 286
13.6	Conclusions and Future Perspectives 288
10.0	References 289
14	The Mechanistic Basis of hERG Blockade and the
	Proarrhythmic Effects Thereof 295
	Robert A. Pearlstein, K. Andrew MacCannell, Qi-Ying Hu,
	Ramy Farid, and José S. Duca
14.1	Introduction 295
14.1.1	
* *****	The Role of hER(a Dystunction/Blockade in Promoting Farly
	The Role of hERG Dysfunction/Blockade in Promoting Early After Depolarizations 296

14.1.3	Simulations of the Human Cardiac AP in the Presence of hERG
	Blockade 303

- 14.1.4 Estimation of Proarrhythmic hERG Occupancy Levels Based on AP Simulations *304*
- 14.1.5 Novel Insights about the Causes of Inadvertent hERG Binding Function 305
- 14.1.6 Implications of Our Findings for hERG Safety Assessment 313
- 14.1.7 Conclusion and Future Directions 324 References 324

Section 4 Kinase Antitargets 329

15	Introduction to Kinase Antitargets 331	
	Mark C. Munson	
	References 360	

16 Clinical and Nonclinical Adverse Effects of Kinase Inhibitors 365 Doualas A. Keller, Richard J. Brennan, and Karen L. Leach

- 16.1 Introduction 365
- 16.2 Perspectives on the Clinical Safety of Kinase Inhibitor Therapy 371
- 16.3 Adverse Effects of Kinase Inhibitor Drugs 372
- 16.3.1 Hepatic Toxicity 372
- 16.3.1.1 Role of Metabolism and Clearance Pathways in Hepatotoxicity *373*
- 16.3.1.2 Genetic Risk Factors for Hepatotoxicity 375
- 16.3.1.3 Preclinical Evaluation of Hepatotoxicity *376*
- 16.3.2 Thyroid Toxicity 377
- 16.3.2.1 Mechanistic Basis of Thyroid Toxicity 378
- 16.3.2.2 Clinical Management of Thyroid Toxicity 378
- 16.3.3 Bone and Tooth Toxicity 379
- 16.3.4 Cardiovascular Toxicity 380
- 16.3.5 Cutaneous Toxicity 380
- 16.3.5.1 Mechanistic Basis of Cutaneous Toxicity 381
- 16.3.5.2 Preclinical Evaluation of Cutaneous Toxicity 381
- 16.3.5.3 Clinical Management of Cutaneous Toxicity 383
- 16.3.6 Developmental and Reproductive Toxicity 383
- 16.3.6.1 Preclinical Evaluation of Reproductive Toxicity 384
- 16.3.6.2 Clinical Management of Reproductive Toxicity 384
- 16.3.7 Gastrointestinal Toxicity 385
- 16.3.8 Hematopoietic Toxicity 385
- 16.3.8.1 Mechanistic Basis of Hematopoietic Toxicity 385
- 16.3.8.2 Preclinical Evaluation of Hematopoietic Toxicity 387
- 16.3.9 Ocular Toxicity 387

XII Contents

16.3.9.1 16.3.9.2 16.3.10 16.3.11 16.4 16.5	Mechanistic Basis of Ocular Toxicity 387 Preclinical Evaluation of Ocular Toxicity 388 Pulmonary Toxicity 388 Renal Toxicity 389 Derisking Strategies for Kinase Inhibitor Toxicity 389 Concluding Remarks 391 References 391
17	Cardiac Side Effects Associated with Kinase Proteins and Their Signaling Pathways 401 Roy J. Vaz and Vinod F. Patel
17.1	A Case Study 401
17.1	Introduction 402
17.2	Cardiac-Specific Kinase Antitargets 404
17.3.1	Preclinical Findings in Genetically Modified or KI-Treated
17.0.1	Mice 404
17.3.2	Clinical Findings of Kinase Inhibitors on the Heart and Their Mechanistic Understandings 404
17.3.2.1	ErbB2 Inhibition 404
17.3.2.2	EGFR Inhibition 406
17.3.2.3	Dual EGFR/ErbB2 Inhibition 406
17.3.2.4	Raf Inhibition 407
17.3.2.5	MEK Inhibition 407
17.3.2.6	JAK/STAT Inhibition 407
17.3.2.7	Bcr–Abl Inhibition 408
17.3.2.8	PDGFR and c-Kit Inhibition 408
17.3.2.9	VEGFR Inhibition 408
17.4	Current and Future Directions 409
17.4.1	Preclinical Safety and Clinical Outcome
	Predictions 409
17.5	Conclusions 410
	References 411
18	Case Studies: Selective Inhibitors of Protein Kinases – Exploiting Demure Features 413 Ellen R. Laird
18.1	Introduction 413
18.2	Case I: Indane Oximes as Selective B-Raf Inhibitors 414
18.3	Case II: ARRY-380 (ONT-380) – an ErbB2 Agent that Spares
	EGFR 420
18.4	Case III: Discovery of GDC-0068 (Ipatasertib), a Potent and Selective ATP-Competitive Inhibitor of AKT 424
18.5	Concluding Remarks 428 References 429

