Volume 1 Contents

Preface for Volumes 1–3 \(\text{XV} \)
Introduction: Definitions of Catalysis \(\text{XXI} \)

Volume 1

1 From Catalysis to Lewis Base Catalysis with Highlights from 1806 to 1970 \(\text{1} \)
 Edwin Vedejs
1.1 Introduction \(\text{1} \)
1.2 Catalysis \(\text{1} \)
1.2.1 Berzelius Defines Catalysis \(\text{2} \)
1.2.2 Early Proposals for Intermediates in Catalytic Reactions \(\text{2} \)
1.3 Progress with Catalysis in Organic Chemistry \(\text{3} \)
1.4 Ostwald’s Redefinition of Catalysis \(\text{5} \)
1.4.1 The Evolution of Ostwald’s Views and Their Subsequent Refinement \(\text{5} \)
1.4.2 Sabatier and “Temporary Compounds” in Heterogeneous Catalysis \(\text{6} \)
1.4.3 A Curious Tangent: The Radiation Hypothesis for Catalysis \(\text{6} \)
1.5 The First Example of Lewis Base Catalysis \(\text{7} \)
1.6 The Road to Mechanistic Comprehension; Multistage Catalysis by Lewis Base \(\text{9} \)
1.6.1 The Knoevenagel Condensation \(\text{9} \)
1.6.2 Lapworth’s Breakthrough; Benzoin Revisited \(\text{11} \)
1.7 An Uneven Path to a Unifying Concept \(\text{12} \)
1.7.1 Halide Catalysis \(\text{12} \)
1.7.2 Ambident Nucleophile Intermediates in Halide-Catalyzed Rearrangements \(\text{14} \)
1.7.3 The First Recognition of Lewis Base Catalysis \(\text{14} \)
1.8 Amine Catalysis \(\text{17} \)
1.8.1 Amine-Catalyzed Decarboxylation \(\text{17} \)
1.8.2 The Thiamine Story: Amine Catalysis Is Slower Than \(\text{N} \)-Heterocyclic Carbene Catalysis \(\text{18} \)
1.8.3 Amine Activation of Anhydrides \(\text{20} \)
1.8.3.1 Early Examples of Anhydride Activation \(\text{20} \)
1.8.3.2 Gold and Jefferson: The First Mechanistic Study \(\text{20} \)
1.8.4 Model Systems as Probes of Enzyme Function \(\text{21} \)
1.8.4.1 Bender’s Summary of “Nucleophilic” Catalysis \(\text{21} \)
1.8.4.2 Acetyl Phosphate Hydrolysis \(\text{23} \)
1.8.5 Miscellaneous Examples of Lewis Base Catalysis
1.8.5.1 Dakin–West Reaction
1.8.5.2 Miscellaneous Catalytic Applications of Neutral and Anionic Lewis Bases
1.9 Summary
Acknowledgement
References

Section I Principles

2 Principles, Definitions, Terminology, and Orbital Analysis of Lewis Base–Lewis Acid Interactions Leading to Catalysis
Scott E. Denmark and Gregory L. Beutner
2.1 Introduction
2.2 Lewis Definitions of Valence and the Chemical Bond
2.2.1 The "Rule of Two"
2.2.2 Electronic Theory of Acids and Bases
2.3 Extensions, Expansions of, and Objections to the Lewis Definitions
2.4 Interpretation of the Lewis Definitions in the Idiom of Molecular Orbital Theory and Quantum Mechanics
2.4.1 The Mulliken Definition
2.4.2 The Lewis–Mulliken–Jensen Definition
2.5 Defining Lewis Base Catalysis
2.5.1 Why “Lewis Base Catalysis” and Not “Nucleophilic Catalysis”
2.5.2 Lewis Base Catalysis or Ligand-Accelerated Catalysis?
2.5.3 Classification of Interactions Involved in Lewis Base Catalysis
2.5.3.1 Catalysis by Nucleophilic Addition: n → π* Interactions
2.5.4 Catalysis by Polarization: n → σ* and n → n* Interactions
2.6 Theoretical Analysis of the Geometrical and Electronic Consequences of Lewis Acid–Lewis Base Interactions
2.6.1 Valence Bond Analysis
2.6.2 Perturbation Molecular Orbital Theory Analysis
2.6.3 Gutmann Analysis
2.6.4 Hypervalent Bonding Analysis
2.6.5 Natural Bond Orbital (NBO) Analysis
2.7 Summary
References

