Contents

Foreword XVII Preface XIX About the Editors XXI List of Contributors XXIII

Part I: Control of Cell/Film Interactions 1

v

1	Controlling Cell Adhesion Using pH-Modified Polyelectrolyte Multilayer Films 3 Marcus S. Niepel, Kristin Kirchhof, Matthias Menzel, Andreas Heilmann, and Thomas Groth
1.1	Introduction 3
1.2	Influence of pH-Modified PEM Films on Cell Adhesion and Growth 5
1.2.1	HEP/CHI Multilayers 5
1.2.2	PEI/HEP Multilayers 16
1.3	Summary and Outlook 24
	Acknowledgments 25
	References 25
2	The Interplay of Surface and Bulk Properties of Polyelectrolyte Multilayers in Determining Cell Adhesion 31 Joseph B. Schlenoff and Thomas C.S. Keller
2 2.1	Multilayers in Determining Cell Adhesion 31
	Multilayers in Determining Cell Adhesion31Joseph B. Schlenoff and Thomas C.S. Keller
2.1	Multilayers in Determining Cell Adhesion31Joseph B. Schlenoff and Thomas C.S. KellerSurface Properties33
2.1	Multilayers in Determining Cell Adhesion 31 Joseph B. Schlenoff and Thomas C.S. Keller Surface Properties 33 Bulk Modulus 38 References 42 Photocrosslinked Polyelectrolyte Films of Controlled Stiffness to Direct Cell Behavior 45 Naresh Saha, Claire Monge, Thomas Boudou, Catherine Picart, and Karine
2.1 2.2 3	Multilayers in Determining Cell Adhesion 31 Joseph B. Schlenoff and Thomas C.S. Keller Surface Properties 33 Bulk Modulus 38 References 42 Photocrosslinked Polyelectrolyte Films of Controlled Stiffness to Direct Cell Behavior 45 Naresh Saha, Claire Monge, Thomas Boudou, Catherine Picart, and Karine Glinel
2.1 2.2	Multilayers in Determining Cell Adhesion 31 Joseph B. Schlenoff and Thomas C.S. Keller Surface Properties 33 Bulk Modulus 38 References 42 Photocrosslinked Polyelectrolyte Films of Controlled Stiffness to Direct Cell Behavior 45 Naresh Saha, Claire Monge, Thomas Boudou, Catherine Picart, and Karine

/1	Contents

3.3	Elaboration of Rigidity Patterns 52
3.4	Behavior of Mammalian Cells on Homogeneous and Photopatterned
	Films 54
3.5	Influence of Film Rigidity on Bacterial Behavior 58
3.6	Conclusion 61
	Acknowledgments 61
	References 62
4	Nanofilm Biomaterials: Dual Control of Mechanical and Bioactive
	Properties 65
	Emmanuel Pauthe and Paul R. Van Tassel
4.1	Introduction 65
4.2	Surface Cross-Linking 67
4.3	NP Templating 69
4.4	Discussion 73
4.5	Conclusions 75
T .J	Acknowledgments 75
	References 75
	Kelerences 75
5	Bioactive and Spatially Organized LbL Films 79
	Zhengwei Mao, Shan Yu, and Changyou Gao
5.1	Introduction 79
5.2	Role of Chemical Properties 80
5.2.1	Bulk Composition 80
5.2.1.1	Introducing Natural Polyelectrolytes as Building Blocks 80
5.2.1.2	Incorporating Hormones and Growth Factors 81
5.2.2	Surface Chemistry 83
5.2.2.1	Role of the Final Layer 83
5.2.2.1	
5.3	Role of Physical Properties 85
5.3.1	Mechanical Property 85
5.3.1.1	Chemical Cross-linking 86
5.3.1.2	Incorporating Stiff Building Blocks 86
5.3.1.3	Control Environmental pH or Salt Concentration 87
5.3.2	Topography 89
5.4	Spatially Organized PEMs 89
5.4.1	Patterned PEMs 89
5.4.2	Gradient PEMs 91
5.5	Conclusions and Future Perspectives 92
	Acknowledgments 94
	References 94
<i>.</i>	Constructions Could Advantage Depth (1) Diff. (1) (1)
6	Controlling Stem Cell Adhesion, Proliferation, and Differentiation with
	Layer-by-Layer Films 103
<i>(</i> 1	Stewart Wales, Guak-Kim Tan, and Justin J. Cooper-White
6.1	Introduction 103

