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Fundamental Theory of Resonant MEMS Devices
Stephen M. Heinrich and Isabelle Dufour

1.1
Introduction

Resonators based on MEMS (micro-electromechanical systems) and NEMS
(nano-electromechanical systems) span a broad spectrum of important current
applications, including detection of chemical [1–7] and biological substances
[2–4, 6–10], measurement of rheological properties of fluids [11–14], and
energy harvesting [15–17], to name only a few. While the devices that perform
these diverse functions span an equally broad range in geometric layout, material
properties, circuitry, fabrication techniques, packaging, and so on, they all have
one aspect in common: the phenomenon of “resonance” forms the basis of
their operating principle. More specifically, they usually perform their desired
functions by monitoring how interactions with the environment (with various
“measurands”) influence the resonant behavior (e.g., the resonant frequency)
of the device. Conversely, how effectively the device performs its function will
depend to a large degree on the underlying resonant characteristics of the device
(e.g., its quality factor, which determines the resonant peak “sharpness” on a plot
of response vs driving frequency). Since all such devices rely on resonant vibra-
tions to accomplish one or more tasks effectively, a firm understanding of this
highly interdisciplinary field requires that one be familiar with the fundamental
theory of mechanical vibrations. To facilitate such familiarity is therefore the
primary goal of this initial chapter.
In the sections that follow, an attempt will be made to achieve several specific

objectives. In Section 1.2, a glossary of the major notation and terminology of the
chapter will be presented, followed by a summary of the theory of single-degree-
of-freedom (SDOF) damped oscillators in Section 1.3 for the cases of free vibra-
tion and forced harmonic vibration.This summary, which also includes definitions
of the resonator’s quality factor Q, methods for estimating its value experimen-
tally, and a brief discussion of how multiple dissipation sources contribute to Q,
is intended to familiarize the reader with the fundamental concepts associated
with mechanical resonant phenomena. The SDOF section lays the groundwork
for the understanding of multiple-degree-of-freedom (MDOF) dynamic system
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behavior, which is the focus of Section 1.4. The mechanical behavior of such sys-
tems is introduced by means of two simple, yet highly relevant, examples for a
cantilever beam, including its free-vibration response and its response due to a
sinusoidal end force. The solutions presented for the cantilever will be based on a
“continuous-systems” (distributed-parameters) modeling approach and will serve
as a vehicle for (i) introducing the key concepts of natural/resonant frequencies
and mode shapes for MDOF systems and (ii) showing how the resonant response
of such systems may often be interpreted and approximated as that associated
with an SDOF system. Section 1.5 furnishes a list of potentially useful natural fre-
quency formulas for some of the more common geometries and vibration modes
used in resonant MEMS/NEMS applications, while the chapter concludes with a
brief summary (Section 1.6).

1.2
Nomenclature

A summary of the primary notation and terminology used in this chapter is given
below. Note that all of the “𝜔” frequency quantities indicated below are “circular”
or “angular” frequencies in that all have units of radians per second. Any of these
frequencies may be converted to their corresponding frequencies, denoted by “f ,”
having units of cycles per second, or hertz, through the relationship f = 𝜔∕2𝜋.

FRF = frequency response function= a plot of a particular response quantity (e.g.,
displacement amplitude at a point) vs the actuation frequency when the resonator is
excited by a sinusoidal force;

𝜔 = actuation (exciting) frequency;
𝜆 = dimensionless actuation frequency;
𝜔0 = undamped natural frequency of an SDOF system (referred to as simply “natural

frequency” by some authors);
𝜔d = damped natural frequency of an SDOF system;
𝜔res = resonant frequency= the exciting frequency that results in a resonant state, defined

as a vibrational state corresponding to a relative maximum (resonant peak) on the
FRF for displacement amplitude; note that some authors define the resonant
frequency as being identical to the undamped natural frequency, not as the exciting
frequency causing peak displacement response; for small damping levels, the
difference in the two values is insignificant;

𝜔n = undamped natural frequency of nth mode of an MDOF system (n= 1, 2, … );
𝜆n = dimensionless undamped natural frequency parameter of nth mode of an MDOF

system (n= 1, 2, … );
r = frequency ratio, that is, ratio of exciting frequency to undamped natural frequency;
𝜁 = damping ratio;
Q = quality factor;
𝜑n(𝜉) = nth mode shape of a cantilever beam, where the mode shapes represent the set of

possible constant-shape free vibrations, (n= 1, 2, … );
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𝜓(𝜉) = vibrational shape of a cantilever beam when excited by a harmonic tip force;
D = dynamic magnification factor for an SDOF system= ratio of dynamic displacement

amplitude to quasi-static (zero-frequency) value;
𝜃 = lag angle by which the steady-state displacement of an SDOF system trails the

applied harmonic force;
Dtip = dynamic magnification factor for harmonically loaded cantilever tip= ratio of

dynamic displacement amplitude at beam tip to quasi-static (zero-frequency) value;
𝜃tip = lag angle by which the steady-state displacement at the tip of a cantilever trails the

applied harmonic tip force.

The quantities listed above will be examined and discussed in greater detail in
the sections that follow.

1.3
Single-Degree-of-Freedom (SDOF) Systems

A large number and variety of MEMS/NEMS resonators may be accurately mod-
eled as SDOF damped oscillators (Figure 1.1) because their vibrational response
may be described in terms of a single time-dependent position coordinate. Even
for those devices for which the harmonically excited vibrational response requires
multiple degrees of freedom to describe, a single mode of vibration tends to dom-
inate at or near a resonant state, thus permitting one to model the response via
SDOF theory without a significant loss of accuracy. For these reasons, a review
of elementary SDOF vibration theory is appropriate. (More detailed treatments
may be found in any elementary vibrations textbook such as [18–21].) The dis-
cussion will begin with a review of free-vibration results, including the important
concepts of natural frequency (undamped and damped), damping ratio, and qual-
ity factor, all of which may be interpreted as inherent dynamic properties of the
damped oscillator.The reviewwill then continue with a summary of results for the
steady-state response of the damped SDOF oscillator when excited by an applied
harmonic force, that is, one that varies sinusoidally in time. This will include a
mathematical description of the resonant response of the SDOF system, including

m
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u(t)

F(t)

Figure 1.1 Schematic representation of a damped SDOF oscillator.
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an alternative definition of the quality factor and a resonance-based experimental
method (bandwidth method) for measuring Q.
In the summary that follows, several assumptions are implicit:

• energy dissipation is due to a viscous damping mechanism (damping force is
proportional to velocity);

• the effective mass (m), effective damping coefficient (c), and the effective stiff-
ness (k) of the system are constant, that is, they do not depend on time or on
the frequency of oscillation;

• the system is linear, which necessitates that the physical system being modeled
as an SDOF oscillator involves linear elastic and linear dissipative forces (the
spring and dashpot in Figure 1.1 exhibit material linearity) and small deforma-
tions (no geometric nonlinearities).