3 Thermodynamic Treatments of Lewis Basicity
Jean-François Gal
3.1 Introduction
3.2 Basic Thermodynamics for the Study of Lewis Acid–Base Interactions
3.3 Scales of Lewis Affinity and Basicity
3.3.1 Reference Lewis Acids: Experimental Considerations
3.3.2 Enthalpy (Affinity) versus Gibbs Energy (Basicity) as a Measure of Lewis Acid–Base Interactions
3.4 Lewis Acidity and Lewis Basicity: Thermodynamic Scales 62
3.4.1 Solvents and Simple Functionalities 62
3.4.2 Methyl Cation Affinities 68
3.4.3 Lewis Base with Binding Sites Containing Heavier Pnictogen and Chalcogen Elements 72
3.5 Quantum Chemical Tools 74
3.6 Conclusion and Overview 75
3.7 Summary 76
List of Abbreviations 77
Acknowledgment 78
References 78

4 Quantitative Treatments of Nucleophilicity and Carbon Lewis Basicity 85
Sami Lakhdar
4.1 Introduction 85
4.2 Nucleophilicity 85
4.2.1 The Swain–Scott and Edwards Approaches 85
4.2.2 The Ritchie Equation 87
4.2.3 The Mayr Equation 89
4.3 Lewis Basicity 91
4.4 Nucleofugality 93
4.5 Selected Applications 95
4.5.1 Pyridines and Derivatives 95
4.5.2 Tertiary Amines 99
4.5.3 Isothiourea Derivatives 101
4.5.4 Phosphines and Phosphites 102
4.5.5 N-Heterocyclic Carbenes 104
4.5.6 Chiral Enamines 107
4.6 Conclusion 113
4.7 Summary 113
List of Abbreviations 113
Acknowledgments 114
References 114

Section II Mechanism and Lewis Base Catalysis: Nucleophilicity Is Only Part of the Story 119

5 Anhydride Activation by 4-Dialkylaminopyridines and Analogs (n → π*) 121
Raman Tandon and Hendrik Zipse
5.1 Historical Background 121
5.2 Mechanistic Considerations 121
5.3 Catalyst Structure and Variation 124
5.4 The Influence of Reaction Conditions 130
5.5 The Influence of Acyl Donors 132
5.6 The Influence of Substrate Structure 136
6 Mechanistic Understanding of Proline Analogs and Related Protic Lewis Bases ($n \rightarrow \pi^*$) 145

Alan Armstrong and Paul Dingwall

6.1 Proline Catalysis: Overview 145
6.1.1 The Limitations of Proline as a Catalyst 146
6.2 Mechanism of the Proline-Catalyzed Aldol Reaction 147
6.2.1 The Hajos–Parrish–Eder–Sauer–Wiechert (HPESW) Reaction 148
6.2.2 The Houk–List Model 150
6.2.2.1 A General Catalytic Cycle 150
6.2.2.2 The Role of Enamine Intermediates 152
6.2.2.3 Rationalizing the Origins of Stereoselectivity 153
6.2.2.4 Advances in Computational Chemistry 156
6.2.3 An Alternative to the Houk–List Model: The Seebach–Eschenmoser Model 158
6.2.4 Water as an Additive 159
6.2.4.1 Effect of Other Additives 161
6.3 Mechanism of the Proline-Catalyzed α-Amination and α-Aminooxylolation Reactions 161
6.3.1 Protic Additives 161
6.3.2 Basic Additives and Prolinate Salts 166
6.4 The Proline-Mediated Conjugate Addition Reaction 170
6.4.1 Peptidic Proline Analog 174
6.5 Modified Proline Derivatives 175
6.5.1 Proline Tetrazole 176
6.5.2 The Houk–List Model and Proline Analog 179
6.5.2.1 Cyclopropane-Fused Proline 179
6.5.2.2 β-Proline Analog 180
6.5.2.3 Constrained Bicycle Proline Analog 182
6.5.2.4 Pyrrolidine Ring Conformation and $\text{NCH}^\delta+ \cdots \text{O}^\delta-$ Interactions 182
6.5.2.5 Mannich Reaction: Designed Anti-Selective Catalyst 182
6.5.3 Proline Analog and Additives 183
6.5.3.1 α-Methyl Proline and Triethylamine in the α-Alkylation Reaction 183
6.5.3.2 (2S,5S)-Pyrrolidine-2,5-Dicarboxylic Acid and Triethylamine 185
6.6 Concluding Remarks 186
6.6.1 List of Abbreviations 187
6.6.2 References 187