VI

Contents VII

- 6.1.1 Types of Stem Cells 103
- 6.1.2 Stem Cell Fate Choices 104
- 6.1.3 The Stem Cell "Niche" 104
- 6.1.3.1 Soluble Factors 105
- 6.1.3.2 Cell–Cell Interactions 105
- 6.1.3.3 Cell-ECM Interactions 106
- 6.1.4 Influencing Stem Cell Fate Choice 106
- 6.2 Mesenchymal Stem Cells and Layer-by-Layer Films *107*
- 6.2.1 Human MSC Adhesion, Proliferation, and Differentiation 107
- 6.2.2 Murine MSC Adhesion, Proliferation, and Differentiation *114*
- 6.3 Pluripotent Stem Cells and Layer-by-Layer Films *116*
- 6.3.1 Murine ESC Adhesion, Proliferation, and Maintenance of Potency *117*
- 6.3.2 Murine ESC Differentiation 120
- 6.3.3 Human ESC Adhesion, Proliferation, and Differentiation 122
- 6.4 Future Directions and Trends *123* References *124*

Part II: Delivery of Small Drugs, DNA and siRNA 131

7 Engineering Layer-by-Layer Thin Films for Multiscale and Multidrug Delivery Applications 133

Nisarg J. Shah, Bryan B. Hsu, Erik C. Dreaden, and Paula T. Hammond

- 7.1 Introduction 133
- 7.1.1 The Promise of LbL Delivery 133
- 7.1.1.1 High Drug Density and Scalability 133
- 7.1.1.2 Translatable to 2D and 3D Geometries 133
- 7.1.1.3 Facile Encapsulation of Active Biologics *134*
- 7.1.1.4 Multiple Drug Combinations 134
- 7.1.1.5 Controlled Time-Dependent Release and Opportunity for Multisequence Release *134*
- 7.1.2 Growth in the LbL Delivery Field 135
- 7.1.3 Brief Outline of Chapter 135
- 7.2 Engineering LbL Release Mechanisms from Fast to Slow Release 136
- 7.2.1 Overview 136
- 7.2.2 Tuning Hydrolytic Release 137
- 7.2.3 Small Molecule Release 139
- 7.2.3.1 Direct Adsorption of Charged Molecules 139
- 7.2.3.2 Complexation with Charged Polymer 139
- 7.2.3.3 Pre-encapsulation in Carrier 141
- 7.2.4 H-Bond-Based Release of Molecules 141
- 7.2.5 Impact of Assembly Approach and Spray-LbL 142
- 7.2.6 Other Mechanisms of Release 143

VIII Contents

7.2.7	Controlling Release Kinetics and Manipulating Sequential Release 144
7.3	LbL Biologic Release for Directing Cell Behavior 145
7.3.1	Overview 145
7.3.2	Controlled Growth Factor Delivery for Tissue Engineering 146
7.3.2.1	Release of Therapeutic Growth Factors from LbL Films 146
7.3.3	Growth Factor Delivery with Synergistic Impact 148
7.3.3.1	BMP-2 and VEGF 148
7.3.3.2	Implant Osseointegration: The Synergistic Effect of BMP-2 and
	Hydroxyapatite 149
7.3.4	Staggering Release of Drugs from LbL Films with "Barrier"
795	Layers 151
7.3.5	Nucleic Acid Delivery as a Modulator of Cell Response 152
7.3.5.1	Challenges of DNA/siRNA Release for Localized Delivery 152
7.3.5.2	Multilayer Polymer "Tattoos" for DNA-Based Vaccination 153
7.3.5.3	Wound Healing Mediated by siRNA for Sustained Localized Knockdown 154
7.4	Moving LbL Release Technologies to the Nanoscale: LbL
	Nanoparticles 156
7.4.1	Overview – Nanoparticle Delivery Challenges 156
7.4.2	Tuning LbL Systems for Systemic Delivery – Stability, Blood
	Half-life 156
7.4.3	Adapting LbL Nanoparticles for Targeting 158
7.4.3.1	Tumor Microenvironment, Hypoxic Response 159
7.4.3.2	Molecular Targeting 160
7.4.4	Dual Drug Combinations 160
7.4.4.1	siRNA Chemotherapy Combination Nanoparticle Systems 161
7.4.4.2	Future Potential 162
7.5	Conclusions and Perspective on Future Directions 162
7.5.1	Translation of Technologies 163
	Acknowledgments 165
	References 165
8	Polyelectrolyte Multilayer Coatings for the Release and Transfer of
•	Plasmid DNA 171
	David M. Lynn
8.1	Introduction 171
8.2	Fabrication of Multilayers Using Plasmid DNA and Hydrolytically
0.2	Degradable Polyamines 173
8.3	Toward Therapeutic Applications <i>In vivo</i> Contact-Mediated
0.0	
021	Approaches to Vascular Gene Delivery 178 Transfer of DNA to Arterial Tissue Using Film Control Introvescular
8.3.1	Transfer of DNA to Arterial Tissue Using Film-Coated Intravascular
0 2 2	Stents 178
8.3.2	Transfer of DNA to Arterial Tissue Using Film-Coated Balloon
	Catheters 180