In certain cases of practical interest, not all damping mechanisms will be of
the viscous variety, nor will resonators always respond linearly or with frequency-
independent properties [19, 21]. Nevertheless, an understanding of simple SDOF
resonator behavior based on the above assumptions will provide an important
foundation for understanding resonator behavior and a logical point of depar-
ture for grasping some of the more complex issues that arise when the afore-
mentioned assumptions are not met. These more advanced aspects of MEMS
resonator response will be treated in many of the chapters that follow.

1.3.1
Free Vibration

The assumptions of linear spring and dashpot behavior in the SDOF system of
Figure 1.1 enable one to derive the following equation of motion by performing a
simple force balance:

mü(t) + cu̇(t) + ku(t) = F(t) (1.1)

where m, c, and k represent, respectively, the effective mass, effective damping
coefficient, and effective stiffness of the system and u(t) is the displacement
response of the SDOF oscillator. The “dot notation” has been used in Eq. (1.1) to
represent differentiation with respect to time t. The effective externally applied
force, F(t), is in general related to the excitation force that is applied to the
resonator by one of several actuation methods (e.g., electrostatic, electrothermal,
piezoelectric). The specific manner in which the effective properties (m, c, k), the
effective applied force F(t), and the displacement u(t) of the idealized system of
Figure 1.1 are related to the physical geometry, material properties, and actuation
details of a particular device may be derived by the application of first principles
for a system whose vibrational shape remains constant with time. (See, e.g.,
[22–24] for examples involving modeling of MEMS resonators.) For the case of
free vibration considered here, the system vibrates in the absence of any externally
applied force, that is, F(t) ≡ 0, resulting in the homogeneous form of Eq. (1.1):
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mü(t) + cu̇(t) + ku(t) = 0 (1.2)

The coefficients in Eq. (1.2) describe the dynamic properties of the system.
From these, one may also define the following dynamic properties, known as the
undamped natural frequency (𝜔0) and the damping ratio (𝜁 ):

𝜔0 ≡
√

k
m

(1.3)

𝜁 ≡ c
2
√

km
(1.4)

For the case in which the energy dissipation is sufficiently small so that the
free-vibration response of the system is oscillatory, the damping ratio will be
less than unity and the system is referred to as underdamped. This is the case
for most MEMS resonators; hence, this assumption will be employed here. The
free-vibration response of an underdamped SDOF system takes the form

u(t) = e−𝜁𝜔0t(A cos𝜔dt + B sin𝜔dt) (1.5)

in which A and B are constants that depend on the initial values of u(0) and u̇(0)
that set the system into free vibration and 𝜔d is the damped natural frequency,
defined as

𝜔d ≡ 𝜔0

√
1 − 𝜁2 (1.6)

Note that the physical meaning of 𝜔d is that it represents the frequency of oscilla-
tion (in radians per second) of the free vibration of the damped SDOF system as
indicated in Figure 1.2. Also note that the damped natural frequency is less than
its undamped counterpart; however, for small-to-moderate values of the damp-
ing ratio (ζ less than, say, 0.2), the damped natural frequency is approximately the
same as the undamped natural frequency:

𝜔d ≈ 𝜔0 =
√

k∕m (1.7)

In lieu of the damping ratio, an alternative way that one could characterize the
energy dissipation inherent in the SDOF system is to define the quality factor Q
in terms of the damping ratio as follows:

Q ≡ 1
2𝜁

=
√

km
c

(1.8)

From Eq. (1.5) and Figure 1.2 it is clear that smaller values of the damping ratio
(larger values of Q) correspond to systems whose free-vibration response is
sustained for longer durations. An approximate rule-of-thumb is that a damping
ratio of 10% (Q = 5) corresponds to roughly a 50% decrease in amplitude over one
complete cycle of free vibration. The correlation between the damping ratio and
the rate of free-vibration decay serves as the basis for the logarithmic-decrement
method for measuring 𝜁 (or Q) by performing a free-vibration experiment
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Figure 1.2 Normalized free-vibration displacement response of a damped SDOF system
having undamped natural frequency f0 = 500 kHz and 5% damping ratio (Q = 10). For defi-
niteness the initial conditions have been chosen as u(0) = u0, u̇(0) = 0.

[18–21]. One may view high-Q systems as exhibiting more energy-efficient
free vibrations. As indicated in the following section, this efficiency will also be
displayed when high-Q (low-𝜁 ) resonators are excited harmonically at or near a
resonant state, resulting in enhanced device performance in a variety of resonant
MEMS applications. To further clarify the efficiency aspect of high-Q resonators,
an alternative, energy-based definition of Q, equivalent to that given by Eq. (1.8),
shall be introduced within the context of harmonically forced vibrations.