7 Mechanistic Options for the Morita–Baylis–Hillman Reaction ($n \rightarrow \pi^*$) 191

Marilia S. Santos, José Tiago M. Correia, Ana Paula L. Batista, Manoel T. Rodrigues Jr., Ataulpa A. C. Braga, Marcos N. Eberlin, and Fernando Coelho

7.1 The Morita–Baylis–Hillman Reaction: An Overview 191
7.2 Kinetic Studies Applied to aza-Morita–Baylis–Hillman Reaction 195
7.2.1 Early Studies of Isaacs and Hill 195
7.2.2 Bode and Kaye’s Kinetic Investigations 197
7.2.3 McQuade Kinetic Investigations: Proposal of a More Complex MBH Mechanism in Aprotic Solvents 198
7.2.4 Aggarwal Kinetic Studies: Proposal of an Autocatalytic Mechanism 201
7.2.5 Kinetic Studies Related to aza-Morita-Baylis-Hillman Reaction 203
7.3 Theoretical Calculations Applied to MBH Reaction 208
7.3.1 Theoretical Methodologies 208
7.3.2 MBH Reactions 210
7.3.3 aza-MBH Reactions 212
7.3.4 Cocatalysts 215
7.3.4.1 Thiourea 215
7.3.4.2 Proline 216
7.3.5 Summary 217
7.4 Mass Spectrometry Aid the Understanding of the Morita–Baylis–Hillman Reaction 217
7.4.1 Early Mass Spectrometry Studies of the MBH Reaction 217
7.4.2 Dualistic Nature of the Mechanism of the MBH Reaction 218
7.4.3 Cocatalyst Effect in the MBH Reaction 219
7.4.4 aza-MBH – Mechanistic Investigations 223
7.5 Classical and Nonclassical Methods for Mechanistic Studies Associated with the Morita–Baylis–Hillman Reaction: Which Is the Correct Pathway of This Reaction? 226
Acknowledgments 228
List of Abbreviations 228
References 229

8 Mechanism of C—Si Bond Cleavage Using Lewis Bases (n → σ*) 233

Hans J. Reich
8.1 Introduction 233
8.2 Mechanistic Issues 235
8.2.1 Fluoride Initiation 236
8.2.2 Chain-Carrying Species? 237
8.2.3 Siliconate Intermediates? 238
8.2.4 Hypervalent Silicon 240
8.2.5 Siliconates as Lewis Acids 244
8.2.6 Reactivity of Siliconates and Carbanions 245
8.3 Alkylation 247
8.3.1 Cleavage of Alkylsilanes Bearing S and Si Groups 248
8.3.2 Cleavage of Alkylsilanes Bearing Halogens 250
8.3.3 Trifluoromethylation 251
8.4 Benzylolation 253
8.5 Allylation 255
8.6 Allenylation/Propargylation 260
8.7 Alkynylation 261
8.8 Arylation 262
8.9 Vinylolation 263
8.10 Cyanation 264
8.10.1 Hydrogen Cyanide Reactions 265
8.10.2 Cyanosiliconates 265
9 Bifunctional Lewis Base Catalysis with Dual Activation of $X_3Si-\text{Nu}$ and $C=O \ (n \rightarrow \sigma^*)$
"Jiping Fu, Shinji Fujimori, and Scott E. Denmark"
9.1 Addition of Allyltrichlorosilanes to Aldehydes 281
9.1.1 Introduction 281
9.1.2 Lewis Base-Promoted Allylation Reactions 282
9.1.3 Chiral Phosphoramide-Catalyzed Allylation Reactions 283
9.1.4 Mechanistic Investigations 283
9.1.5 Design and Optimization of Bisphosphoramide Catalysts 286
9.1.6 Synthetic Applications 292
9.2 Aldol Additions of Trichlorosilyl Enol Ethers Derived from Ketones, Aldehydes, and Esters 293
9.2.1 Background 293
9.2.2 Mechanistic Investigations 294
9.2.3 Substrate Scope 297
9.2.3.1 Trichlorosilyl Ketene Acetals 297
9.2.3.2 Trichlorosilyl Enol Ethers Derived from Aldehydes 301
9.2.3.3 Aldol Addition of Methyl Ketone-Derived Enol Ethers 306
9.2.3.4 Aldol Addition of Cyclic Enol Ethers, Acyclic Ethyl Ketone-Derived Enol Ethers 313
9.2.3.5 Aldol Addition of Enol Ethers Derived from Chiral Methyl Ketones 321
9.2.3.6 Aldol Additions of Enol Ethers Derived from Chiral Ethyl Ketones 326
9.2.4 Recent Developments 333
9.2.5 Summary 335
9.2.5.1 List of Abbreviations 335
9.2.5.2 References 336