- 8.3.3 Beyond Reporter Genes: Approaches to the Reduction of Intimal Hyperplasia in Injured Arteries *182*
- 8.3.4 Other Potential Applications 184
- 8.4 Exerting Temporal Control over the Release of DNA 184
- 8.4.1 New Polymers and Principles: Degradable Polyamines and "Charge Shifting" Cationic Polymers 185
- 8.4.2 Multicomponent Multilayers for the Release of Multiple DNA Constructs 187
- 8.4.2.1 Approaches to Promoting the Rapid Release of DNA 188
- 8.5 Concluding Remarks 190 Acknowledgments 190 References 191
- 9 LbL-Based Gene Delivery: Challenges and Promises 195 Joelle Ogier
- 9.1 LbL-DNA Delivery 195
- 9.1.1 Pioneer Designs 196
- 9.1.2 DNA Spatial and Temporal Scheduled Delivery 199
- 9.1.3 Pending Challenges: From *In Vitro* Substrate-Mediated Gene Delivery to *In Vivo* Formulations 201
- 9.2 LbL-siRNA Delivery 202
- 9.3 Concluding Remarks 204 References 205
- 10 Subcompartmentalized Surface-Adhering Polymer Thin Films Toward Drug Delivery Applications 207

Boon M. Teo, Martin E. Lynge, Leticia Hosta-Rigau, and Brigitte Städler

- 10.1 Introduction 207
- 10.2 Cyclodextrin (CD)-Containing LbL Films 208
- 10.2.1 Assembly 209
- 10.2.2 Drug Delivery Applications 209
- 10.3 Block Copolymer Micelle (BCM)-Containing LbL Films 212
- 10.3.1 Assembly 213
- 10.3.1.1 Glassy BCMs within LbL Films 213
- 10.3.1.2 Temperature and pH Responsive BCMs within LbL Films 213
- 10.3.2 Drug Delivery Applications 215
- 10.4 Liposome-Containing LbL Films 215
- 10.4.1 Assembly 216
- 10.4.2 Cargo Release Capability from Liposomes within LbL Films 219
- 10.4.3 Drug Delivery Applications 219
- 10.5 LbL Films Containing Miscellaneous Drug Deposits 222
- 10.6 Conclusion/Outlook 224 References 225

X Contents

Part III: Nano- and Microcapsules as Drug Carriers 233

11	Multilayer Capsules for <i>In vivo</i> Biomedical Applications 235
	Bruno G. De Geest and Stefaan De Koker
11.1	Introduction 235
11.2	A Rationale for Functionally Engineered Multilayer Capsules 236
11.2.1	General Considerations 236
11.2.2	Multilayer Capsules Responding to Physicochemical and
	Physiological Stimuli 238
11.3	In vivo Fate of Multilayer Capsules 241
11.3.1	Tissue Response 241
11.3.2	<i>In vivo</i> Uptake and Degradation 243
11.3.3	Blood Circulation 245
11.4	Vaccine Delivery via Multilayer Capsules 246
11.5	Tumor Targeting via Multilayer Capsules 252
11.6	Concluding Remarks 253
	References 254
12	Light-Addressable Microcapsules 257
	Markus Ochs, Wolfgang J. Parak, Joanna Rejman, and Susana
	Carregal-Romero
12.1	Introduction 257
12.2	Light-Responsive Components 258
12.2.1	Light-Responsive Polyelectrolytes and Molecules 258
12.2.2	Light-Responsive Shells 259
12.2.3	Light-Responsive Nanoparticles 259
12.3	Capsule Synthesis and Loading 261
12.4	Gold-Modified Layer-by-Layer Capsules 264
12.5	Morphological Changes of Capsules and Nanoparticles 267
12.6	Bubble Formation 267
12.7	Cytosolic Release 269
12.8	Triggering Cytosolic Reactions 272
12.9	Conclusions and Perspectives 274
	Acknowledgments 275
	References 275
13	Nanoparticle Functionalized Surfaces 279
	Mihaela Delcea, Helmuth Moehwald, and Andre G. Skirtach
13.1	Introduction 279
13.2	Nanoparticles on Polyelectrolyte Multilayer LbL Capsules 281
13.2.1	Adsorption of Nanoparticles onto Polyelectrolyte Multilayer
	Capsules 281
13.2.2	Light- and Magnetic-Field-Induced Permeability Control 282
13.2.3	Fluorescence Imaging Using Quantum Dots 284
13.2.4	Magnetic Nanoparticles: Activation and Targeting 284

