Index

a
action functional 244
activated complex 41
activation energy 41
activator–inhibitor model
– linear stability analysis 140, 141
actuarial aging rate 315
adaptation and exploration strategies 229
– fold-change detection 230
– metabolic shifts and anticipation 233
– sensing and random switching 231
– shannon information 232
– signaling pathways, information transmission in 230
– value of information 232
adaptation motif 157, 158
Advanced Search 451
affine transformations, of probability density 395
agarose gel electrophoresis of DNA restriction fragments 359
agent-based models 17, 133
agent-based systems 63
aging process 11, 314
– actuarial aging rate 315
– defined 314
– delay differential equations 323
– environmental risk 315
– evolution of 316
– intrinsic vulnerability 315
– mechanistic theories 315
– graphical representation 315
– stochastic simulations 318
aging rate 315
alcohol dehydrogenase 452
algebraic equations 30
algebraic differential equation system 30
allosteric feedback 220
allosteric regulation 49
AmiGO 449
amino acids 27, 76, 289, 343, 344, 375, 450
anaphase-promoting complex (APC) 309
animal cell 347
ANOVA test 17, 402, 403
antagonistic pleiotropy theory 317
APC. see anaphase-promoting complex (APC)
archetypes 246
artificial selection 262
artificial siRNAs 371
autonomous agents 17
b
backup genes 219
backup pathways 219
BACs. see bacterial artificial chromosomes (BACs)
bacterial artificial chromosomes (BACs) 360
bacterial operons 160
bacterial promoter sequences 146
bacteriophages 358
balance equations 24, 25
Bayesian conditioning 94
Bayesian estimation 93
Bayesian model selection 103, 104
Bayesian networks 93
– for gene expression 145
Bayesian parameter estimation 92
Bayesian statistics 88
Bernoulli experiments 395
bifurcation analysis 210
binding constants 46, 48
binding of ligands to proteins 46
Binomial distribution 394, 395
biochemical models 87
– simplification of 105
biochemical reaction systems 40, 41, 127
– chemical master equation 128, 129
– deterministic kinetic mode 128
– networks 4
– structure of 146
– Poisson distribution, with average value and variance 128
biological environments 23
biological function 165
biological hypotheses 4
biological membranes
– structure and function of 347, 348
biological modules 160
biological molecules 334
– forces important in 336–338
– major classes of 338
biological networks 145, 146
biological robustness properties 218
biological systems 3
biological thermodynamics 417
biology 333
biomarkers 9
BioModels Database 81
− annotations in systems biology models in 81
BioNetGen language (BNGL) 459
BioNumbers 76, 445
BioPAX 72, 74, 78
biophysics 15
blotting techniques 362
Boltzmann distribution 418, 421
Boltzmann picture 418
Boltzmann’s gas constant 49
Boolean models 63
− of gene regulation 6
Boolean networks 16, 122
− advanced types of 123, 124
− basic principles of 122
− dynamics of, characterization 122
− model 121
Boolean rules (truth table) for systems
− with one input 122
− with two inputs 122
Boolean transitions 122
bootstrapping 88, 91
− cross-validation 91, 92
− used for estimating a mean value 91
Box, George 5
box plot 397
Brownian motion, as a random process 407
budding yeast cell cycle 311
− schematic representation 312
− self-oscillating network 313

Caenorhabditis elegans 10, 451
calcium homeostasis 319
canalization 218
canonical ensemble 418, 421
carbohydrates 339, 340
Cartesian products 395
β−catenin 302
causal interactions 115, 116
13C-based metabolic flux analysis 458
CDKs. see cyclin-dependent kinases (CDKs)
CDS. see coding sequences (CDS)
cell cycle 307
− budding yeast models 311
− mitotic oscillator, minimal cascade model of 310
− steps 309
CellDesigner 66, 71, 472
CellML 78
cell populations, random switching 231
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
cellular
− composition 333
− differentiation 19
− machinery 3
− organization 3
− pathways 9
− reprogramming with viral vectors 21
− transcription networks 8
central limit theorem 396
centrifugation 364
Chapman−Kolmogorov equation 407
ChEBI database 79
chemical bonds 336
chemical equilibrium states 50
chemical Langevin equation 130, 131
chemical noise 130, 131
chemical potentials 32, 422
− difference 31
chemical reaction systems 422
− temperature and pressure as free variables 422
chemotaxis 234
− model 223
ChiP. see chromatin immunoprecipitation (ChiP)
ChiP-on-Chip method 372, 373
− limitation 373
ChiP-PET technique 372
chromatin immunoprecipitation (ChiP) 153, 372
CKI. see cyclin-dependent kinase inhibitors (CKI)
classification methods 438, 439
− boosting, algorithms based on 441
− clustering-based classification 441
− k-nearest neighbor method 440
− practical problems underlying classification of patients to 439
− support vector machines (SVMs) 439, 440
− unsupervised/supervised methods 439
cloning vectors 359