1.3.2
Harmonically Forced Vibration

The equation of motion Eq. (1.1) is now considered for the special case in which
oscillations are driven by an applied harmonic actuation force of amplitude F0 and
frequency 𝜔:

mü(t) + cu̇(t) + ku(t) = F0 sin𝜔 t (1.9)

The steady-state solution of Eq. (1.9) may be written as

u(t) =
F0
k

D(r, 𝜁) sin[𝜔 t − 𝜃(r, 𝜁)] (1.10)
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where

D(r, 𝜁) ≡ 1√
(1 − r2)2 + (2𝜁r)2

(1.11)

𝜃(r, 𝜁) ≡ arctan
(

2𝜁r
1 − r2

)
∈ [0, 𝜋] (1.12)

r ≡ 𝜔

𝜔0
(1.13)

The coefficient F0/k in Eq. (1.10) represents the quasi-static displacement ampli-
tude that the system would experience if the load were applied at extremely low
frequencies; hence the quantity D appearing in Eq. (1.10) and defined in Eq. (1.11)
is simply the ratio of the dynamic displacement amplitude (umax) to the quasi-
static amplitude (F0/k) and is therefore referred to as the dynamic magnification
factor. Asmay be seen fromEq. (1.10), the quantity 𝜃 represents the angle bywhich
the displacement response lags the actuation force; it is therefore called the lag
angle of the displacement with respect to the applied force. Both D and 𝜃 depend
on r and 𝜁 , the former being the frequency ratio defined by Eq. (1.13). The depen-
dence of D and 𝜃 on the frequency and damping ratios is indicated graphically in
Figure 1.3.
An examination of Figure 1.3 leads to the following observations:

• The “exact” value of resonant frequency, as defined in Section 1.2, is less than
𝜔0. Maximizing Eq. (1.11) with respect to r results in

𝜔res = 𝜔0

√
1 − 2𝜁2 (1.14)

Thus, the resonant frequency (i.e., the actuation frequency that causes max-
imum displacement response) is less than 𝜔d, which is less than 𝜔0. For
sufficiently high Q values, these differences are of little practical importance
(typically the case for most MEMS resonators); however, in resonator applica-
tions involving larger energy dissipation (e.g., biochemical detection in liquids
[8–10] or rheological applications for measuring the properties of highly
viscous and/or complex fluids [11–14]), the differences may be important and
could necessitate that distinctions be made among the values of these various
frequencies.

• The “exact” value of Dmax (and, thus, the corresponding displacement amplitude
at resonance) may be obtained by evaluating Eq. (1.11) at rres =

√
1 − 2𝜁2:

Dmax =
1

2𝜁
√
1 − 𝜁2

(1.15)

Thus, for an undamped system, the displacement amplitude is theoretically
infinite and occurs at r = 1, or when the driving frequency coincides with the
undamped natural frequency. When the effects of damping are included, Dmax
occurs at r < 1; however, when 𝜁 ≤ 0.2 (Q ≥ 2.5), Dmax occurs very close to
r = 1, in which case Dmax may be accurately estimated as

Dmax ≈ D|r=1 =
1
2𝜁

= Q (1.16)
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Figure 1.3 Frequency response functions
characterizing the steady-state harmonic
response of a damped SDOF oscillator due
to a harmonic actuation force: (a) normalized

displacement amplitude (dynamic magnifica-
tion factor) and (b) lag angle of displacement
with respect to applied force.
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• Equation (1.16) indicates that in theory, for small-to-moderate damping, the
value of Q may be extracted from an experimentally generated plot of D ver-
sus exciting frequency. This method is known as the “resonant amplification
method” [19]. However, in practice it may be difficult to experimentally deter-
mine the quasi-static scaling factor (F0/k), that is, the low-frequency limit for
the displacement amplitude, which is needed to relate the measured displace-
ment amplitude to D [19–20]. [See Eq. (1.10).] This limitation is usually over-
come by employing the “half-power method” or “−3 dB bandwidth method” in
MEMS/NEMS applications, as will be described shortly.

• D approaches 1 as r → 0 (as expected) and it approaches 0 at the high-frequency
limit (r → ∞).

• Sharper D peaks correspond to lower ζ or higher Q. Therefore, higher Q values
are desirable in, for example, sensors based on the use of MEMS resonators, for
which shifts in the resonant frequency (the sensor signal) are directly related to
the sensor measurand (e.g., concentration of a target substance).

• The resonant peak (relative maximum) no longer exists if 𝜁 ≥ √
2∕2 =

0.707 (ifQ ≤ √
2∕2 = 0.707).

• For an undamped system, the response is completely in phase (𝜃 = 0) with the
harmonic exciting force when r < 1 and completely out-of-phase (𝜃 = 𝜋) when
r > 1.

• For r = 1 the lag angle is 𝜋/2, regardless of the value of the damping ratio.

A common definition employed for the quality factor of a resonator is based on
a ratio of energies when the resonator is excited harmonically at its undamped
natural frequency (e.g., [25]):

Q ≡ 2𝜋
Umax
ΔW

||||r=1
(1.17)

where Umax is the maximum elastic energy (stored in the spring) and ΔW is the
dissipated energy per cycle of steady-state vibration. (The numerator in Eq. (1.17)
may be replaced by the value of the total mechanical energy – elastic energy plus
the kinetic energy of the mass – as this sum is identical to Umax when r = 1.)
The energy-based definition in Eq. (1.17) may be shown to be identical to the
“property-based” definition in Eq. (1.8) by evaluating the two energies appearing
in Eq. (1.17). Using Eq. (1.10),

Umax =
1
2

kumax
2 = 1

2
k
[F0

k
D (r, 𝜁)

]2
=

F0
2

2k
[D(r, 𝜁)]2 (1.18)

Also, since the steady-state displacement is periodic in time, the total mechanical
energy (of the spring and mass) will be as well. Thus, the energy dissipated by the
dashpot per cyclemust be the same as the work done by the applied force over one
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cycle. Utilizing Eqs. (1.10) and (1.12), the dissipated energy is obtained as follows:

ΔW =∫1 cycle
F(t)du = ∫

2𝜋∕𝜔

0
F(t)u̇(t)dt

=∫
2𝜋∕𝜔

0
F0 sin𝜔t

[F0
k

D𝜔 cos (𝜔t − 𝜃)
]
dt

= … =
2𝜋𝜁rF0

2[D(r, 𝜁)]2

k
(1.19)

Substituting Eqs. (1.18) and (1.19) into Eq. (1.17) yields

Q ≡ 2𝜋
Umax
ΔW

||||r=1
= 1

2𝜁r
||||r=1

= 1
2𝜁

=
√

km
c

(1.20)

that is, the energy-based definition of Q (Eq. (1.17)) is equivalent to the definition
given by Eq. (1.8).
A common experimental method used to measure Q in MEMS/NEMS res-

onators (and in other resonating structures) is the bandwidth method, also known
as the −3 dB bandwidth method or the half-power method [2, 20]. This method
is based on taking advantage of the Q-dependence of the shape of the FRF for the
response amplitude in the vicinity of the resonant peak (Figure 1.3a).The FRF may
be for the displacement amplitude or any output signal “R” that is proportional to
the displacement amplitude (e.g., electrical voltage). Having experimentally deter-
mined the shape of the resonant peak, the value of Q may be estimated by the
formula