Contents XI

296

- 13.2.5 Catalysis Using Nanoparticles 285 13.2.6 Enhancement of Mechanical Properties of Capsules 285 13.2.7 Anisotropic Capsules 286 Nanoparticles on Polyelectrolyte LbL Films 287 13.3 LbL Films and Adsorption of Nanoparticles onto Films 287 13.3.1 Laser Activation 287 13.3.2 13.3.3 Fluorescent Labeling of Films 289 Increasing the Stiffness of Films for Cell Adhesion and Control over 13.3.4 Asymmetric Particle Fabrication 289 Additional Functionalities through Addition of Nanoparticles 290 13.3.5 13.4 Conclusions 290 References 292 14 Layer-by-Layer Microcapsules Based on Functional Polysaccharides 295 Anna Szarpak-Jankowska, Jing Jing, and Rachel Auzély-Velty 14.1 Introduction 295 Fabrication of Polysaccharide Capsules by the LbL Technique 14.2Natural Charged Polysaccharides Used in LbL Capsules 296 14.2.1 14.2.2 General Methods for the Assembly of Polysaccharides into LbL Capsules 297 14.2.3 Cross-Linking of the Polysaccharide Shells 298 14.2.4 Functional Multilayer Shells Based on Chemically Modified Polysaccharides 300 14.2.4.1 Multilayer Shells Made of Alkylated Hyaluronic Acid 300 14.2.4.2 Multilayer Shells Made of Hyaluronic Acid and Dextran Bearing Pendant Cyclodextrins Along the Chain 300 14.2.4.3 Multilayer Shells Made of Quaternized Chitosan 301 14.3 Biomedical Applications 302 Interactions with Living Cells 305 14.414.5 Conclusion 306 References 307 15 Nanoengineered Polymer Capsules: Moving into the Biological **Realm** 309 Katelyn T. Gause, Yan Yan, and Frank Caruso 15.1 Introduction 309 Capsule Design and Assembly 310 15.2 Templates 310 15.2.1 Materials and Assembly Interactions 312 15.2.2 15.2.2.1 Electrostatic Assembly 312
- 15.2.2.2 Hydrogen Bonding-Facilitated Assembly 312
- DNA Base Pairing 313 15.2.2.3
- "Click" Assembly and Cross-linking 314 15.2.2.4
- 15.2.3 Cargo Encapsulation 315

XII Contents

1	
15.2.3.1	Preloading 316
15.2.3.2	Postloading 317
15.2.3.3	Cargo within Capsule Shells 317
15.2.4	Biological Stimuli-Responsive Cargo Release 318
15.2.4.1	Enzymatically Responsive Cargo Release 318
15.2.4.2	pH-Responsive Cargo Release 319
15.2.4.3	Redox-Responsive Cargo Release 320
15.3	Capsules at the Biological Interface 321
15.3.1	Circulation and Biodistribution 322
15.3.2	Cellular Interactions 323
15.3.3	Intracellular Trafficking 324
15.4	Biological Applications 326
15.4.1	Anticancer Drug Delivery 326
15.4.1.1	Targeting 326
15.4.2	Vaccine Delivery 329
15.4.3	Biosensors and Bioreactors 331
15.5	Conclusion and Outlook 335
	References 336
16	Biocompatible and Biogenic Microcapsules 343
	Jie Zhao, Jinbo Fei, and Junbai Li
16.1	Introduction 343
16.2	LbL Assembly of Biocompatible and Biogenic Microcapsules 344
16.2.1	Lipid-Based Microcapsules 344
16.2.2	Polysaccharide-Based Microcapsules 346
16.2.3	Protein-Based Microcapsules 348
16.3	Applications 349
16.3.1	Drug Carriers for Cancer Treatment 350
16.3.1.1	Methods for Drug Loading 350
16.3.1.2	Thermotherapy 352
16.3.1.3	Photodynamic Therapy 354
16.3.2	Blood Substitutes 356
16.4	Conclusions and Perspectives 358
	Acknowledgments 358
	References 358
17	Three-Dimensional Multilayered Devices for Biomedical
	Applications 363
1 1 1	Rui R. Costa and João F. Mano
17.1	Introduction 363
17.2	Freedom ding Multilever Films 76/
1001	Freestanding Multilayer Films 364
17.2.1	Pure Freestanding Membranes 364
17.2.2	Pure Freestanding Membranes 364 Hybrid LbL-Assisted Techniques 366
	Pure Freestanding Membranes 364