closed-loop linear control system 417
clustered regular interspaced palindromic repeats (CRISPR) 371
clustering algorithms 430
clustering coefficient 149
cluster validation 435
− average compactness- (isolation-) values 435
− external validation measures 435
− internal validation measures 435
− Silhouette index 435
− visualization of cluster quality 436
coding sequences (CDS) 448
coefficient of relatedness 277
coefficient of variation 397
coefficients of control analysis 51
column chromatography 364, 365
COMBINE initiative 78
combining rate laws, into models 113
compartment models 30, 135, 136
competitive exclusion principle 276
competitive inhibition 45
complementary DNA (cDNA) 361, 446
complex ODE systems 64
compound/drug databases 452
– ChEBI 453
– Guide to PHARMACOLOGY 453
comprehensive R archive network (CRAN) 468
computational accuracy 64
computational modeling 4, 5, 15, 16, 78
– advantages of 5, 6
– basic notions for 6
computational systems biology 63
computer-assisted modeling. see computational modeling
computer chips 164
computer simulations 4
composition control coefficient 52
composition response coefficient 52
conditional probability 392
connectivity 149, 150
ConsensusPathDB 76, 467
conservation relations 29, 30
constant organization 264
constants 6
collective transcription 127
constraint-based flux balance analysis 32
constraint-based flux optimization 23, 30
constraint-based methods 32
– assumption of optimality 33
continuous model 7
continuous random processes 411
– Fokker–Planck equation 411, 412
– Langevin equations 411
continuous time axis 16
continuous values 16
downstream coefficients 51–53
division coefficients 49
division rule, of normal distribution 395
dynamic behavior 276
– group selection 277
– kin selection 277
– reciprocity 277
– spatial structure role 277
dynamical systems 111
correlation analysis 9
correlation analysis of normal distribution 395
correlation of samples 398
correlation plots and performance of correlation measures 399
coupled systems 110
– emergent behavior in 114, 115
– modeling of 111
–– coupling of submodels 111, 112
–– hierarchical regulation analysis 112
–– modeling the system boundary 111
–– supply–demand analysis 112
covariance matrix 394
CRAN. see comprehensive R archive network (CRAN)
CRISPR. see clustered regular interspaced palindromic repeats (CRISPR)
CRISPR/Cas technique 371
CyberCell Database 10
cyclin-dependent kinase inhibitors (CKI) 309
cyclin-dependent kinases (CDKs) 309
cytochrome-c oxidase (COX) 319
cytoplasm 349
d
DAG. see directed acyclic graph (DAG)
1D and 2D protein gels 361, 362
databases 445
– compound/drug (see compound/drug databases)
– enzyme reaction kinetics (see enzyme reaction kinetics databases)
– general-purpose data resources 445
–– BioNumbers 446
–– PathGuide 445, 446
– microarray/sequencing (see microarray/sequencing databases)
– model collections
–– BioModels 452
–– JWS Online 452
– National Center for Biotechnology Information 446
– nucleotide sequence databases 446
–– EMBL Nucleotide Database 447
–– Ensembl 447
–– Entrez 447
–– European Nucleotide Archive (ENA) 447
–– GenBank/RefSeq/UniGene 446
– ontology (see ontology databases)
– pathway (see Pathway databases)
– protein (see protein databases)
– of protein modifications (RESID) 447
– transcription factor (see transcription factor databases)
data formats 63, 78, 457
data for thermodynamic calculations 424
data integration 8, 9, 72, 461
data normalization 9
data resources 75
– general-purpose 445, 446
defective mitochondria 316
degree of heteroplasmy 319
delay differential equations 323
densities 393
– estimation 397
density function 202, 393, 395, 398, 415, 427
deoxynucleotide triphosphates (dNTPs) 307
deoxyribonucleic acid (DNA) 345
dependence scheme
– for model parameters 95
– for rate constants and metabolic state 95
dephosphorylation 292
descriptive statistics 396
deterministic models 7, 133
deterministic replicator equation 274
DICER pathway for maturation 372
Dictyostelium discoideum 138
differential equation
– system 30
differential equations 63
differential evolution (DE) 462
diffusion equation, solutions of 136, 137
– cosine profile 137
– Gaussian profile 137
– stationary profile 137
DIGE (difference gel electrophoresis) 362
dimeric protein 47
direct binding modular rate law 50
directed acyclic graph (DAG) 449
direct fitness advantage 229
direct method 65
discrete models 121, 122
discrete random walk 406
discrete time steps 16
discrete value 16
disease-relevant data 9
disposable soma theory 317
distribution functions 393
DNA chips 367
DNA Database of Japan (DDBJ) 447
DNA libraries 359, 360, 361
DNA ligase 359
DNA methylation 19
DNA microarrays 357
DNA microinjection 370
DNA polymerases 308, 309
DNA–protein interactions 16
DNA replication 308
DNA sequences 3, 4
DNA synthesis 315
