Contents

List of Contributors XIII
Preface XVII

Part One Medicinal Chemistry 1

1 Organometallic Complexes as Enzyme Inhibitors: A Conceptual Overview 3
 Philipp Anstaett and Gilles Gasser
 1.1 Introduction 3
 1.2 Organometallic Compounds as Inert Structural Scaffolds for Enzyme Inhibition 3
 1.3 Organometallic Compounds Targeting Specific Protein Residues 11
 1.4 The Bioisosteric Substitution 14
 1.5 Novel Mechanisms of Enzyme Inhibition with Organometallic Compounds 19
 1.6 Organometallic Compounds as Cargo Delivers of Enzyme Inhibitors 25
 1.7 Organometallic Enzyme Inhibitors for Theranostic Purposes 30
 1.8 Conclusion 34
 Acknowledgments 35
 Abbreviations 35
 References 36

2 The Biological Target Potential of Organometallic Steroids 43
 Gérard Jaouen, Siden Top, and Michael J. McGlinchey
 2.1 Introductory Note on Nuclear Receptors 43
 2.1.1 Early History 43
 2.1.2 Primary Structure of Nuclear Receptors 44
 2.1.3 Estrogen Receptors 45
 2.1.4 Androgens 45
 2.1.5 Glucocorticoids 46
 2.1.6 Progesterone and Progestogens 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.7 Mineralocorticoids and Aldosterone</td>
<td>46</td>
</tr>
<tr>
<td>2.1.8 Selective Modulators of Nuclear Receptors</td>
<td>47</td>
</tr>
<tr>
<td>2.1.8.1 Selective Estrogen Receptor Modulators (SERMs)</td>
<td>47</td>
</tr>
<tr>
<td>2.1.8.2 Selective Androgen Receptor Modulators (SARMs)</td>
<td>48</td>
</tr>
<tr>
<td>2.1.8.3 Selective Progesterone Receptor Modulators (SPRMs)</td>
<td>48</td>
</tr>
<tr>
<td>2.1.9 Mechanism of Action of Nuclear Receptors</td>
<td>48</td>
</tr>
<tr>
<td>2.1.10 Endocrine Disruptors</td>
<td>50</td>
</tr>
<tr>
<td>2.2 Steroids and Organometallics: An Overview of the Transitional</td>
<td>53</td>
</tr>
<tr>
<td>Period from the Use of Organometallics in Synthesis to the</td>
<td></td>
</tr>
<tr>
<td>Emergence of Bioorganometallics</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Early Examples of Organometallic Estradiol Derivatives with</td>
<td></td>
</tr>
<tr>
<td>Biological Potential: Modified Hormone Shown to Bind to Estrogen</td>
<td></td>
</tr>
<tr>
<td>Receptor α</td>
<td>56</td>
</tr>
<tr>
<td>2.2.2 Examples of Estrogens Modified by Organometallics at the</td>
<td></td>
</tr>
<tr>
<td>11β-Position</td>
<td>62</td>
</tr>
<tr>
<td>2.2.3 Targeting Prostate Cancer with Organometallic Androgens and</td>
<td></td>
</tr>
<tr>
<td>Antiandrogens</td>
<td>64</td>
</tr>
<tr>
<td>2.2.4 Approach Toward Organometallic Radiopharmaceuticals</td>
<td>66</td>
</tr>
<tr>
<td>2.2.4.1 Steroidal Derivatives</td>
<td>66</td>
</tr>
<tr>
<td>2.2.4.2 Nonsteroidal Complexes</td>
<td>73</td>
</tr>
<tr>
<td>2.3 Epilog</td>
<td>75</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>76</td>
</tr>
<tr>
<td>References</td>
<td>76</td>
</tr>
</tbody>
</table>