- 17.4.1 Drug Carriers 369 17.4.2Biosensors 371 17.5 Complex LbL Devices with Compartmentalization and Hierarchical Components 372 17.5.1 Confined Chemical Reactions 373 17.5.2 Customized Multifunctional Reactors 374 Porous Structures 376 17.6 17.7 Conclusions 377 Acknowledgments 378 References 378 Part IV: Engineered Tissues and Coatings of Implants 385 18 Polyelectrolyte Multilayer Film – A Smart Polymer for Vascular Tissue Engineering 387 Patrick Menu and Halima Kerdjoudj 18.1 Layer by Layer Coating 388 Anti-Adhesive Properties of PEMs 388 18.2 Adhesion Properties of PEMs and Their Use in Vascular Tissue 18.3 Engineering 389 18.4 Polyelectrolyte Multilayer Films and Stem Cell Behavior 390 18.5 PEM Coating of Vascular Prosthesis 391 18.6 Functional PEMs Mimicking Endothelial Cell Function 391 Conclusion 392 18.7 References 392 19 Polyelectrolyte Multilayers as Robust Coating for Cardiovascular **Biomaterials** 399 Kefeng Ren and Jian Ji 19.1 Introduction 399 19.2 The Basement Membrane: The Bioinspired Cue for Cardiovascular Regeneration 400 19.3 PEMs as a Feasible Method for Immobilization: From Antithrombosis to the Synergistic Interaction 401 19.4 Controlled Delivery from PEMs: From Small Molecule Drugs and Bioactive Molecules to Genes 403 19.5 Effects of Mechanical Properties of PEMs on Cellular Events 406 19.6 PEM as a Coating for Cardiovascular Device: From In vitro to In vivo 407 Conclusion and Perspectives 412 19.7
 - References 412

XIV Contents

20	LbL Nanofilms Through Biological Recognition for 3D Tissue Engineering 419
	Michiya Matsusaki and Mitsuru Akashi
20.1	Introduction 419
20.1	A Bottom-Up Approach for 3D Tissue Construction 421
20.2	Hierarchical Cell Manipulation Technique 422
20.2.1	
20.2.1.1	Fabrication of Multilayered Structure by Nano-ECM Coating 423 Effect of Nanofilms on Cellular Function 426
20.2.1.2	Control of Cellular Function and Activity in 3D Environments 426
20.2.1.3	•
	Permeability Assay of Multilayered Fibrous Tissues 431 Blood Vessel Wall Model 432
20.2.2	
20.2.2.1	Construction of Blood Vessel Wall Model 433
20.2.2.2	Quantitative 3D Analysis of Nitric Oxide Using Blood Vessel Wall Model 433
20.2.3	Blood Capillary Model 436
20.2.3.1	Fabrication of Blood Capillary Model by Cell-Accumulation Technique 436
20.2.3.2	Application for the Evaluation of the Interaction with Tissues 438
20.2.4	Perfusable Blood Vessel Channel Model 439
20.2.4.1	Construction of Blood Vessel Channel Model in Hydrogel 441
20.2.4.2	In vitro Permeability Assay 442
20.2.5	Engineering 3D Tissue Chips by Inkjet Cell Printing 442
20.2.5.1	Cell and ECM Printing 445
20.2.5.2	Human Liver Tissue Chips and Liver Function Assay 445
20.3	Conclusions 447
2010	Acknowledgments 447
	References 447
21	Matrix-Bound Presentation of Bone Morphogenetic Protein 2 by Multilayer Films: Fundamental Studies and Applications to Orthopedics 453 Flora Gilde, Raphael Guillot, Laure Fourel, Jorge Almodovar, Thomas
	Crouzier, Thomas Boudou, and Catherine Picart
21.1	Introduction 453
21.2	BMP-2 Loading: Physico-Chemistry and Secondary Structure 455
21.2.1	Tunable Parameters for BMP-2 Loading 455
21.2.2	Secondary Structure of BMP-2 in Hydrated and Dry Films 458
21.2.2.1	Secondary Structure of BMP-2 in Solution 458
21.2.2.2	Structure of BMP-2 Trapped in Hydrated or Dry (PLL/HA) Films 459
21.3	Osteoinductive Properties of Matrix-Bound BMP-2 In vitro 461
21.4	Early Cytoskeletal Effects of BMP-2 463
21.5	Toward <i>In vivo</i> Applications for Bone Repair 467
21.5.1	Characterization of PEM Film Deposition on TCP/HAP Granules
	and on Porous Titanium 467

