Contents

List of Contributors XV
About the Series Editors XXIII

1 Integrative Analysis of Omics Data 1
Tobias Österlund, Marija Cvijovic, and Erik Kristiansson
Summary 1
1.1 Introduction 1
1.2 Omics Data and Their Measurement Platforms 4
1.2.1 Omics Data Types 4
1.2.2 Measurement Platforms 5
1.3 Data Processing: Quality Assessment, Quantification, Normalization, and Statistical Analysis 6
1.3.1 Quality Assessment 7
1.3.2 Quantification 9
1.3.3 Normalization 10
1.3.4 Statistical Analysis 11
1.4 Data Integration: From a List of Genes to Biological Meaning 12
1.4.1 Data Resources for Constructing Gene Sets 13
1.4.1.1 Gene Ontology Terms 13
1.4.1.2 KEGG and Reactome 13
1.4.1.3 Genome-Scale Metabolic Reconstructions 14
1.4.2 Gene Set Analysis 14
1.4.2.1 Gene Set Overenrichment Tests 16
1.4.2.2 Rank-Based Enrichment Tests 16
1.4.3 Networks and Network Topology 17
1.5 Outlook and Perspectives 18
References 19

2 13C Flux Analysis in Biotechnology and Medicine 25
Yi Ern Cheah, Clinton M. Hasenour, and Jamey D. Young
2.1 Introduction 25
2.1.1 Why Study Metabolic Fluxes? 25
2.1.2 Why are Isotope Tracers Important for Flux Analysis? 26
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3</td>
<td>How are Fluxes Determined?</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Theoretical Foundations of 13C MFA</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Elementary Metabolite Units (EMUs)</td>
<td>30</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Flux Uncertainty Analysis</td>
<td>31</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Optimal Design of Isotope Labeling Experiments</td>
<td>32</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Isotopically Nonstationary MFA (INST-MFA)</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Metabolic Flux Analysis in Biotechnology</td>
<td>36</td>
</tr>
<tr>
<td>2.3.1</td>
<td>13C MFA for Host Characterization</td>
<td>36</td>
</tr>
<tr>
<td>2.3.2</td>
<td>13C MFA for Pinpointing Yield Losses and Futile Cycles</td>
<td>39</td>
</tr>
<tr>
<td>2.3.3</td>
<td>13C MFA for Bottleneck Identification</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Metabolic Flux Analysis in Medicine</td>
<td>42</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Liver Glucose and Oxidative Metabolism</td>
<td>43</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Cancer Cell Metabolism</td>
<td>47</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Fuel Oxidation and Anaplerosis in the Heart</td>
<td>48</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Metabolism in Other Tissues: Pancreas, Brain, Muscle, Adipose, and Immune Cells</td>
<td>49</td>
</tr>
<tr>
<td>2.5</td>
<td>Emerging Challenges for 13C MFA</td>
<td>50</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Theoretical and Computational Advances: Multiple Tracers, Co-culture MFA, Dynamic MFA</td>
<td>50</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Genome-Scale 13C MFA</td>
<td>51</td>
</tr>
<tr>
<td>2.5.3</td>
<td>New Measurement Strategies</td>
<td>52</td>
</tr>
<tr>
<td>2.5.4</td>
<td>High-Throughput MFA</td>
<td>53</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Application of MFA to Industrial Bioprocesses</td>
<td>53</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Integrating MFA with Omics Measurements</td>
<td>54</td>
</tr>
<tr>
<td>2.6</td>
<td>Conclusion</td>
<td>55</td>
</tr>
<tr>
<td>2.6</td>
<td>Acknowledgments</td>
<td>55</td>
</tr>
<tr>
<td>2.6</td>
<td>Disclosure</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