Q ≈
𝜔res
Δ𝜔

=
fres
Δf

(1.21)

in which 𝜔res is the resonant frequency (defined by the peak response value Rmax
of the FRF), Δ𝜔 ≡ 𝜔2–𝜔1 is the frequency bandwidth and 𝜔1 and 𝜔2 are the fre-
quencies corresponding to a response value of Rmax/

√
2. Analogous definitions

apply to the f quantities in Eq. (1.21) for the common case in which frequency
values are plotted in hertz, kilohertz, and so on. An example of a numerical cal-
culation of Q by the bandwidth method is shown in Figure 1.4 for the case of an
SDOF oscillator having a 10% damping ratio or an “exact” Q value of 5 according
to the definition given by Eq. (1.8) or Eq. (1.17). In this example, the bandwidth-
based Q value extracted from the shape of the FRF curve is 4.90, resulting in only a
2.0% difference when compared with the value furnished by Eq. (1.8) or Eq. (1.17).
Most well-designed MEMS resonators will have quality factors well in excess of
5; for these cases, the percent difference will be even smaller. Thus, in most cases
of practical interest in resonant MEMS applications, the value of Q based on the
bandwidth method is essentially the same as those associated with the property-
based (Eq. (1.8)) and energy-based (Eq. (1.17)) definitions.
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Figure 1.4 Example of Q calculation
using the bandwidth method, result-
ing in Q = 4.90. Note that the “exact” Q
value in this example using the defini-
tion given by Eq. (1.8) or Eq. (1.17) is 5, so

that the discrepancy is only 2%. The dif-
ference will be even smaller for higher-
Q systems typically used as MEMS/NEMS
resonators.

1.3.3
Contributions to Quality Factor fromMultiple Sources

There exist multiple energy dissipationmechanisms inMEMS/NEMS resonators,
many of which are not well understood. For example, researchers have identi-
fied and attempted to model and measure the damping associated with viscous
dissipation in an ambient fluid, support (“anchor”) losses, thermoelastic dissipa-
tion, viscoelastic losses, and various surface-related dissipation phenomena. (See
Chapter 3 for more details.) Although any or all of the various dissipation mecha-
nisms may be acting simultaneously, in many cases one of these may dominate so
that the others will have a negligible effect on the overall Q-factor that is exhib-
ited by the resonator. When multiple loss sources have an impact on the total Q,
one may use the definition of Q to derive the relationship between the total Q and
the Qi, i = 1, 2, … , due to the individual contributions. Onemay easily derive this
relationship, as will now be shown, by starting with the energy-based definition of
Q given by Eq. (1.17). (One could also begin with the definition given by Eq. (1.8)
and arrive at the same result.)
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Assuming that the various sources of energy dissipation in the resonator are
independent, Eq. (1.17) may be written as

Q ≡ 2𝜋
Umax

ΔW1 + ΔW2 + …
||||r=1

(1.22)

in which ΔWi, i = 1, 2, … , represents the dissipated energy per cycle due to the
individual damping mechanisms. Inverting Eq. (1.22) gives

1
Q

= 1
2𝜋

ΔW1 + ΔW2 + …
Umax

|||||r=1
= 1

Q1
+ 1

Q2
+ … (1.23)

or

Q = 1
1

Q1
+ 1

Q2
+ …

(1.24)

which is the desired result relating the total Q of the system to the individual Qi
values. Clearly, it follows from Eq. (1.24) that

Q ≈ Qmin (1.25)

for the case in which the smallest of the Qi, denoted by Qmin, is much smaller
than the Qi corresponding to all other damping sources. This is a situation that
may occur, for example, for in-vacuum or low-pressure gas applications in which
support losses could dominate or for liquid-phase applications in which viscous
dissipation in the liquid tends to be themajor dampingmechanism inmany cases.

1.4
Continuous Systems Modeling: Microcantilever Beam Example

In Section 1.3, some important fundamentals of both free vibration and harmoni-
cally forced vibration of an idealized SDOF oscillator were summarized. However,
in reality all dynamic systems have the potential to respond in a manner that
requires a MDOF description in order to capture multiple “modes” of vibration
that may occur, including the possible interaction of these modes during a free or
forced vibration. Two approaches exist for modeling the MDOF response of such
systems: a discrete-coordinate description and a continuous modeling approach.
In the discrete-coordinate approach, the systemproperties are often idealized in

such a manner that the inertial properties and the stiffness properties are uncou-
pled; in other words, those portions that have mass are assumed rigid, while those
parts having flexibility are assumed to be massless. As a result, the system posi-
tion at any timemay be expressed in terms of the displacements (and/or rotations)
of a finite number of discrete locations in the system. In fact, modeling using
the finite element method (FEM) falls into this category as it is based on a sys-
tematic approach for lumping mass and stiffness characteristics of the system at
the “nodes” of the finite element model. (This modeling approach is discussed in
more detail in Chapter 5.) The mathematical model resulting from the discrete



1.4 Continuous Systems Modeling: Microcantilever Beam Example 15

approach is a set of ordinary differential equations (ODEs) in time, usually written
in a matrix form.
The continuous modeling approach aims to maintain the distributed nature

of the system’s mass and stiffness characteristics and does so by representing
the vibrational response in terms of continuous variables – for example, beam
deflection as a function of a continuous coordinate x ranging from 0 to L (beam
length) – in lieu of a discrete representation. This type of model therefore
comprises an infinite number of degrees of freedom, yielding a mathematical
description involving one or more partial differential equations (PDEs).
The aimof the present section is to provide a concise overview of the continuous

systems modeling approach by examining the vibration of a cantilever beam.The
motivation for this particular focus is threefold:

1) While obtaining solutions of the PDE(s) of the continuousmodeling approach
tends to be, in general, more difficult than solving the ODEs of the discrete
method, in the case of manyMEMS resonators, the geometries tend to be rel-
atively simple and therefore amenable to the continuous modeling approach.