Contents XV

21.5.2	Sterilization by γ -Irradiation 469
21.5.3	Osteoinduction In vivo 471
21.6	Toward Spatial Control of Differentiation 475
21.7	Conclusions 477
	Acknowledgments 478
	List of Abbreviations 478
	References 479
22	Polyelectrolyte Multilayers for Applications in Hepatic Tissue
	Engineering 487
	Margaret E. Cassin and Padmavathy Rajagopalan
22.1	Introduction 487
22.1.1	The Liver 489
22.1.2	Hepatic Tissue Engineering 491
22.1.3	PEMs and Hepatic Tissue Engineering 491
22.2	PEMs for 2D Hepatic Cell Cultures 492
22.2.1	Tuning Mechanical and Chemical Properties of PEMs 492
22.3	PEMs for 3D Hepatic Cell Cultures 495
22.3.1	PEMs that Mimic the Space of Disse 495
22.3.2	Porous Scaffolds for Hepatic Cell Cultures 496
22.3.3	3D PEM Stamping for Primary Hepatocyte Co-cultures 498
22.4	Conclusions 498
	Acknowledgments 498
	References 499
23	Polyelectrolyte Multilayer Film for the Regulation of Stem Cells in
	Orthopedic Field 507
	Yan Hu and Kaiyong Cai
23.1	Introduction 507
23.2	Layer-by-Layer Assembly and Classification 508
23.3	Classic Polyelectrolyte Multilayer Films (Intermediate Layer) 509
23.3.1	Bioactive Multilayer Films 509
23.3.1.1	Compositions of Polyelectrolyte Multilayer Films 510
23.3.1.2	Stiffness of Polyelectrolyte Multilayer Films 511
23.3.1.3	Cell Specific Recognition of Polyelectrolyte Multilayer Films 511
23.3.2	Gene-Activating Multilayer Film 512
23.4	Hybrid Polyelectrolyte Multilayer Film 514
23.4.1	Growth Factors or Cytokines Embedding Hybrid Layer 515
23.4.2	Drug Embedding Hybrid Layer 516
23.4.3	Nanoparticles Embedding Hybrid Layer 518
23.5	"Protecting" Polyelectrolyte Multilayer Film (Cover Layer) 518
23.6	Conclusion and Perspective 521
	References 521

XVI Contents

24	Axonal Regeneration and Myelination: Applicability of the Layer-by-Layer Technology 525 Chun Liu, Ryan Pyne, Seungik Baek, Jeffrey Sakamoto, Mark H. Tuszynski,
	and Christina Chan
24.1	Current Challenges of Spinal Cord Injury: Inflammation, Axonal
	Regeneration, and Remyelination 525
24.1.1	Spinal Cord Injury 525
24.1.2	Potential of Tissue Engineering for Treating SCI 527
24.2	PEM Film – Cell Interactions and Adhesion 530
24.2.1	Polyelectrolyte Multilayers in Tissue Engineering 531
24.2.2	Components of the Multilayers 532
24.2.3	LbL as an Adhesive Coating for Neural Cell Attachment 533
24.2.4	Patterned Co-cultures Using LbL Technique 534
24.3	Controlled Drug Delivery for Nerve Regeneration 536
24.3.1	Drug Release from LbL Films 536
24.3.2	Local Drug Release for Neural Regeneration 537
24.4	Future Perspective 538
	Acknowledgments 539
	References 539

Index 547