dNTPs. see deoxynucleotide triphosphates (dNTPs)
double-strand break (DSB) 370
Drosophila melanogaster 138, 372
3D structure of a protein 5
dynamical behavior 15
dynamical system 6
dynamic behavior of feed-forward loops (FFLs) 159
dynamic behavior of network 4
dynamic equilibrium 15
dynamic FBA 34
dynamic fluctuations 132, 133
dynamic model of feed-forward loops 158
dynamic networks 16
dynamic systems 161, 162, 386
– describing with ordinary differential equation 386
– notations 386
– global stability of steady states 390
– limit cycles 390, 391
– linearization of autonomous systems 388
– solution of linear ODE systems 388
– stability of steady states 388, 389
Eadie–Hofstee graphical representation 44
EBI Ontology Lookup Service (OLS) 79
ECTree browser 451
elasticities 48, 49, 112, 115, 209, 213, 463
elasticity coefficients 49, 51, 52
elasticity sampling 213
– under thermodynamic constraints 213
electrochemical potentials 423
electrophoresis 358
elementary flux modes 27, 29
embryonic development, robust pattern formation in 138
– bicoid gradient in fly embryo 138, 139
embryonic stem cells (ES cells) 370
empirical distribution function 398
endergonic reactions 41
endoplasmic reticulum 350
energy balance analysis 32
Ensembl ContigView 447
Ensembl Genome Browser 12
enthalpy 32, 41
entropy 189, 230, 247, 419, 420, 422, 426
environmental risk 315
enzymatic rate constants
– from the Brenda database, distribution of 94
– distributions of 94
enzymatic reactions 8
enzyme activity by effectors, regulation of 44
enzyme-catalyzed reactions 4, 145, 422
enzyme investments 250
enzyme kinetics 43
– parameters 94
– standard 43
enzyme mechanisms 42
enzyme reaction kinetics databases
– BRENDA 451, 452
– SABIO-RK 452
enzyme–substrate complex 42, 45
epigenetic regulation 20
epistasis 163
– epistatic interactions 164
The Epsilon Group, (TEG) 468
equilibrium constant 421, 423
– and energies 421
equilibrium thermodynamics, in reaction systems 42
Erdős–Rényi random graphs 147, 148
error distribution 90
ESS. see evolution, stable strategies (ESS)
estimators 89
ESTs. see expressed sequence tags (ESTs)
eukaryotes 335
eukaryotic cells 350
Euler–Lotka equation 317
European Bioinformatics Institute (EMBL-EBI) 446
European Nucleotide Archive (ENA) 447
evaluating system of ODEs 64
evolution 241, 261
– of analogous traits 164
– biological macromolecules, selection equations for 263
– control of 243
– cost 247
– effort 248
– evolution strategies (ES) 462
– hypercycle model 267
– of modularity 164
– neutral theory of molecular evolution 270
– optimization 263
– Quasispecies model 265
– as search strategy 242
– spin glass model 269
– stable strategies (ESS) 276

evolutionary game theory 271
– cooperative behavior 276
– evolutionarily stable strategies 275
– game theory 273
– metabolic yield and efficiency, compromises between 278
– population dynamics, replicator equation for 274
– rock–scissors–paper game, dynamical behavior 276
– social interactions 272
evolvability 229

experimental techniques 357
exploration strategies 234
– chemotaxis 234
– infotaxis 235
– stress-induced mutagenesis 234
exponential distribution 394
expressed sequence tags (ESTs) 446
expression of genes 351
eXtensible Markup Language 72
external metabolites 24
extreme pathways 27

f
FACS. see fluorescence-activated cell sorting (FACS)
failure tolerance 218
false discovery rate (FDR) 429
fatty acids 341
FBA. see flux balance analysis (FBA)
FDR. see false discovery rate (FDR)
feedback cycles 304
feedback regulation 157
feed-forward loop (FFL) 150, 158
– functions of 159
FFL. see feed-forward loop (FFL)
fixed average energy 421
fixed points 7
fluorescence-activated cell sorting (FACS) 209
flux balance analysis (FBA) 6, 8, 23, 29, 30
– extensions of 33
– minimization of metabolic adjustments 33
– geometric interpretation of 31
flux cone 27
flux control 425
– coefficient 52
flux distributions 163
flux–force relation, consequences of 425
flux modes 27, 28, 162
flux optimization 250
– paradigm 32
– applications and tests of 32
flux ratio 104, 424, 425
flux response coefficient 52
flux sampling 212
flux variability analysis 34
FlyBase 449
force-dependent modular rate law 50
formats 72. see also data formats
fourth-order Runge–Kutta algorithms 64
FOXN1 gene 12
free energy 32, 41, 189, 419, 422
free energy differences
– biochemical reactions 42
FreeFem++ 467
frequency response function 414
functional groups, in biological molecules 338
fundamental cellular structures 334

g
GA. see genetic algorithms (GA)
game theory 273
– hawk–dove game 273
– Nash equilibrium 274
– payoff matrix 273
– prisoner’s dilemma 273
– repeated games 274
Gauss algorithm 26, 29
Gaussian distribution 95, 398
Gaussian elimination algorithm 383
Gaussian probability density 90
Gauss–Markov random processes 415
GEF. see guanine nucleotide exchange factor (GEF)
gel electrophoresis 358