Section 5	Examples of Clinical Translation 435
19	Torcetrapib and Dalcetrapib Safety: Relevance of Preclinical
	In Vitro and In Vivo Models 437
10.1	Eric J. Niesor, Andrea Greiter-Wilke, and Lutz Müller
19.1	Introduction 437
19.2	Effect of Torcetrapib on Blood Pressure 437
19.3	In Vitro Studies 438
19.3.1	Direct Effect of Torcetrapib on Aldosterone Production <i>In Vitro</i> in Cultured H295R Adrenal Corticocarcinoma Cells 439
19.3.2	Molecular Mechanism of Torcetrapib Induction of Aldosterone Secretion 439
19.3.3	Development of Reproducible In Vitro Screening Models for
	Increase in Aldosterone and Cyp11B2 mRNA in a Human Adrenal
	Corticocarcinoma Cell Line 440
19.3.4	Application of <i>In Vitro</i> Models for the Successful Derisking
171011	of Dalcetrapib, Anacetrapib, and Evacetrapib 440
19.4	In Vivo Studies 441
19.4.1	Effect of Torcetrapib on Aldosterone and BP 441
19.4.1.1	Immediate Increase (Transient) in BP in Normotensive Wistar
	Rats 441
19.4.1.2	Sustained Increase in BP in Spontaneously Hypertensive and Zucker
	Diabetic Fatty Rats 441
19.4.1.3	Tissue mRNA Analysis Suggested Involvement of the
	Renin–Angiotensin–Aldosterone System (RAAS) 442
19.4.1.4	Increase in BP and Aldosterone with Torcetrapib in All Species
	Tested 443
19.4.2	Molecular Mechanisms of Torcetrapib-Induced BP
	Increase 444
19.4.2.1	Torcetrapib-Positive Inotropism and Increased Cardiac Work
	in a Dog Telemetry Study 446
19.4.2.2	A Common Molecular Mechanism for BP and Induction
	of Aldosterone Secretion? 447
19.5	General Safety Risk with Increased Aldosterone and BP 447
19.5.1	Inappropriate Increase in Aldosterone Secretion May Increase CV
	Risks 447
19.6	Relevance of BP and Aldosterone Preclinical Models to Clinical
	Observation with Dalcetrapib and Anacetrapib 448
19.7	Similarities between Potent CETPi and Halogenated
	Hydrocarbons 449
19.7.1	The Macrophage Scavenger Receptor MARCO, a Possible Antitarget
	for Dalcetrapib, and Its Relevance to Humans 450
19.8	Conclusions 451
	References 451

20	Targets Associated with Drug-Related Suicidal Ideation and Behavior 457
	Andreas Hartmann, Steven Whitebread, Jacques Hamon, Alexander Fekete,
	Christian Trendelenburg, Patrick Y. Müller, and László Urbán
20.1	Introduction 457
20.1	Targets Associated with Increased Suicidal Intent and
20.2	Behavior 458
20.2.1	G-Protein-Coupled Receptors 458
20.2.1.1	Dopamine D_1 and D_2 Receptors (DRD1 and DRD2) 458
20.2.1.2	Cannabinoid CB1 Receptor (CNR1) 462
20.2.1.3	Serotonin (5-HT _{1A}) Receptor (HTR1A) 464
20.2.1.4	5-HT _{2A} (HTR2A) 465
20.2.2	Transporters 466
20.2.2.1	Serotonin Transporter (SLC6A4) 466
20.2.2.2	Norepinephrine Transporter (SLC6A2) 468
20.2.2.3	Vesicular Monoamine Transporter, VMAT2 (SLC18A2) 468
20.2.3	Ion Channels 469
20.2.3.1	Neuronal Nicotinic α4β2 Channel (CHRNA4) 469
20.2.3.2	Neural-Type Voltage-Gated Calcium Channel, Cav2.2
	(CACNA1B) 471
20.3	Conclusions 472
	References 473

Index 479