3 Chirality in Organometallic Anticancer Complexes

María J. Romero and Peter J. Sadler

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>3.2 Chirality in Arene Complexes</td>
<td>87</td>
</tr>
<tr>
<td>3.3 CIP System for the Nomenclature of Chiral-at-Metal Arene Complexes</td>
<td>89</td>
</tr>
<tr>
<td>3.4 Chiral Organometallic Complexes as Anticancer Agents</td>
<td>90</td>
</tr>
<tr>
<td>3.4.1 Chiral Carbene Complexes</td>
<td>90</td>
</tr>
<tr>
<td>3.4.2 Chiral Metallocene Complexes</td>
<td>91</td>
</tr>
<tr>
<td>3.4.3 Chiral Half-Sandwich Arene Complexes</td>
<td>93</td>
</tr>
<tr>
<td>3.4.4 Chirality at Metal in Supramolecular Complexes</td>
<td>97</td>
</tr>
<tr>
<td>3.5 Half-Sandwich Complexes with Chiral Metal Centers</td>
<td>99</td>
</tr>
<tr>
<td>3.5.1 Factors Influencing the Chirality at the Metal Center</td>
<td>100</td>
</tr>
<tr>
<td>3.5.1.1 Use of Chiral Ligands for Chiral Resolution at the Metal Center:</td>
<td>100</td>
</tr>
<tr>
<td>Diastereoisomerism</td>
<td></td>
</tr>
<tr>
<td>3.5.1.2 CH-π Interactions: β-Phenyl Effect and Hydrogen Bond</td>
<td>101</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
</tr>
<tr>
<td>3.5.1.3 Effect of the Temperature, Solvent and Ligands on the Metal</td>
<td>103</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
</tbody>
</table>
4 Gold Organometallics with Biological Properties 117
Maria Agostina Cinellu, Ingo Ott, and Angela Casini
4.1 Introduction: The Use of Gold in Medicine 117
4.2 Anticancer Gold Organometallics and Proposed Biological Targets 117
4.2.1 Cyclometalated Gold(III) Complexes with C,N-Donor Ligands 121
4.2.1.1 Types of Cycloaurated Complexes, Synthetic Methods, and Reactivity 122
4.2.1.2 Cycloaurated Complexes with Biological Activities 125
4.2.2 Gold N-Heterocyclic Carbene (NHC) Complexes 129
4.2.3 Gold Alkynyl Complexes 132
4.3 Conclusions and Perspectives 134
List of Abbreviations 135
References 135

5 On the Molecular Mechanisms of the Antimalarial Action of Ferroquine 141
Faustine Dubar and Christophe Biot
5.1 History and Development 141
5.2 Mechanism(s) of Action of 4-Aminoquinoline Antimalarials 141
5.3 Mechanism(s) of Action of Ferroquine as an Antimalarial 144
5.3.1 Antimalarial Activity 144
5.3.2 Metabolic Pathway of Ferroquine 144
5.3.3 Redox Properties of FQ 144
5.3.4 Basic Properties and Accumulation 147
5.3.5 Importance of Redox Properties of Ferrocene on Antimalarial Activity of FQ 155
5.3.6 Inhibition of Hemozoin Formation 157
5.4 Conclusion 160
Acknowledgments 161
List of Abbreviations 161
References 161

6 Metal Carbonyl Prodrugs: CO Delivery and Beyond 165
Carlos C. Romão and Helena L.A. Vieira
6.1 Introducing CO in Biology 165
6.1.1 Origin 165
6.1.2 Biological Action and Targets of CO 166
6.1.3 Therapeutic Outlook 166
6.1.4 Measuring CO in Biology 167
6.2 Therapeutic Delivery of CO 167
7.3.1 Mono- and Binuclear forms of DNIC with Natural Thiol-Containing Ligands 208
7.3.2 Two Approaches to the Synthesis of DNIC with Natural Thiol-Containing Ligands 209
7.3.3 Mechanisms of Formation of DNIC with Natural Thiol-Containing Ligands 210
7.3.4 The Electronic and Spatial Structures of DNIC with Thiol-Containing Ligands 212
7.3.5 DNIC with Thiol-Containing Ligands as NO and NO⁺ Donors 213
7.4 Biological Effects of DNIC with Thiol-Containing Ligands 219
7.4.1 S-Nitrosating Effect of DNIC with Thiol-Containing Ligands 219
7.4.2 Vasodilator and Hypotensive Effects of DNIC with Thiol-Containing Ligands 220
7.4.3 Inhibiting Effect of DNIC with Thiol-Containing Ligands on Platelet Aggregation 224
7.4.4 DNIC with Thiol-Containing Ligands Increase Erythrocyte Elasticity 225
7.4.5 DNIC with Thiol-Containing Ligands Accelerate Skin Wound Healing in Animals 225
7.4.6 Erectile Activity of DNIC 226
7.4.7 DNIC and Apoptosis 227
7.4.8 DNIC with Glutathione Inhibits the Development of Experimental Endometriosis in Rats 230
7.4.9 Other Examples of Biological Effects of DNIC with Thiol-Containing Ligands 232
7.5 DNIC with Thiol-Containing Ligands as a Basis in the Design of Drugs with a Broad Range of Therapeutic Activities 233
7.6 List of Abbreviations 234
7.7 Acknowledgments 235
7.8 References 235

Part Two Metalloproteins, Catalysis, and Energy Production 239

8 The Bioorganometallic Chemistry of Hydrogenase 241
Ryan D. Bethel and Marcetta Y. Daresbourg
8.1 Introduction 241
8.1.1 Hydrogenase 241
8.1.2 The Chemistry of Hydrogen 243
8.1.3 Dihydrogen Metal Complexes 244
8.1.4 First Coordination Sphere Ligands 247
8.2 Structure and Function 247
8.2.1 The Active Sites of the Hydrogenases 247
8.2.1.1 [NiFe]- and [FeFe]-Hydrogenase 247
8.2.1.2 [Fe]-Hydrogenase 250
Contents