gene cascades, temporal fluctuations 202
– linear model with two genes 202
– time correlations in protein levels, measurement 203
gen-enrichment scores 437
gen exchange and reuse 162
gene expression 121, 171
– dynamic models of 180
– gene expression and regulation, basic model of 180
– natural and synthetic gene regulatory networks 183
– with Stochastic equations 186
– in eukaryotic cells 352
– fluctuations 196
– gene cascades, temporal fluctuations 202
– intrinsic and extrinsic variability 200
– stochastic model of transcription and translation 197
– functions 187
– from equilibrium binding 188
– inferring transcription factor activities 192
lac Operon in E. coli 187
of lac promoter 191
mRNA and protein levels, correspondences between 196
network component analysis 194
promoter occupancy, thermodynamic models of 189
mechanisms 171
general promoter structure 173
microRNAs, post transcriptional regulation through 176
promoter elements, prediction and analysis of 174
omnibus (GEO) 447
regulation 171
regulation of 355
transcription factor-initiated 171
gene functions 160
gene loss 219
gene network coordinating 160
gene ontology (GO) 9, 79, 448
Gene Ontology Consortium 436
general-purpose databases 75
gene regulation 15, 33, 93, 183, 187, 190, 194, 419, 469
genes code 3, 12, 35, 183
genetic algorithms (GA) 462
genetically modified mouse, serve as a model 5
genetic network fluctuations 199
genetics 334
code 353
programming 263
sequence database (GenBank) 446
tug-of-war (gTOW) method 252
genome editing 370
genome-scale networks 23
genome sizes of organisms 335
GEO. see gene expression, omnibus (GEO)
geometric mean 397
genealogical graphs 148
GFP gene 375
Gibbs free energies 31, 41, 422, 423, 424
change of 41
Gibbs picture 418
global model reduction 108–110
linearization of biochemical models 108, 109
linear relaxation modes 109
6-phosphate (G6P) 18
glycogen synthase kinase 3 (GSK3) 301
Goldbeter’s minimal model 312
golgi complex 350
Gompertz–Makeham equation 314, 317
good models
defined 99
possible requirements for 99
GPCR. see G protein-coupled receptors (GPCR)
G protein-coupled receptors (GPCR) 296
G protein cycles 295
Gramian matrices 415, 416
graphical user interface (GUI) 464
Green fluorescent protein 374, 375
group selection 277
growth and reproduction 333
GSK3. see glycogen synthase kinase 3 (GSK3)
gTOW. see genetic tug-of-war (gTOW) method
GTPase activity 297
guanine nucleotide exchange factor (GEF) 297
GUI. see graphical user interface (GUI)
h
Haldane relationships 44, 95, 423
halobacteria 335
Hamming distance 123, 264
Hanes–Woolf graphical representation 44
Hankel singular values 416
Hay–Dove game 273
Hayflick limit 316
Hessian matrices 254
heterogeneities 357
heterogeneous data sets 72
hierarchical clustering 431–433
parameters in 432
hierarchical methods 430
high osmolarity glycerol (HOG) 297
high-performance liquid chromatography (HPLC). 365
high throughput methods 357, 358
sequencing method 373
high-yield fluxes 278
Hill equation 47
Hill function 20
HOG. see high osmolarity glycerol (HOG)
Holm’s stepwise correction 429
Hox genes 12
Human Genome Project 8
human mortality 314
hybridization techniques 362
identity matrix 29
IEF. see isoelectric focusing (IEF)
implied methods 64
impulse input 414
impulse response function 414
induced pluripotent stem cells (iPS cells) 20
inequality constraints 246
inferred transcription factor 192
information encoded in stoichiometric matrix N 25
infotaxis 235
input-output relations 414
of signaling systems 153
in situ hybridization 364
integral feedback 221
integrated metabolic, and regulatory network 35
intelligent database systems 9
Internet 10
interquartile range 397
intrinsic and extrinsic variability 200
calculation of 200
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>measurement of</td>
<td>200</td>
</tr>
<tr>
<td>intrinsic vulnerability</td>
<td>315</td>
</tr>
<tr>
<td>invariant distribution</td>
<td>410</td>
</tr>
<tr>
<td>inverse problems</td>
<td>91</td>
</tr>
<tr>
<td>isoelectric focusing (IEF)</td>
<td>361</td>
</tr>
<tr>
<td>Java simulations</td>
<td>464</td>
</tr>
<tr>
<td>JDesigner</td>
<td>472</td>
</tr>
<tr>
<td>Jensen’s inequality</td>
<td>394</td>
</tr>
<tr>
<td>JMadonna</td>
<td>459</td>
</tr>
<tr>
<td>joint probability density</td>
<td>395</td>
</tr>
<tr>
<td>JSim’s model</td>
<td>463</td>
</tr>
<tr>
<td>jump processes in continuous time</td>
<td>410</td>
</tr>
<tr>
<td>– deriving master equation</td>
<td>410, 411</td>
</tr>
<tr>
<td>Karhunen–Loève transform</td>
<td>416</td>
</tr>
<tr>
<td>KEGG. see Kyoto encyclopedia of genes and genomes pathway (KEGG)</td>
<td>75, 286, 450</td>
</tr>
<tr>
<td>kernel</td>
<td>26</td>
</tr>
<tr>
<td>– matrix</td>
<td>26</td>
</tr>
<tr>
<td>kinases transmit signals, by phosphorylating</td>
<td>82</td>
</tr>
<tr>
<td>kinetic constants</td>