10 Bifunctional Lewis Base Catalysis with Dual Activation of R-M and $C=O \ (n \rightarrow \sigma^*)$ 339
"Manabu Hatano and Kazuaki Ishihara"
10.1 Introduction 339
10.2 Activation of C-Zn and Related C-Mg by a Simple Lewis Base 340
10.2.1 Structures of R_2Zn and R_2Mg 340
10.2.2 Simple Lewis Base Binding to R_2Zn and R_2Mg 341
10.3 Lewis Base-Activated C-Zn + $C=O$ Reactions 342
10.3.1 Stoichiometric Activation of RLi, RMgX, and R_2Zn with Chiral Ligands 342
10.3.2 Chiral Amino Alcohol-Catalyzed, Enantioselective Diethylzinc Addition 343
10.3.3 Noyori’s Chiral Amino Alcohol, (−)-DAIB 344
10.4 Role of Dimeric Organozinc Species 345
10.4.1 Origin of Catalyst Efficiency 345
10.4.2 Amplification of Chirality 346
10.4.3 Reaction Pathway and Transition States 348
10.5 Scope of Carbonyl Substrates in Catalytic Asymmetric Organozinc Addition Reaction

10.5.1 Organozinc Reagents and Titanium Isopropoxide 350

10.5.2 Advances in Catalytic, Enantioselective Organozinc Addition to Aldehydes 353

10.5.3 Advances in Catalytic, Enantioselective Organozinc Addition to Ketones 358

10.5.4 Advances in Catalytic, Enantioselective Addition of Grignard Reagents 367

10.6 Anionic Lewis Base Activation in Mg(II) and Zn(II) Ate Complexes 372

10.6.1 Stoichiometric Alkyl Addition Reaction to Ketones with Mg(II) and Zn(II) Ate Complexes 372

10.6.2 Catalytic Alkyl Addition Reaction to Ketones with Zn(II) Ate Complexes 375

10.7 Summary 382

List of Abbreviations 383

References 383

11 The Corey–Bakshi–Shibata Reduction: Mechanistic and Synthetic Considerations – Bifunctional Lewis Base Catalysis with Dual Activation 387

Christopher J. Helal and Matthew P. Meyer

11.1 Introduction 387

11.2 The Catalytic Cycle 389

11.2.1 The Active Reductant 389

11.2.2 Catalyst Regeneration 390

11.2.3 Modes of Catalysis 391

11.3 Mechanism 393

11.3.1 Selectivity Studies 395

11.3.1.1 Temperature Dependence of Enantioselectivity 395

11.3.1.2 Solvent Effects upon Selectivity 396

11.3.1.3 Stoichiometry of Catalyst–Reductant Complex versus Substrate 397

11.3.2 Isotope Effect Studies 398

11.3.2.1 Carbon-13 Isotope Effects 398

11.3.2.2 Deuterium Isotope Effects 402

11.3.3 Transition Structures 409

11.3.3.1 Electrostatic Considerations 410

11.3.3.2 Localization of Steric Repulsion 411

11.3.3.3 A Conformationally Flexible Catalyst 415

11.4 Applications of the CBS Reduction in Organic Synthesis 416

11.4.1 Chiral Synthon Preparation 417

11.4.1.1 Oxygen-Containing Ketones 417

11.4.1.2 Sulfur-Containing Ketones 419

11.4.1.3 Nitrogen-Containing Ketones 421

11.4.1.4 Allenyl Ketones 421

11.4.1.5 Trichloromethyl Ketones 422

11.4.1.6 Organometallic Ketones 424

11.4.2 Desymmetrization of meso-Dicarbonyl Substrates 426

11.4.2.1 Imidazolone Desymmetrization 426

11.4.2.2 Imide Desymmetrization: Biotin Synthesis 428

11.4.2.3 meso-1,4-Cyclohexyl-Dione Desymmetrization 429
11.4.2.4 Estrone Methyl Ether Synthesis 429
11.4.3 Resolution of Racemic Carbonyl Substrates 432
11.4.3.1 Biaryl Systems 433
11.4.3.2 Oxazolidinones 434
11.4.3.3 Nucleoside Analogs 436
11.4.4 Dicarbonyl Reductions 437
11.4.4.1 Cyclic 1,3-Diketones 438
11.4.4.2 Spiro-1,3-Diketones 439
11.4.4.3 1,4-Diketones 440
11.4.5 Bioactive Compound Synthesis 441
11.4.5.1 Heteroaryl Alkyl Ketones 441
11.4.5.2 Heteroaryl Aryl Ketones 444
11.4.5.3 Piperidin-4-ene-3-one 445
11.4.5.4 Silyl Ketones 446
11.4.5.5 Natural Product Synthesis 447
11.4.6 Large-Scale Synthesis 450
11.4.7 Summary 452
 References 453