2) Micro- and nanocantilevers are quite prominent in a variety of resonant
MEMS applications due to their ease of fabrication, portability, and versatil-
ity [4, 7, 10]. Hence, the example furnished by a cantilever beam will yield
specific results that are highly relevant to many cantilever-based resonant
devices.

3) The simple example of a cantilever serves as an ideal vehicle for presenting
the general modeling approach, terminology, and concepts that are equally
applicable to cases of other resonator geometries and boundary conditions
(BCs) (e.g., doubly clamped “bridge” beams, membrane disks), the details of
which may be found elsewhere (e.g., [26] and the references cited therein).

1.4.1
Modeling Assumptions

The continuous model for the vibration of a cantilever beam (Figure 1.5) will be
based on the following assumptions:

• The mass and stiffness properties are constant (independent of time and fre-
quency);

• The beam is prismatic (the cross section is uniform along the beam length);
• The cross section has an axis of symmetry and the beam vibration occurs along
the direction of this axis;

• The system is linear: the beam is composed of a linear elastic isotropic material
and the beam deformation is small (slopes of the bent beam are much less than
unity);

• The kinematic assumptions of Bernoulli-Euler beam theory apply: cross
sections of the beam remain planar during the deformation (no cross-sectional
warping) and they remain normal to the deformed beam axis (no transverse
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F(t)
q(, t)

v(, t)

x,  = x/L

L

v

m, EI

Figure 1.5 Schematic diagram of a can-
tilever beam modeled as a continuous sys-
tem having distributed mass per unit length
(m) and distributed flexibility (EI), where

E = Young’s modulus and I= second moment
of area (sometimes called the “moment of
inertia”) of the cross section.

shear strain). These assumptions tend to be applicable to beams that are rela-
tively long and slender (length L is much larger than the largest cross-sectional
dimension) [27].

• Energy dissipation (damping) is not included, although an analogous approach
may be used to incorporate viscous damping (see, e.g., Chapter 2).

While the results presented here are “classical” in that they apply to cantilevers
of all scales (provided that the above assumptions are met), the terminology of
“mirocantilever” or “nanocantilever” will be used at times due to the fact that
many of the complicating issues germane to MEMS/NEMS resonators (treated
in subsequent chapters) arise due to device miniaturization.

1.4.2
Boundary Value Problem for a Vibrating Microcantilever

For the assumptions stated above, the time-dependent motion of the cantilever
beam of Figure 1.5 under a general distributed transverse load, q(𝜉, t) (force per
unit length), and a general end force, F(t), is governed by a boundary value prob-
lem (BVP) in terms of the transverse deflection 𝜈(𝜉, t). The BVP includes the
equation of motion (resulting from equilibrium of a differential slice of the beam)
[18],

𝜈′′′′(𝜉, t) + mL4

EI
�̈�(𝜉, t) =

q(𝜉, t)L4

EI
(1.26)

and the BCs,

𝜈(0, t) = 𝜈′(0, t) = 𝜈′′(1, t) = 0, 𝜈′′′(1, t) = −L3F(t)
EI

(1.27)

In Eq. (1.26), the prime and dot notations denote differentiation with respect to
the spatial (𝜉) and time (t) coordinates, respectively, where 𝜉 ≡ x∕L is the dimen-
sionless spatial coordinate. The other relevant notation is defined in Figure 1.5.
In the following sub-sections, solutions of this BVP will be presented for the cases
of (i) a free vibration and (ii) a forced vibration due to a sinusoidal end force.
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1.4.3
Free-Vibration Response of Microcantilever

The BVP reduces to its homogeneous form in the case of a free vibration:

𝜈′′′′(𝜉, t) + mL4

EI
�̈�(𝜉, t) = 0 (1.28)

𝜈(0, t) = 𝜈′(0, t) = 𝜈′′(1, t) = 𝜈′′′(1, t) = 0 (1.29)

Solutions are assumed to be in the form of “modal vibrations,” that is, free vibra-
tions of a constant shape:

𝜈(𝜉, t) = 𝜑n(𝜉)(A cos𝜔nt + B sin𝜔nt), n = 1, 2, … (1.30)

in which 𝜔n is the natural frequency of the nth mode and 𝜑n(𝜉) is the correspond-
ing mode shape, both of which have yet to be determined. Placing Eq. (1.30) into
Eqs. (1.28) and (1.29) yields the following eigenvalue problem for determining
the dimensionless natural frequencies (eigenvalues) 𝜆n and the associated mode
shapes (eigenfunctions or eigenmodes) 𝜑n(𝜉):

𝜑′′′′
n (𝜉) − 𝜆n

4𝜑n(𝜉) = 0,
(
𝜆n

4 ≡ mL4𝜔n
2

EI

)
(1.31)

𝜑n(0) = 𝜑′
n(0) = 𝜑′′

n (1) = 𝜑′′′
n (1) = 0 (1.32)

The general solution of Eq. (1.31) is of the form

𝜑n(𝜉) = A1 cosh 𝜆n𝜉 + A2 cos 𝜆n𝜉 + A3 sinh 𝜆n𝜉 + A4 sin 𝜆n𝜉 (1.33)

which, when placed into Eqs. (1.32), results in a linear algebraic systemof the form

[G(𝜆n)]{A} = {0} (1.34)

for determining the coefficients in Eq. (1.33). Non-trivial solutions for the vector
{A} only exist if the 𝜆n-dependent coefficientmatrix is singular, thus requiring that
det[G(𝜆n)] = 0 or, after simplifying,

1 + cosh 𝜆n cos 𝜆n = 0 (1.35)

Equation (1.35) is referred to as the frequency equation of the cantilever beam. Its
roots, which by convention are numbered in increasing order, are given by (four
significant figures)

𝜆1 ≡ 1.875, 𝜆2 ≡ 4.694, 𝜆3 ≡ 7.855, 𝜆n ≈ (2n − 1)𝜋
2

for n > 3 (1.36)

The corresponding (undamped) natural frequencies of the cantilever are given by
the definition listed with Eq. (1.31), that is,

𝜔n = 𝜆n
2
√

EI
mL4

or fn =
𝜆n

2

2𝜋

√
EI

mL4
(1.37)
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Figure 1.6 First three mode shapes of a cantilever beam. The plots have been normalized
such that the tip deflection is (−1)n+1, where n is the mode number.