3 Metabolic Modeling for Design of Cell Factories | 71 |

Mingyuan Tian, Prashant Kumar, Sanjan T. P. Gupta, and Jennifer L. Reed

Summary | 71 |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Building and Refining Genome-Scale Metabolic Models</td>
<td>72</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Generate a Draft Metabolic Network (Step 1)</td>
<td>74</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Manually Curate the Draft Metabolic Network (Step 2)</td>
<td>75</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Develop a Constraint-Based Model (Step 3)</td>
<td>77</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Revise the Metabolic Model through Reconciliation with Experimental Data (Step 4)</td>
<td>79</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Predicting the Effects of Genetic Manipulations</td>
<td>81</td>
</tr>
<tr>
<td>3.3</td>
<td>Strain Design Algorithms</td>
<td>83</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Fundamentals of Bilevel Optimization</td>
<td>84</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Algorithms Involving Only Gene/Reaction Deletions</td>
<td>94</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Algorithms Involving Gene Additions</td>
<td>94</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Algorithms Involving Gene Over/Underexpression</td>
<td>95</td>
</tr>
</tbody>
</table>
4 Genome-Scale Metabolic Modeling and In silico Strain Design of Escherichia coli 109
Meiyappan Lakshmanan, Na-Rae Lee, and Dong-Yup Lee

5 Accelerating the Drug Development Pipeline with Genome-Scale Metabolic Network Reconstructions 139
Bonnie V. Dougherty, Thomas J. Moutinho Jr., and Jason Papin

Summary 139

5.1 Introduction 139

5.1.1 Drug Development Pipeline 140

5.1.2 Overview of Genome-Scale Metabolic Network Reconstructions 140

5.1.3 Analytical Tools and Mathematical Evaluation 141

5.1.3.1 Flux Balance Analysis (FBA) 141

5.1.3.2 Flux Variability Analysis (FVA) 142

5.2 Metabolic Reconstructions in the Drug Development Pipeline 142

5.2.1 Target Identification 143

5.2.2 Drug Side Effects 145

5.3 Species-Level Microbial Reconstructions 146

5.3.1 Microbial Reconstructions in the Antibiotic Development Pipeline 146

5.3.1.1 Applications in the Drug Development Pipeline 146
Contents

5.3.2 Metabolic-Reconstruction-Facilitated Rational Drug Target Identification 147
 5.3.2.1 Targeting Genes Essential for Biomass Production 147
 5.3.2.2 Targeting Virulence Factors 147
 5.3.2.3 Metabolite-centric Targeting 148
5.3.3 Repurposing and Expanding Utility of Antibiotics 149
 5.3.3.1 Virtual Drug Screens Informed by Metabolic Reconstructions 149
 5.3.3.2 Limiting Resistance with Drug Combinations 149
 5.3.3.3 Improving Treatment Options by Increasing Sensitivity to Antibiotics 150
5.3.4 Improving Toxicity Screens with the Human Metabolic Network Reconstruction 150
5.4 The Human Reconstruction 151
 5.4.1 Approaches for the Human Reconstruction 152
 5.4.2 Target Identification 152
 5.4.2.1 Drug Targeting in Cancer 152
 5.4.2.2 Drug Targeting in Metabolic Diseases 153
 5.4.3 Toxicity and Other Side Effects 154
5.5 Community Models 155
 5.5.1 Host–Pathogen Community Models 155
 5.5.2 Eukaryotic Community Models 156
5.6 Personalized Medicine 156
5.7 Conclusion 157

References 158

6 Computational Modeling of Microbial Communities 163
 Siu H. J. Chan, Margaret Simons, and Costas D. Maranas
Summary 163

6.1 Introduction 163
 6.1.1 Microbial Communities 163
 6.1.2 Modeling Microbial Communities 165
 6.1.3 Model Structures 165
 6.1.4 Quantitative Approaches 166
6.2 Ecological Models 168
 6.2.1 Generalized Predator–Prey Model 169
 6.2.2 Evolutionary Game Theory 170
 6.2.3 Models Including Additional Dimensions 171
 6.2.4 Advantages and Disadvantages 171
6.3 Genome-Scale Metabolic Models 172
 6.3.1 Introduction and Applications 172
 6.3.2 Genome-Scale Metabolic Modeling of Microbial Communities 174
 6.3.3 Simulation of Microbial Communities Assuming Steady State 175
 6.3.3.1 Predicting Interactions Using FBA 175
 6.3.3.2 Identifying Minimal Media by Mixed Integer Linear Programming 176
6.3.3.3 Pareto Optimality Analysis by FBA 176
6.3.3.4 Modeling Chemostat Co-culture 177
6.3.3.5 Community FBA with Community Mass Balance 177
6.3.4 Dynamic Simulation of Multispecies Models 177
6.3.5 Spatial and Temporal Modeling of Communities 178
6.3.6 Using Bilevel Optimization to Capture Multiple Objective Functions 179
6.3.6.1 OptCom 179
6.3.6.2 d-OptCom 181
6.3.6.3 CASINO Toolbox 181
6.3.6.4 Advantages and Disadvantages 182
6.3.6.5 Current Challenges and Future Directions 182
6.4 Concluding Remarks 183