8.2.2 The Mechanisms of the Hydrogenases 251
8.3 Natural Biosynthesis and Synthetic Analogs of the Active Sites 253
8.3.1 Natural Biosynthesis of Hydrogenase Active Sites 253
8.3.1.1 Biosynthesis of [NiFe]-Hydrogenase 254
8.3.1.2 Biosynthesis of [FeFe]-Hydrogenase 255
8.3.2 Synthetic Analogs 256
8.3.2.1 Models of the [NiFe]-Hydrogenase Active Site 256
8.3.2.2 Models of the [FeFe]-Hydrogenase Active Site 259
8.3.2.3 Models of the [Fe]-Hydrogenase Active Site 263
8.4 Comments and Conclusion 265
References 268

Murielle Chavarot-Kerlidou, Pascale Chenevier, and Vincent Artero
9.1 Introduction 273
9.2 Electrode Materials for Hydrogen Evolution and Uptake 274
9.2.1 Electrode Materials-Based on Hydrogenases 274
9.2.2 Hydrogen Fuel Cell Electrodes Based on Hydrogenases 277
9.2.3 Electrode Materials Based on Bio-inspired Molecular Catalysts 279
9.2.3.1 Covalent Attachment of Catalyst to Electrode Material 279
9.2.3.2 Noncovalent Attachment of Catalyst to Electrode Material via π–π Stacking Interaction 283
9.3 Light-Driven Systems for Hydrogen Evolution 284
9.3.1 Biological and Biohybrid Systems 286
9.3.2 Bio-inspired Catalysis Approaches 288
9.3.2.1 Iron-Based Catalysts 289
9.3.2.2 Nickel-Based Catalysts 294
9.3.2.3 First Approaches toward Molecular-Based Photoelectrodes 295
9.4 Artificial Photosynthetic Systems 297
9.5 Summary and Conclusions 298
List of Abbreviations 298
References 299

10 Artificial Metalloenzymes Containing an Organometallic Active Site 305
Akira Onoda, Takashi Hayashi, and Michèle Salmain
10.1 Introduction 305
10.2 Dative Anchoring 306
10.2.1 Metalloproteins as Protein Hosts 306
10.2.2 Other Protein Hosts 313
10.3 Supramolecular Anchoring 316
10.3.1 (Strept)avidin as Protein Hosts 316
10.3.2 Antibodies as Protein Hosts 319
10.3.3 Other Protein Hosts 320
10.4 Covalent Anchoring 321
10.5 Mixed Anchoring Modes 326
10.5.1 Supramolecular + Covalent Anchoring 326
10.5.2 Supramolecular + Dative Anchoring 327
10.5.3 Dative + Covalent Anchoring 327
10.6 Peptide Scaffolds 328
10.7 Summary and Outlook 332

List of Abbreviations 332
References 333

Part Three Bioanalysis 339

11 Organometallic Bioprobes for Cellular Imaging 341
Emanuela Licandro, Monica Panigati, Michèle Salmain, and Anne Vessières

11.1 Introduction 341
11.1.1 Definition of Organometallic Bioprobes 342
11.1.2 Comparison of Different Imaging Techniques 343
11.2 Luminescence 346
11.2.1 Photophysical Properties of an Ideal Fluorophore for Cell Imaging 347
11.2.2 Emission Properties of the Main Classes of Organometallic Complexes 348
11.2.3 Other Advantages in the Use of Organometallic Complexes for Luminescence Imaging 351
11.2.4 Time-Resolved Techniques 352
11.2.5 Rhenium 352
11.2.5.1 Mononuclear Rhenium Complexes 352
11.2.5.2 Dinuclear Rhenium Complexes 360
11.2.5.3 Bimodal Rhenium Agents 362
11.2.6 Iridium 362
11.2.6.1 Simple Organometallic Iridium Complexes 362
11.2.6.2 Iridium Bioconjugates 365
11.2.7 Rhodium 367
11.2.7.1 Simple Organometallic Rhodium Complexes 367
11.2.7.2 Rhodium Bioconjugates 367
11.2.8 Platinum 368
11.2.8.1 Confocal Fluorescence Microscopy Imaging with Platinum Complexes with One or Two Photon Excitation 368
11.2.8.2 Time-Resolved Imaging with Platinum Complexes 370
11.2.9 Gold 371
11.2.9.1 Simple Organometallic Gold Complexes 371
11.2.9.2 Gold Bioconjugates 372
11.3 Vibrational Spectroscopy 372
11.3.1 Infrared Microscopy 374