<td>41, 43, 52, 94</td>
</tr>
<tr>
<td>kinetic modeling</td>
<td>7, 8, 39, 121, 421</td>
</tr>
<tr>
<td>– of enzymatic reactions</td>
<td>39</td>
</tr>
<tr>
<td>kinetic rate equation models</td>
<td>6</td>
</tr>
<tr>
<td>Kinetic Simulation Algorithm Ontology (KiSAO)</td>
<td>78</td>
</tr>
<tr>
<td>kinetics of a simple decay</td>
<td>40</td>
</tr>
<tr>
<td>kin selection</td>
<td>277</td>
</tr>
<tr>
<td>K-means algorithms</td>
<td>434, 435</td>
</tr>
<tr>
<td>Knockout Mouse Project (KOMP)</td>
<td>12</td>
</tr>
<tr>
<td>knockout mutations</td>
<td>23, 123</td>
</tr>
<tr>
<td>Kyoto encyclopedia of genes and genomes pathway (KEGG)</td>
<td>75, 286, 450</td>
</tr>
<tr>
<td>– database</td>
<td>76, 437</td>
</tr>
<tr>
<td>lac Operon, E. coli</td>
<td>187</td>
</tr>
<tr>
<td>lac permease activity</td>
<td>245</td>
</tr>
<tr>
<td>lac promoter</td>
<td>191</td>
</tr>
<tr>
<td>Lagrange multipliers</td>
<td>246</td>
</tr>
<tr>
<td>Lambda</td>
<td>360</td>
</tr>
<tr>
<td>large numbers, strong law</td>
<td>396</td>
</tr>
<tr>
<td>law of mass action</td>
<td>40</td>
</tr>
<tr>
<td>least-squares estimator</td>
<td>403</td>
</tr>
<tr>
<td>least-squares method</td>
<td>89, 403</td>
</tr>
<tr>
<td>Legendre transformation</td>
<td>422</td>
</tr>
<tr>
<td>length and time scales in biology</td>
<td>4</td>
</tr>
<tr>
<td>length scales</td>
<td>3</td>
</tr>
<tr>
<td>libAntimony</td>
<td>458</td>
</tr>
<tr>
<td>ligases</td>
<td>357</td>
</tr>
<tr>
<td>likelihood function</td>
<td>89</td>
</tr>
<tr>
<td>likelihood ratio test</td>
<td></td>
</tr>
<tr>
<td>limit theorems</td>
<td>395</td>
</tr>
<tr>
<td>linear algebra</td>
<td>381</td>
</tr>
<tr>
<td>linear degradation</td>
<td>127</td>
</tr>
<tr>
<td>linear dynamical systems</td>
<td>413</td>
</tr>
<tr>
<td>– control of</td>
<td>412</td>
</tr>
<tr>
<td>linear equations</td>
<td>49, 381–383</td>
</tr>
<tr>
<td>– system</td>
<td>26</td>
</tr>
<tr>
<td>linear filters</td>
<td>414</td>
</tr>
<tr>
<td>linearization</td>
<td>44</td>
</tr>
<tr>
<td>linear models</td>
<td>401, 402</td>
</tr>
<tr>
<td>linear regression</td>
<td>17, 88, 89</td>
</tr>
<tr>
<td>linear systems, systematic solution of</td>
<td>383, 384</td>
</tr>
<tr>
<td>Lineweaver–Burk graphical representation</td>
<td>44</td>
</tr>
<tr>
<td>link matrix</td>
<td>29</td>
</tr>
<tr>
<td>lin-log kinetics</td>
<td>49</td>
</tr>
<tr>
<td>lipids</td>
<td>340</td>
</tr>
<tr>
<td>local sensitivity analysis</td>
<td>210</td>
</tr>
<tr>
<td>log-normal distribution, density function</td>
<td>395</td>
</tr>
<tr>
<td>low-yield fluxes</td>
<td>278</td>
</tr>
<tr>
<td>lysosomes</td>
<td>351</td>
</tr>
<tr>
<td>macromolecules</td>
<td>127</td>
</tr>
<tr>
<td>macroscopic</td>
<td>127</td>
</tr>
<tr>
<td>– behavior</td>
<td>127</td>
</tr>
<tr>
<td>– model</td>
<td>133</td>
</tr>
<tr>
<td>–– kinetic</td>
<td>197</td>
</tr>
<tr>
<td>Manhattan distance</td>
<td>430</td>
</tr>
<tr>
<td>MAP kinase cascades</td>
<td>296</td>
</tr>
<tr>
<td>MAPKs. see mitogen-activated protein kinases (MAPKs)</td>
<td>48, 49</td>
</tr>
<tr>
<td>marginal density</td>
<td>395</td>
</tr>
<tr>
<td>Markov chains</td>
<td>410</td>
</tr>
<tr>
<td>Markov processes</td>
<td>127, 409</td>
</tr>
<tr>
<td>mass action kinetics</td>
<td>48, 49</td>
</tr>
<tr>
<td>mass action law</td>
<td>42</td>
</tr>
<tr>
<td>mass spectrometry (MS)</td>
<td>357, 369, 370</td>
</tr>
<tr>
<td>master quasispecies distribution</td>
<td>266</td>
</tr>
<tr>
<td>master sequence</td>
<td>265</td>
</tr>
<tr>
<td>master species</td>
<td>265</td>
</tr>
<tr>
<td>Mathematica</td>
<td>465</td>
</tr>
<tr>
<td>mathematical description of biological systems</td>
<td>15</td>
</tr>
<tr>
<td>mathematical graphs</td>
<td>147</td>
</tr>
<tr>
<td>mathematical modeling</td>
<td>4, 8</td>
</tr>
<tr>
<td>– of a biological system</td>
<td>16</td>
</tr>
<tr>
<td>mathematical modeling language (MML)</td>
<td>463</td>
</tr>
<tr>
<td>mathematical random processes</td>
<td>406</td>
</tr>
<tr>
<td>mathematical robustness criteria</td>
<td>218</td>
</tr>
<tr>
<td>Matlab</td>
<td>465, 470</td>
</tr>
<tr>
<td>matrices</td>
<td>384</td>
</tr>
<tr>
<td>– basic matrix operations</td>
<td>384, 385</td>
</tr>
<tr>
<td>– basic notions</td>
<td>384</td>
</tr>
<tr>
<td>– dimension and rank</td>
<td>385, 386</td>
</tr>
<tr>
<td>– eigenvalues and eigenvectors of a square matrix</td>
<td>386</td>
</tr>
<tr>
<td>– linear dependency</td>
<td>384</td>
</tr>
<tr>
<td>matrix expressions for control coefficients</td>
<td>55–57</td>
</tr>
<tr>
<td>matrix representation of coefficients</td>
<td>53</td>
</tr>
<tr>
<td>maximal entropy, principle of maximum likelihood</td>
<td>421</td>
</tr>
<tr>
<td>maximum likelihood</td>
<td>89</td>
</tr>
<tr>
<td>– estimation</td>
<td>92</td>
</tr>
<tr>
<td>MCA. see metabolic control analysis (MCA)</td>
<td>218</td>
</tr>
</tbody>
</table>
mean 396
median 396