The mode shapes are determined by placing each eigenvalue listed in Eq. (1.36)
into Eq. (1.34), solving Eq. (1.34) for the constants A2, A3, A4 in terms of A1, and
substituting the result into Eq. (1.33). This yields the individual modes shapes,
𝜑n(𝜉), n = 1, 2, … , corresponding to each of the natural frequencies:

𝜑n(𝜉) = A1
(n)

[
cosh 𝜆n𝜉 − cos 𝜆n𝜉 −

(cosh 𝜆n + cos 𝜆n
sinh 𝜆n + sin 𝜆n

)
(sinh 𝜆n𝜉 − sin 𝜆n𝜉)

]
(1.38)

The constant A1
(n) for each mode is arbitrary; its value may be chosen to scale the

mode shape in anymanner that is deemed convenient. Plots of the first threemode
shapes for a cantilever beam are shown in Figure 1.6. Each mode shape shown
has one or more locations at which the beam displacement is zero. Such points
that experience no movement during a modal vibration are known as vibrational
nodes. In general, the number of vibrational nodes will increase as the mode num-
ber n increases. The location of the nodes has important practical implications in
resonant MEMS applications in that a designer may minimize the energy losses
associated with supporting structures by placing the resonator supports at or near
the vibrational nodes of the resonator. (See Chapters 3 and 5 for more details.)
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1.4.4
Steady-State Response of a Harmonically Excited Microcantilever

Next, the particular case of a cantilever actuated by a harmonic end force, F(t) =
F0 sin𝜔t, is considered as an example of a forced vibration. The general BVP of
Section 1.4.2 becomes

𝜈′′′′(𝜉, t) + mL4

EI
�̈�(𝜉, t) = 0 (1.39)

𝜈(0, t) = 𝜈′(0, t) = 𝜈′′(1, t) = 0, 𝜈′′′(1, t) = −
F0L3

EI
sin𝜔t (1.40)

A steady-state solution of the form

𝜈(𝜉, t) =
F0L3

3EI
𝜓(𝜉) sin𝜔t (1.41)

where 𝜓(𝜉) is the unknown vibrational shape, is assumed since the response
of the undamped system is expected to be in phase (or perfectly out of phase)
with the excitation force, as was the case with the undamped SDOF oscillator
(Section 1.3.2). Note that the coefficient introduced in Eq. (1.41) is the tip dis-
placement associated with a quasi-static (𝜔 → 0) application of the tip force [27];
thus, |𝜓(𝜉)| may be interpreted as the spatially varying normalized amplitude of
beam deflection, scaled with respect to the quasi-static tip value. In particular,
one may view Dtip ≡ |𝜓(1)| as being the dynamic magnification factor at the
loaded end of the beam. (This is analogous to the factor D introduced in the
SDOF analysis of Section 1.3.2.) Placing Eq. (1.41) into Eqs. (1.39) and (1.40) leads
to the BVP governing 𝜓(𝜉):

𝜓 ′′′′(𝜉) − 𝜆4𝜓(𝜉) = 0,
(
𝜆4 ≡ mL4𝜔2

EI

)
(1.42)

𝜓(0) = 𝜓 ′(0) = 𝜓 ′′(1) = 0, 𝜓 ′′′(1) = −3 (1.43)

Unlike parameter 𝜆n appearing in Eq. (1.31) of the previous section, which was a
system property to be determined, here parameter 𝜆 is a specified dimensionless
driving frequency. The general solution of Eq. (1.42) is

𝜓(𝜉) = A1 cosh 𝜆𝜉 + A2 cos 𝜆𝜉 + A3 sinh 𝜆𝜉 + A4 sin 𝜆𝜉 (1.44)

in which the constants (Ai), in order to meet the BCs (Eqs. (1.43)), must satisfy the
following non-homogeneous system in which [G(⋅)] is the same matrix function
that appeared in Eq. (1.34):

[G(𝜆)]{A} = {0 0 0 − 3}T (1.45)
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Solving Eq. (1.45), substituting the result into Eq. (1.44), and simplifying, one may
arrive at the solution for the beam’s vibrational shape:

𝜓(𝜉) = 3{[S(𝜆) + s(𝜆)][C(𝜆𝜉) − c(𝜆𝜉)] − [C(𝜆) + c(𝜆)][S(𝜆𝜉) − s(𝜆𝜉)]}
2𝜆3[1 + C(𝜆)c(𝜆)]

(1.46)

where the following shorthandnotation has been introduced:C(⋅) = cosh(⋅), S(⋅) =
sinh(⋅), c(⋅) = cos(⋅), s(⋅) = sin(⋅). The magnitude of this expression evaluated at
the beam tip (𝜉 = 1) results in the dynamic magnification factor Dtip for the tip
displacement of a cantilever beam loaded by a harmonic tip force:

Dtip ≡ |𝜓(1)| = ||||3 [C (𝜆) s(𝜆) − S(𝜆)c(𝜆)]
𝜆3[1 + C(𝜆)c(𝜆)]

|||| (1.47)

A plot of Eq. (1.47) versus the exciting frequency parameter is shown in
Figure 1.7a, while in Figure 1.7b the lag angle 𝜃tip of the tip displacement
with respect to the applied force is shown. In addition, Figure 1.8 displays the
vibrational shape, given by Eq. (1.46), for different exciting frequencies. An
examination of these figures within the context of the results of the free-vibration
cantilever analysis (Section 1.4.3) leads to the following observations:

• The forced-vibration continuous-system model of the undamped cantilever
exhibits multiple resonant frequencies (peaks in Figure 1.7a), each of which
corresponds to one of the natural frequencies associated with the eigenvalues
in Eq. (1.36). When damping is included, the resonant frequencies will shift to
the left of the undamped natural frequencies as was seen in the SDOF analysis,
but for sufficiently high Q values the undamped natural frequencies will furnish
excellent estimates of the resonant frequencies.

