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Diffraction Phenomena in Optics

The term diffraction in optics is usually used to explain the deviations of light
propagation from the trajectories dictated by geometrical (ray) optics. One of the
most famous examples is the so-called Fraunhofer diffraction, which explains the
transmission of an initially parallel beam of light through a circular hole of radius
D fabricated in a nontransparent screen. Within the framework of geometrical
optics, behind the screen, the nonzero transmitted intensity will be detected just in
front of the hole (see Figure 1.1). It means that, after passing through the screen,
the direction of light propagation does not change; the only effect is a reduction
in the total light intensity in a proportion dictated by the area of the hole S=𝜋D2

with respect to the cross section of the incident beam. However, light scattering by
the border of the hole can substantially modify this result and provide additional
transmitted intensity in spatial directions that differ by angle Θ from the initial
direction of light propagation before the screen (see Figure 1.2, upper panel). In
other words, after passing through the screen, light propagates not only in one
direction, which is defined by the initial wave vector k i, but also in many other
directions defined by the vectors k s = k i + q. Here, q is a variable wave vector
transfer to the screen during scattering events (see Figure 1.3). Note that, for elastic
scattering processes

|k s| = |k i| = 2𝜋
𝜆

(1.1)

where 𝜆 is the wavelength of light. Taking into account Eq. (1.1) and the axial
symmetry of the particular scattering problem (at a fixed scattering angle Θ, see
Figure 1.3), we find that

|q| = q ≈ 2𝜋
𝜆
Θ (1.2)

For each q-value, the light scattering amplitude is given by the Fourier component
u𝐪 of the wave field u(r) just after the screen [1]:

u𝐪 = ∫ ∫ u(r)e−iqr𝑑𝑥𝑑𝑦 (1.3)

However, in the first approximation, we can set u= u0, that is, equal the amplitude
of the homogeneous wave field before the screen, and then express the scattering
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Figure 1.1 Light transmission through a circular hole of radius D in the limit of
geometrical optics.
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Figure 1.2 Light transmission (upper panel) through a circular hole of radius D, taking
into account diffraction phenomenon (Fraunhofer diffraction). Bottom panel: transmitted
intensity as a function of angular deviation Θ.
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Figure 1.3 Wave vector change q in the course of elastic
scattering of propagating light.
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amplitude u𝐪 as

u𝐪 = ∫ ∫ u0e−iqr𝑑𝑥𝑑𝑦 (1.4)

where the integration proceeds over the entire area S of the hole. The diffraction
intensity (relative to that in the incident beam) for a given q-value within an element
of solid angle Ω is expressed as follows [1]:

dIrel = 𝜆−2
|||||
u𝐪

uo

|||||
2

dΩ (1.5)

In order to find u𝐪, let us introduce the polar coordinates r and 𝜑 within the circular
hole. In this coordinate system, Eq. (1.4) transforms into

u𝐪 = u0∫
D

0 ∫
2𝜋

0
e−𝑖𝑞𝑟 cos𝜑 r 𝑑𝜑 𝑑𝑟 = 2𝜋u0∫

D

0
J0(𝑞𝑟)r 𝑑𝑟 (1.6)

where J0 is the Bessel function of zero order. Note that, in deriving Eq. (1.6), we
used the fact that, for small scattering angles Θ, the vector q is nearly situated in
the plane of the hole. One can express the integral in (1.6) via a Bessel function of
first order J1, as

∫
D

0
J0 (𝑞𝑟)r 𝑑𝑟 =

D
q

J1(𝐷𝑞) (1.7)

and, finally

u𝐪 =
2𝜋u0D

q
J1(𝐷𝑞) (1.8)

Substituting Eq. (1.8) into Eq. (1.5) and using Eq. (1.2), we obtain

dIrel =
D2

Θ2
J2

1

(2𝜋𝐷
𝜆

Θ
)
𝑑𝛺 (1.9)