median absolute deviation 397
message parsing interface (MPI) protocol 469
metabolic capacity 23
metabolic control analysis (MCA) 50, 51, 461
metabolic control theory, theorems of 53
 – connectivity theorems 54, 55
 – summation theorems 54
metabolic efficiency 278
metabolic maps 27
metabolic modeling 19, 48
metabolic networks 23, 24, 146, 150
 – Escherichia coli 146
metabolic or regulatory network model
 – basic elements 23
metabolic pathways 162
 – represented by graphs 150
metabolic shifts, and anticipation 233
 – adaptation, indirect cues based 234
 – metabolic shifts 233
 – transient state, management of 233
metabolic systems 285
 – metabolic modeling, basic elements 286
 – threonine synthesis pathway model 289
 – upper glycolysis, toy model 286
metabolic yield 278
metabolism 163
metabolites 4
metabolite–transcript correlations 9
Metropolis–Hastings algorithm 93
Michaelis constants 43, 50, 94
Michaelis–Menten equation 44
 – linearization 44
 – parameter estimation 44
 – for reversible reactions 44
Michaelis–Menten kinetics 5, 42, 43, 311
 – different approaches for linearization of 44
 – general scheme of inhibition 45
 – types of inhibition for irreversible and reversible 46
Michaelis–Mentenlike rate laws 95
microarray 454
 – experiment 72
microarray/sequencing databases
 – ArrayExpress 454, 455
 – Gene Expression Omnibus 454
microcanonical ensemble 421
microinjection 370
microscopic stochastic model 198
microstate 417
 – ensembles of 418
microtubules 64
minimal cascade model 310
minimal fluxes, principle of 250
minimal information, principle of 211
minimization of metabolic adjustments (MoMA) 33
 – vs. FBA 33
minimum information about a microarray experiment (MIAME) 72, 454
minimum information about a proteomics experiment (MIAPE) 72
minimum information about a simulation experiment (MIASE) 9
minimum information about sequencing experiment (MINSEQE) 454
Minimum Information for Biological and Biomedical Investigations (MIBBI) Consortium 78
minimum information requested in the annotation of biochemical models (MIRIAM) 9
 – MIRIAM Registry 79
missing values 430
mitochondria 350
mitochondrial damage study 318
 – delay differential equations 323
 – stochastic simulations 318
mitochondrial DNA (mtDNA) 375
mitogen-activated protein kinases (MAPKs) 298
 – cascades 82
mitophagy 323
mitotic oscillator 310
mixed inhibition 46
MML. see mathematical modeling language (MML)
model databases 77
 – BioModels 77
 – JWS Online 78
modeling approaches, for biochemical systems 15–17
modeling framework 16
model organisms 9
 – Caenorhabditis elegans 11
 – Drosophila melanogaster 11, 12
 – Escherichia coli 9–11
 – Mus musculus 12
 – Saccharomyces cerevisiae 11
models 5
 – adequateness 5
 – alignment 79
 – assignment 7
 – behavior 7
 – classification 7
 – combination 80–82
 – comparison 78
 – concepts 15
 – merging 83
 – parameterization 49
 – predictions 17, 88, 90, 91, 100, 103, 104, 372
 – purpose 5
 – reduction 104, 416
 – scope 6
 – selection 98
 – semantics 78
 – similarities 79
 – simplification 104
 – statements 6
 – of upper part of glycolysis 29
– validity 82, 83
– model selection, problem of 99
– likelihood and overfitting 100, 101
– methods for model selection 101
– problem of overfitting 101
– cross-validation 101
– selection criteria 101
– statistical tests 101
– tests with artificial data 102
modularity 160–163, 165
– and biological function as conceptual abstractions 165
– on levels of structure, dynamics, regulation, and genetics 161, 162
– on various levels, exemplified by bacterial operons 162
modular rate laws 49
modular response analysis 113, 114
molecular biology 3, 333, 334
– of cell 336
molecular dynamics 417
molecule interactions 145
moment-generating functions 412
Monod model 48
Monod–Wyman–Changeux model 48
Mouse Atlas Project 12
mouse genome database (MGD) 449
mRNA 3
– processing 353
MS. see mass spectrometry (MS)
multiple linear regression 403
multiple testing 428, 429
multivariate Gaussian distribution for logarithmic parameters 95
multivariate statistics 9, 426
mutation accumulation theory 317
mutations 146, 262
– clouds 266
n
NANOG–OCT4–SOX2 network 125
Nash equilibrium 274
National Center for Biotechnology Information (NCBI) 446
natural selection 262
negative autoregulation 157
negative decay rate 42
negative feedback 156, 157
– stabilization of protein levels by 165
negative feedback loops 145
network 8
network-based models 16
network component analysis 194
network describing cell cycle dynamics
– of Saccharomyces cerevisiae 126
network motifs 150, 152
network structures 145, 146, 151
– groups of principles 151
– analogous function and shaping for optimality 151
– common origin or similar growth processes 151
– definition of the network 151
– material constraints 151
– network picture revisited 152
network with nodes 8
neutral evolution 272