• The dynamic magnification factor for the harmonically driven undamped can-
tilever approaches infinity at each of the resonant peaks (Figure 1.7a). This is
analogous to the SDOF behavior of an undamped oscillator. (See 𝜁 = 0 curve
in Figure 1.3a.) When damping is included, the peak magnitudes will be finite
and will decrease as the amount of damping increases (similar to the SDOF
behavior) and the corresponding Q values may be estimated by applying the
bandwidth method to each peak.

• Figure 1.7a shows that Dtip approaches 1 as 𝜆 → 0, that is, dynamic effects
are negligible at low driving frequencies, as expected. This is also reflected in
Figure 1.8 in which, as the driving frequency approaches 0, the vibrational shape
approaches the cantilever’s (cubic) deflected shape due to a static end force [27].

• For the harmonically driven undamped cantilever, the lag angle 𝜃tip of the tip
displacement with respect to the applied force is either 0 or 𝜋 depending on the
sign of 𝜓(1) (Figure 1.7b). Similar to the SDOF behavior of Figure 1.3b, the tip
response changes from in-phase (𝜃tip = 0) to completely out-of-phase (𝜃tip = 𝜋)
when crossing a resonant peak from left to right in Figure 1.7b. When damping
is included, the transition from in-phase to out-of-phase response is more grad-
ual, that is, the slopes of the lag angle plot are finite at the various resonances
and these slopes become smaller as the level of damping is increased or as Q is
decreased.
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Figure 1.7 Frequency response functions
characterizing the steady-state harmonic
response of an undamped cantilever due
to a harmonic tip force: (a) normalized tip

displacement amplitude (dynamic magnifica-
tion factor) and (b) lag angle of tip displace-
ment with respect to applied force.

• Zoomed views of Figure 1.7a show that, between consecutive resonant peaks,
Dtip attains a zero value at a particular driving frequency. This means that the
beam tip is stationary when the cantilever is vibrating at these particular fre-
quencies.This is indicative of the lag angle switching from 𝜃tip = 𝜋 to 𝜃tip = 0 as
the forcing frequency is increased. (See two instances in Figure 1.7b.)
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Figure 1.8 Vibrational shapes of a tip-force-actuated cantilever beam for various exciting
frequencies.

• Figure 1.8 shows that, when the exciting frequency is near one of the resonant
frequencies, the vibrational shape of the beam is very similar to the correspond-
ing mode shape. This is especially true for the fundamental mode (n = 1). The
implication is that the system behaves essentially as an SDOF system in the
vicinity of a resonant peak and the vibrational shape is approximately given by
the correspondingmode shape.This observationmay be used to develop simple,
yet accurate, SDOFmodels of various types ofMEMS resonators (e.g., [24, 28]).
However, at a driving frequency sufficiently far from the two neighboring reso-
nant peaks, the beam shape may differ significantly from any single mode shape
(e.g., see 𝜆 = 3.5 shape in Figure 1.8), indicating that the response receives con-
tributions from multiple modes. (This may be seen more explicitly if one uses
the “mode superposition method” to solve the forced-vibration problem [19].)

1.5
Formulas for Undamped Natural Frequencies

As seen in the previous sections, knowing the value of the undamped natural
frequency of a resonator for a particular mode of vibration is important in
several respects: (i) the relative magnitude of the driving frequency to this value
determines the degree to which that mode will be excited; (ii) when damping is
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relatively small, the undamped natural frequency furnishes a good estimate of
the resonant frequency; (iii) the undamped natural frequency yields an upper
bound on the resonant frequency when damping and/or the effective mass of any
surrounding fluid is significant; and (iv) in more detailed theoretical pursuits the
undamped natural frequency may serve as a convenient reference frequency for
normalizing the system’s actual resonant frequency. All of these reasons provide
the motivation in this section to catalog several formulas for determining the
undamped natural frequencies for some of the more common device geometries
and vibration modes that are encountered in resonant MEMS applications. All
formulas listed are for circular frequency (units of radians per second) and, as
noted earlier, may be converted to hertz (cycles per second) by dividing by 2𝜋.
Within each class of structure type and vibration mode considered, the range
of the mode number n corresponding to the 𝜔n formula is n = 1, 2, … , where
𝜔1 < 𝜔2 < … . Rigid-body (zero-frequency) modes are not considered; thus, in
all cases 𝜔1 > 0.
For conciseness, the derivations of the formulas presented here are not

included, but the reader is encouraged to seek out details regarding the origin
of these formulas as well as the details associated with the corresponding mode
shapes. Such details may be found in [26] and in the sources cited therein. All
of the formulas listed are based on the assumptions that the material is linear
elastic and isotropic with Young’s modulus E, shear modulus G, and Poisson’s
ratio 𝜈. Therefore, when applying the results to an anisotropic material, such
as silicon, care should be taken in specifying the equivalent isotropic elastic
constants corresponding to the appropriate direction(s). (See [29] for guidance in
such cases.) Also, each device is assumed to have a uniform mass density 𝜌 (per
unit volume), all support conditions are considered “ideal” (perfectly “clamped,”
perfectly “free,” etc.), effects of any surrounding fluid are neglected, and, unless
indicated otherwise, all devices are assumed to have a uniform thickness h.
Definitions of other parameters appearing in the formulas are given in Figure 1.9.
Note that results for “free” (i.e., unsupported) conditions are included, despite
the fact that all MEMS/NEMS resonators involve some type of supporting
structure(s); the justification is that a strategic placement of supports near the
resonator’s vibrational nodes will result in the free BCs being approximately
satisfied and, as stated earlier, minimal energy dissipation via support losses.

1.5.1
Simple Deformations (Axial, Bending, Twisting) of 1D Structural Members: Cantilevers
and Doubly ClampedMembers (“Bridges”)

The relevant device parameters in this section are defined in Figure 1.9a.