The distribution of the transmitted intensity (Eq. (1.9)) as a function of the
scattering angle Θ is shown in Figure 1.2 (bottom panel). With an increase in the
absolute value of the angle Θ, the light intensity shows a fast overall reduction,
on which the pronounced oscillating behavior is superimposed. The intensity
oscillations are revealed as lateral maxima of diminishing height, separated by the
zero-intensity points. The latter are determined by the zeros of the J1 function.
Most of the diffraction intensity (about 84%) is confined within the angular interval
−Θ0 ≤Θ≤Θ0, which is defined by the first zero of the Bessel function J1:

2𝜋
𝜆

D Θ0 = 3.832 (1.10)

That is,

Θ0 = 0.61
𝜆

D
(1.11)

It follows from Eq. (1.11) that diffraction is important when the wavelength 𝜆 is a
significant part of the D-value. If 𝜆∕D ≪ 1, the angular deviations are subtle, which
implies that diffraction effects (deviations from geometrical optics) are weak. For
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visible light with 𝜆≈ 0.5 μm, the diffraction phenomena are regularly observed for
objects with the characteristic size D ranging from few micrometers and up to
∼103 μm.

Diffraction of light imposes the main limitation on the resolving power of optical
instruments. For a telescope, the resolution is defined on an angular scale and
is given by the so-called Rayleigh criterion. It states that two objects (stars) can
be separately resolved if an angular distance ΔΘc between the maxima of their
intensity distributions (Eq. (1.9)) exceeds the Θ0 value defined by Eq. (1.11). It
implies that the angular resolution of a telescope is given by Eq. (1.11).

For a microscope, length limitations are most useful, helping us to evaluate
the size of the smallest objects still visible with the aid of a particular optical
device. In order to ‘‘translate’’ the Rayleigh criterion into the length-scale language,
let us consider the simplified equivalent scheme of a microscope. The latter is
represented by a circular lens of radius D and focal length f , and transforms an
object of size Y into its image of size Y ′ (see Figure 1.4). For high magnification,
an object is placed close to the focus (left side of the lens in Figure 1.4). Then

𝜃 ≈ Y
f

(1.12)

Applying the Rayleigh criterion means that Θ>Θ0 and hence

Y > Δ = f 𝜃0 = 0.61
𝜆

D
f (1.13)

For focusing effect (see Figure 1.5), we illuminate our lens with a wide parallel
beam and obtain a small spot Y ′ in the focal plane (right side of the lens in
Figure 1.5). Now

𝜃 = Y ′

f
(1.14)

Applying again the Rayleigh criterion and Eq. (1.11), we find that the spot size Y ′

cannot be smaller than parameter Δ given by Eq. (1.13), that is,

Y ′ > Δ = f 𝜃0 = 0.61
𝜆

D
f (1.15)

Therefore, the spatial resolution Δ, when using the circular focusing element, is
completely defined by its radius D, focal length f , and radiation wavelength 𝜆. We
will use the obtained results in Chapter 23 when describing the focusing elements
for X-ray optics. More information on diffraction optics of visible light and, in
particular, on the Fraunhofer and Fresnel diffraction can be found in [2, 3].
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Figure 1.4 Illustration of the diffraction-limited spatial resolution of a microscope.
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Figure 1.5 Illustration of the diffraction-limited focal spot size that is achievable by using a
lens.

When considering potential diffraction effects for X-rays, we stress that they have
wavelengths of about 0.1 nm= 1 Å: that is, 5000 times shorter than for visible light.
If so, what kind of objects could potentially cause the diffraction of X-rays? Clearly,
characteristic sizes in these objects should be very small. It was the great idea of
Max von Laue, who had proposed in 1912 the diffraction experiment of X-rays in
crystals, bearing in mind that crystals are built of periodic three-dimensional atomic
networks; that is, they reveal translational symmetry. Fortunately, the characteristic
distances between adjacent atomic unit cells (translation lengths) are comparable
with X-ray wavelengths. Today, we can say that mainly translational symmetry
together with appropriate lengths of the translation vectors is the origin of X-ray
diffraction in crystals. This subject is comprehensively treated in Chapter 2.