Volume 2

Section III Applications: Lewis Base Catalysis Involving an \(n \to \pi^* \) Activation Step 457

12 Chiral Lewis Base Activation of Acyl and Related Donors in Enantioselective Transformations (\(n \to \pi^* \)) 459
 James I. Murray, Zsofia Heckenast, and Alan C. Spivey

13 Catalytic Generation of Ammonium Enolates and Related Tertiary Amine-Derived Intermediates: Applications, Mechanism, and Stereochemical Models (\(n \to \pi^* \)) 527
 Khoi N. Van, Louis C. Morrill, Andrew D. Smith, and Daniel Romo

14 Morita–Baylis–Hillman, Vinylogous Morita–Baylis–Hillman, and Rauhut–Currier Reactions 655
 Allison M. Wensley, Nolan T. McDougal, and Scott E. Schaus

15 Beyond the Morita–Baylis–Hilman Reaction (\(n \to \pi^* \)) 715
 Yi Chiao Fan and Ohyun Kwon

16 Iminium Catalysis (\(n \to \pi^* \)) 805
 Aurélie Claraz, Juha H. Siltonen, and Petri M. Pihko

17 Enamine-Mediated Catalysis (\(n \to \pi^* \)) 857
 John J. Murphy, Mattia Silvi, and Paolo Melchiorre
Volume 3

Section IVa Applications: Enhanced Nucleophilicity by Lewis Base Activation
\((n \rightarrow \sigma^*, n \rightarrow n^*)\) 903

18 Si–C–X and Si–C–EWG as Carbanion Equivalents under Lewis Base Activation \((n \rightarrow \sigma^*)\) 905
Ping Fang, Chang-Hua Ding, and Xue-Long Hou

19 Activation of B–B and B–Si Bonds and Synthesis of Organoboron and Organosilicon Compounds through Lewis Base-Catalyzed Transformations \((n \rightarrow n^*)\) 967
Amir H. Hoveyda, Hao Wu, Suttipol Radomkit, Jeannette M. Garcia, Fredrik Haeffner, and Kang-sang Lee

Section IVb Applications: Enhanced Electrophilicity and Dual Activation by Lewis Base Catalysis \((n \rightarrow \sigma^*)\) 1011

20 Lewis Base-Catalyzed Reactions of SiX\(_3\)-Based Reagents with C=O, C=O \((n \rightarrow \sigma^*)\) 1013
Andrei V. Malkov and Pavel Kočovský

21 Lewis Base-Catalyzed, Lewis Acid-Mediated Reactions \((n \rightarrow \sigma^*)\) 1039
Sergio Rossi and Scott E. Denmark

22 Lewis Bases as Catalysts in the Reduction of Imines and Ketones with Silanes \((n \rightarrow \sigma^*)\) 1077
Pavel Kočovský and Andrei V. Malkov

23 Reactions of Epoxides \((n \rightarrow \sigma^*)\) 1113
Tyler W. Wilson and Scott E. Denmark

Section V Lewis Base-Catalyzed Generation of Electrophilic Intermediates 1153

24 Lewis Base Catalysis: A Platform for Enantioselective Addition to Alkenes Using Group 16 and 17 Lewis Acids \((n \rightarrow \sigma^*)\) 1155
Dipannita Kalyani, David J.-P. Kornflikt, Matthew T. Burk, and Scott E. Denmark

Section VI Bifunctional (and Multifunctional) Catalysis 1213

25 Bifunctional and Synergistic Catalysis: Lewis Acid Catalysis and Lewis Base-Assisted Bond Polarization \((n \rightarrow \sigma^*)\) 1215
Won-jin Chung and Scott E. Denmark

26 Bifunctional Catalysis with Lewis Base and X-H Sites That Facilitate Proton Transfer or Hydrogen Bonding \((n \rightarrow \pi^*)\) 1259
Curren T. Mbofana and Scott J. Miller
Section VII Carbenes: Lewis Base Catalysis Triggers Multiple Activation Pathways 1289

27 Catalysis with Stable Carbenes (n → π*) 1291
 Darrin M. Flanigan, Nicholas A. White, Kevin M. Oberg, and Tomislav Rovis

Summation 1351

Index 1355