References 183

7 Drug Targeting of the Human Microbiome 191
Hua Ling, Jee L. Foo, Gourvendu Saxena, Sanjay Swarup, and Matthew W. Chang

Summary 191
7.1 Introduction 191
7.2 The Human Microbiome 192
7.3 Association of the Human Microbiome with Human Diseases 194
7.3.1 Nasal–Sinus Diseases 194
7.3.2 Gut Diseases 194
7.3.3 Cardiovascular Diseases 196
7.3.4 Metabolic Disorders 196
7.3.5 Autoimmune Disorders 197
7.3.6 Lung Diseases 197
7.3.7 Skin Diseases 197
7.4 Drug Targeting of the Human Microbiome 198
7.4.1 Prebiotics 198
7.4.2 Probiotics 200
7.4.3 Antimicrobials 201
7.4.3.1 Antibiotics 201
7.4.3.2 Antimicrobial Peptides 202
7.4.4 Signaling Inhibitors 202
7.4.5 Metabolites 203
7.4.5.1 Short-Chain Fatty Acids 203
7.4.5.2 Bile Acids 203
7.4.6 Metabolite Receptors and Enzymes 204
7.4.6.1 Metabolite Receptors 204
7.4.6.2 Metabolic Enzymes 204
7.4.7 Microbiome-Aided Drug Metabolism 205
7.4.7.1 Drug Delivery and Release 205
10.2.2 Dynamics of the NF-κB Response to Cytokine Stimulation 267
10.3 JAK/STAT Signaling 273
10.3.1 Functional Roles of the STAT Proteins 273
10.3.2 Regulation of the JAK/STAT Pathway 274
10.3.3 Multiplicity and Cross-talk in JAK/STAT Signaling 275
10.3.4 Early Modeling of STAT Signaling 276
10.3.5 Minimal Models of STAT Activation Dynamics 277
10.3.6 Cross-talk with Other Immune Pathways 279
10.3.7 Population Dynamics of the Immune System 281
10.4 Conclusions 282
Acknowledgments 283
References 283