neutrality 275
neutral theory, mathematical models 270
next-generation sequencing (NGS)
– data 454
– techniques 366, 367
node distances 149
noncatalyzed reaction 41
noncompetitive inhibition 45
nonequilibrium reactions 424
nonlinear constraints 32
nonnested models 102
normal distribution 394
normalization factor 51
Northern blotting 363
nuclear localization sequence (NLS) 355
nuclear magnetic resonance (NMR) 448
nucleic acids 345
nucleus 349
null hypotheses 151
null space 29
numerical integration 64
numerical ODE solvers 64
numerical optimization 245
numerical parameter optimization 91

O
Octave 470
Oct4, Sox2, and Nanog (OSN) factors 20
ODE. see ordinary differential equations (ODE)
omics research 72
OMIM (Online Mendelian Inheritance in Man) 447
Ontology databases
– gene ontology 449
– Mouse Genome Database (MGD) 449
– Saccharomyces Genome Database (SGD) 449
optimal control 416
optimal enzyme concentrations 255, 257
– catalytic properties of single enzymes, optimization of 255
– enzyme concentrations in a metabolic pathway, optimal distribution of 257
– temporal transcription programs 259
optimality 243
– approaches in metabolic modeling 250
– enzyme fitness functions, measurements of 252
– enzyme levels, optimization of 251
– flux optimization 250
– mathematical concepts 245
– catalytic constants compromises 247
– cost–benefit models 245
– inequality constraints 246
– pareto optimality 246
Index 485

in discrete random walk 410
for rate constants 94
probability spaces 391, 392
probability theory 392
product experiments, and independence 395
product formation 42
product space 395
prokaryotic and eukaryotic cells, comparison 334
prokaryotic archaeabacteria 335
promoter occupancy, thermodynamic models of 189
promoter–operator concept 5
protein chips 357, 367, 368
protein databases
- iHOP 449
- InterPro 448, 449
- PANTHER 448
- Protein Data Bank 448
- UniProt/Swiss-Prot/TrEMBL 448
protein degradation 42
protein information resource (PIR) 448
protein investment, in different cell functions 161
protein–protein interaction networks 146
protein–protein interactions 16, 292
proteins 127, 340
proteins cross-linking 316
protein sorting 355
proteomic technologies 8
PubMed 447
Python modules 471

q
qualitative model 7
quality control 9
quantitative proteomics data 9
quasi-equilibrium 43, 107, 108
quasispecies model 263
quasi-steady-state 43, 107, 108

r
random errors 90
random fluctuations 217, 415
random graphs 147
- with predefined degree sequence 148
random processes describing particle motion 409
random variables 393
Ras activation cycle 297
Ras proteins 295
Ras protooncogenes 297
rate equations 45
- deriving 43–45
RBA. see resource balance analysis (RBA)
reaction affinity 31
reaction–diffusion
- equation 137
- models 121, 136
reaction energetics 425
reaction kinetics 39
reaction–metabolite network 145
reaction networks 25
reaction pathways 30, 41
reaction rate 42, 44
reaction thermodynamics 40
reactome 75
real-world networks
- scale-free degree distributions in 148
receptor–ligand interactions 293
reciprocal altruism 274
reciprocity 277
reduced and conditional distributions 407
reduction, of fast processes 105
- relaxation time and other characteristic time scales 106, 107
- time scale separation 105
reference sequence database (RefSeq) 446
regression 88
regularization 91
regulation edges and their steady-state response 156
regulation networks 23, 152
regulatory FBA 34
repeated games 274
replicator equation 274
resource balance analysis (RBA) 251
response coefficients 53
responsive switching 232
restriction endonucleases 357
restriction enzymes 358
- recognize short stretches of DNA 358
reversible processes 7
ribonucleic acid (RNA) 345
RNA–DNA hybrid 353
RNA interference (RNAi) 11, 371
- mechanism of 372
RNA polymerase 353
RNA primers 308
RNA-Seq (RNA-sequencing) 368
RNA synthesis 352
robustness mechanisms 217
- by backup elements 219
- in biochemical systems 218
- against correlated expression changes 227
- feedback control 219
- limits of 228
- role in evolution 228
- and modeling 228
- scaling laws 224
- by structure 222
- chemotaxis signaling pathway 223
- two-component system 222
- summation laws 227
- temperature compensation 228
- time scaling 227
ROC curve analysis 429, 430
rock–scissors–paper game, dynamical behavior 276
rule-based models 16, 17
Runge–Kutta–Fehlberg method 64

Saccharomyces Genome Database (SGD) 11, 449
sample size 426
SBML files 464
SBML model 74
SBMLsimulator 469
SBML Software Matrix 72
SBOL (Synthetic Biology Open Language) 78
scale-free networks 148, 149
scaling laws 217
– allometric scaling 225
– geometric scaling 224
– power laws 224
– scaling relations, within cells 225
SDS polyacrylamide gel electrophoresis (SDS-PAGE) 361, 362
second law of thermodynamics 32, 419, 420
SED-ML (Simulation Experiment Description Markup Language) 78