1.5.1.1 Axial Vibrations (Along x-Axis)

𝜔n = 𝜆n

√
E
𝜌L2 (1.48)
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Figure 1.9 Notation for the natural fre-
quency formulas listed in Section 1.5: (a) bars
of rectangular cross section (clamped-free or
clamped-clamped); (b) circular plate (free or
clamped); (c) square plate (free or clamped);
(d) string structure (fixed ends) under axial
tension force T ; (e) circular membrane (fixed

periphery) under uniform tension S= force
per unit length; (f ) square membrane (fixed
periphery) under uniform tension S= force
per unit length; and (g) circular ring (free).
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except for case (d) in which only the cross
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𝜆n =
⎧⎪⎨⎪⎩

(2n−1)𝜋
2

, clamped-free (cantilever)

n𝜋 , clamped-clamped (“bridge”)
(1.49)

1.5.1.2 Torsional Vibrations (Based on h≪ b) (Twist About x-Axis)

𝜔n = 𝜆n

√
4Gh2

𝜌b2L2 , 𝜆n given by Eq. (1.49) (1.50)

1.5.1.3 Flexural (Bending) Vibrations

𝜔n = 𝜆n
2

⎧⎪⎨⎪⎩

√
Eh2

12𝜌L4 , transverse or out-of-plane
(
along z-axis

)
√

Eb2

12𝜌L4 , lateral or in-plane (along y-axis)
(1.51)

in which the 𝜆n values are given in Table 1.1 for both the cantilever and doubly-
clamped cases. If the beam’s “width” dimension (b for the transverse case and h
for the lateral case of Eq. (1.51)) is not small relative to length L, this wide-beam
effect may be taken into account in an approximatemanner by replacing E with an
“effective Young’s modulus” of Eeff = E∕(1 − 𝜈2) or in a more exact manner using
the formula derived in [30].
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Table 1.1 Dimensionless coefficients for calculating the natural frequencies for the flexural
modes of a beam using Eq. (1.51).

Clamped-free
(cantilever)

Clamped-clamped
(“bridge”)

𝜆1 1.875 4.730
𝜆2 4.694 7.853
𝜆3 7.855 10.996
𝜆n, n > 3 (2n − 1)𝜋∕2 (2n + 1)𝜋∕2

Table 1.2 Dimensionless coefficients for calculating the natural frequencies for the trans-
verse deflection of circular and square plates under fully free and fully clamped conditions
using Eq. (1.52).

Circular plate Square plate
Freely supported
along periphery
(𝝂= 0.33)

Clamped along
periphery
(arbitrary 𝛎)

Freely supported
along periphery
(𝝂= 0.3)

Clamped along
periphery
(arbitrary 𝛎)

𝜆1
2 5.253 10.22 13.49 35.99

𝜆2
2 9.084 21.26 19.79 73.41

𝜆3
2 12.23 34.88 24.43 108.3

𝜆4
2 20.52 39.77 35.02 131.6

1.5.2
Transverse Deflection of 2D Structures: Circular and Square Plates with Free and
Clamped Supports

𝜔n = 𝜆n
2
√

Eh2

12(1 − 𝜈 2)𝜌a4 (1.52)

in which the 𝜆n
2 values are given in Table 1.2 for the four lowest modes for each

case. The relevant device parameters are defined in Figures 1.9b and 1.9c for the
circular and square plate cases, respectively.

1.5.3
Transverse Deflection of 1DMembrane Structures (“Strings”)

Here the cross section of the string is arbitrary (i.e., it need not be rectangular
with uniform thickness h) provided that the section has a plane of symmetry that
coincideswith the string’s plane of vibration. Also, the effect of any sag in the initial
string configuration is neglected.The natural frequencies for the fixed-fixed string
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Table 1.3 Dimensionless coefficients for calculating the natural frequencies for the trans-
verse vibrations of circular and square membranes supported along their periphery using
Eq. (1.54).

Circular membrane Square membrane

𝜆1 1.357
√
𝜋 = 2.405

√
2𝜋 = 4.443

𝜆2 2.162
√
𝜋 = 3.832

√
5𝜋 = 7.025

𝜆3 2.897
√
𝜋 = 5.135

√
8𝜋 = 8.886

𝜆4 3.114
√
𝜋 = 5.519

√
10𝜋 = 9.935

(Figure 1.9d) are given by the following:

𝜔n = n𝜋
√

T
mL2

, (m = mass per unit length, T = axial tensile force) (1.53)

1.5.4
Transverse Deflection of 2DMembrane Structures: Circular and Square Membranes
under Uniform Tension and Supported along Periphery

𝜔n = 𝜆n

√
S

𝜌ha2 (1.54)

in which S is the membrane tension (per unit length of the membrane’s periphery,
as indicated in Figures 1.9e and 1.9f and the 𝜆n values are given in Table 1.3 for the
four lowest modes for both circular and square membranes.

1.5.5
In-Plane Deformation of Slender Circular Rings

The relevant device parameters for a circular ring are defined in Figure 1.9g. The
results that follow are based on the assumption that the ring is slender (b ≪ a).

1.5.5.1 Extensional Modes
The extensional modes of a slender circular ring involve only local elongation or
shortening of the ring circumference without any in-plane bending of the ring
occurring. The natural frequencies of these modes are given by

𝜔n =
√
1 + (n − 1)2

√
E
𝜌a2 (1.55)

1.5.5.2 In-Plane Bending Modes
The in-plane bending modes of a slender circular ring involve no extension or
contraction of the ring along its circumferential direction, that is, they are uncou-
pled from the extensional modes.The natural frequencies of the in-plane bending
modes are
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𝜔n = n(n + 1)(n + 2)√
12[(n + 1)2 + 1]

b
a

√
E
𝜌a2 (1.56)

As can be seen from the b/a factor in Eq. (1.56) in comparison with Eq. (1.55), the
in-plane bending modes tend to be of much lower frequency than the extensional
modes (recall that b∕a ≪ 1 for a slender ring) due to the ring’s in-plane bending
stiffness being much smaller than its extensional stiffness.

1.6
Summary

This chapter provided an introduction to the fundamental theory of mechanical
vibration on which all MEMS/NEMS resonant devices are based. Key concepts
related to resonators in general were introduced by means of specific examples,
namely, the free and forced vibration of (i) the classical SDOF damped oscillator
and (ii) an undamped cantilever beam. Also included was a listing of formulas for
calculating the undamped natural frequencies of devices whose geometries are
often utilized in MEMS/NEMS resonator applications.
The fundamental concepts introduced here necessarily neglected numer-

ous complicating issues that are often encountered in practical applications,
many of which will be treated in detail in the more specialized chapters that
follow.
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