11 Dynamics of Signal Transduction in Single Cells Quantified by Microscopy 289
Min Ma, Nadim Mira, and Serge Pelet
11.1 Introduction 289
11.2 Single-Cell Measurement Techniques 291
11.2.1 Flow Cytometry 291
11.2.2 Mass Cytometry 291
11.2.3 Single-Cell Transcriptomics 292
11.2.4 Single-Cell Mass Spectrometry 292
11.2.5 Live-Cell Imaging 292
11.3 Microscopy 293
11.3.1 Epi-Fluorescence Microscopy 294
11.3.2 Fluorescent Proteins 295
11.3.3 Relocation Sensors 295
11.3.4 Förster Resonance Energy Transfer 298
11.4 Imaging Signal Transduction 300
11.4.1 Quantifying Small Molecules 300
11.4.2 Monitoring Enzymatic Activity 301
11.4.2.1 Endogenous Relocation Sensors 301
11.4.2.2 Passive Relocation Sensors 302
11.4.2.3 Active Relocation Sensors 303
11.4.2.4 FRET Biosensors 304
11.4.3 Probing Protein–Protein Interactions 304
11.4.3.1 FRET in Protein Complexes 304
11.4.3.2 Bimolecular Fluorescence Complementation 305
11.4.3.3 Dimerization-Dependent FP 306
11.4.4 Measuring Protein Synthesis 307
11.4.4.1 mRNA Transcription 307
11.4.4.2 Protein Synthesis 308
11.4.4.3 Expression Dynamics Visualized by Protein Relocation 311
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5</td>
<td>Conclusions</td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>312</td>
</tr>
<tr>
<td>12</td>
<td>Image-Based In silico Models of Organogenesis</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td>Harold F. Gómez, Lada Georgieva, Odysse Michos, and Dagmar Iber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>319</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>319</td>
</tr>
<tr>
<td>12.2</td>
<td>Typical Workflow of Image-Based In silico Modeling Experiments</td>
<td>320</td>
</tr>
<tr>
<td>12.2.1</td>
<td>In silico Models of Organogenesis</td>
<td>322</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Imaging as a Source of (Semi-)Quantitative Data</td>
<td>323</td>
</tr>
<tr>
<td>12.2.2.1</td>
<td>Imaging a Growing Organ</td>
<td>324</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Image Analysis and Quantification</td>
<td>326</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Computational Simulations of Models Describing Organogenesis</td>
<td>328</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Image-Based Parameter Estimation</td>
<td>329</td>
</tr>
<tr>
<td>12.2.6</td>
<td>In silico Model Validation and Exchange</td>
<td>329</td>
</tr>
<tr>
<td>12.2.6.1</td>
<td>In silico Model Validation</td>
<td>329</td>
</tr>
<tr>
<td>12.2.6.2</td>
<td>Model Exchange via the Systems Biology Markup Language (SBML)</td>
<td>330</td>
</tr>
<tr>
<td>12.3</td>
<td>Application: Image-Based Modeling of Branching Morphogenesis</td>
<td>331</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Image-Based Model Selection</td>
<td>331</td>
</tr>
<tr>
<td>12.4</td>
<td>Future Avenues</td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>334</td>
</tr>
<tr>
<td>13</td>
<td>Progress toward Quantitative Design Principles of Multicellular Systems</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Eduardo P. Olimpio, Diego R. Gomez-Alvarez, and Hyun Youk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>341</td>
</tr>
<tr>
<td>13.1</td>
<td>Toward Quantitative Design Principles of Multicellular Systems</td>
<td>341</td>
</tr>
<tr>
<td>13.2</td>
<td>Breaking Multicellular Systems into Distinct Functional and Spatial Modules May Be Possible</td>
<td>342</td>
</tr>
<tr>
<td>13.3</td>
<td>Communication among Cells as a Means of Cell–Cell Interaction</td>
<td>346</td>
</tr>
<tr>
<td>13.4</td>
<td>Making Sense of the Combinatorial Possibilities Due to Many Ways that Cells Can Be Arranged in Space</td>
<td>350</td>
</tr>
<tr>
<td>13.5</td>
<td>From Individual Cells to Collective Behaviors of Cell Populations</td>
<td>352</td>
</tr>
<tr>
<td>13.6</td>
<td>Tuning Multicellular Behaviors</td>
<td>355</td>
</tr>
<tr>
<td>13.7</td>
<td>A New Framework for Quantitatively Understanding Multicellular Systems</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>362</td>
</tr>
</tbody>
</table>
14 Precision Genome Editing for Systems Biology – A Temporal Perspective 367
Franziska Voellmy and Rune Linding
Summary 367
14.1 Early Techniques in DNA Alterations 367
14.2 Zinc-Finger Nucleases 369
14.3 TALENs 369
14.4 CRISPR-Cas9 370
14.5 Considerations of Gene-Editing Nuclease Technologies 372
14.5.1 Repairing Nuclease-Induced DNA Damage 372
14.5.2 Nuclease Specificity 373
14.6 Applications 376
14.6.1 CRISPR Nuclease Genome-Wide Loss-of-Function Screens (CRISPRn) 377
14.6.2 CRISPR Interference: CRISPRi 378
14.6.3 CRISPR Activation: CRISPRa 378
14.6.4 Further Scalable Additions to the CRISPR-Cas Gene Editing Tool Arsenal 379
14.6.5 In vivo Applications 379
14.6.5.1 Animal Disease Models 379
14.6.5.2 Gene Therapy 379
14.7 A Focus on the Application of Genome-Engineering Nucleases on Chromosomal Rearrangements 380
14.7.1 Introduction to Chromosomal Rearrangements: The First Disease-Related Translocation 380
14.7.2 A Global Look at the Mechanisms behind Chromosomal Rearrangements 382
14.7.3 Creating Chromosomal Rearrangements Using CRISPR-Cas 383
14.8 Future Perspectives 384
References 384

Index 393