selection criteria 102
– Akaike information criterion 102
– Bayesian information criterion 102
– calculated for 103
selection equations 264
selection processes 263
selection threshold 265
self-organization 261
self-organizing maps (SOMs) 433, 434
semantic annotations 79
sensitivity analysis 210
serine phosphorylation 295
SGD. see Saccharomyces Genome Database (SGD)
Shannon entropy 420
sigmoid kinetics 48
signaling cascade 26
signaling molecules 152
signaling networks 23
signaling pathways 291
– crosstalk 306
– dynamic and regulatory features analysis 304
– intra and intercellular communication, function and structure of 292
– receptor–ligand interactions 293
– structural components 295
– G protein cycles 295
– MAP kinase cascades 296
– phosphorelay systems 295
– Ras proteins 295
signaling systems process information 152
signal-to-noise ratio 374
simple linear regression 403
simulation
– results of a VCell model 71
– techniques and tools 63
– tools 65
simultaneous binding modular rate law 49
single-cell experiments 375
single-cell methods 357
single nucleotide polymorphisms (SNPs) 447
single-stranded DNA (ssDNA) 358
small-world networks 149, 150
social interactions 272
sodium dodecylsulfate (SDS) 361
software tools
– Antimony 458
– Berkeley Madonna 459
– BIOCHAM (Biochemical Abstract Machine) 459
– BioNetGen 459
– Biopython 459
– BioTapestry 460
– BioUML 460
– CellDesigner 460
– CellNetAnalyzer 460
– 13C-FLUX2 458
– Copasi (Complex Pathway Simulator) 461
– CPN Tools 461
– Cytoscape 461
– E-Cell 461
– EvA2 (Evolutionary Algorithms framework, revised version 2) 461, 462
– FEniCS Project 462
– Genetic Network Analyzer (GNA) 462
– Jarnac 462, 463
– JDesigner 463
– JSim 463
– KNIME (Konstanz Information Miner) 463
– KNIME (Konstanz Information Miner) 463
– libSBML 464
– MASON 464
– Mathematica 464
– MathSBML 465
– Matlab 465
– Mesord (Mesoscopic Reaction Diffusion Simulator) 465
– Octave 465, 466
– Omix visualization 466
– OpenCOR 466
– Oscill8 466
– PhysioDesigner 466, 467
– PottersWheel 467
– PyBioS 467
– PyScE (Python Simulator for Cellular Systems) 467, 468
– R language 468
– SAAM II (Simulation Analysis and Modeling) 468
– SBML Editor 468
– SBML-PET-MPI 469
– SBMLsimulator 469
– SBMLsqueezer 469
– SBMLToolbox 470
– SBML Validator 470
– SBToolbox2 (Systems Biology Toolbox 2) 470
– SemanticSBML 468, 469
– SensA 470, 471
– SmartCell 471
– STELLA 471
– STEPS (Stochastic Engine for Pathway Simulation) 471
– StochKit2 471, 472
– SystemModeler 472
– Systems Biology Workbench (SBW) 472
– Taverna 472, 473
– VANTED 473
– Virtual Cell (VCell) 473
– xCellerator 473
– XPPAUT 473, 474
Southern blotting 363
spatial models 133, 134
– types of 134, 135
– cellular automata 135
– compartment models 135
– reaction–diffusion systems 135
– stochastic models 135
spatial structure 278
Spearman’s rank correlation 399
spectral density matrix 415
SPF. see S phase promoting factor (SPF)
S phase promoting factor (SPF) 309
splicing 353
spontaneous pattern formation 139
– Gierer–Meinhardt model 140
– Turing instability 140
S-systems approach 48
standard deviation 397
standard error
– of the mean 426
– of the ratio 426
standards 9, 72
state variables 7
stationary 407
– fluxes 31
– metabolites 8
– states 7
statistical entropy 420
statistical framework 400
– error of first kind 400
– error of second kind 400
statistical models 16, 17
statistical network analysis 8
statistical relationships 145
statistical Shannon information, signaling systems 153
Statistics 391
– for sample location 396
– for sample variability 397
steady states 7, 26
– assumption 23
– condition 27
– fluxes 26, 51
“stiff” differential equations 64
stochastic modeling 6, 17, 127, 405
– of biochemical reactions 127
– of transcription and translation 197
– genetic network fluctuations 199
– macroscopic kinetic model 197
– microscopic stochastic model 198
stochastic simulations 64, 129, 133, 318, 407
– direct method 129
– explicit τ-leaping method 129
– first-order reaction 65
– second-order reaction 65
– stochastic and macroscopic rate constants 65
– stochastic simulation and spatial models 130
StochKit2 user 472
stoichiometric coefficients 24
stoichiometric matrices 25, 26, 30, 214
stoichiometric models 121
stress-induced mutagenesis 234
structural analysis, of biochemical systems 23, 24
structural cell biology 345–347
structural nonidentifiability 90
structure diagram 70
substrate elasticity 52
substrate inhibition 46, 47
Sulfolobus acidocaldarius 448
supermodels 8
support vector machines (SVMs) 439, 440
surface plasmon resonance (SPR) technique 376
sustainable modeling 78
SVMs. see support vector machines (SVMs)
Swiss Institute of Bioinformatics (SIB) 448
systematic single-gene knockout mutants 10
system equations 24
system response 414
Systems Biology Graphical Notation (SBGN) 74, 75, 460
– activity flow diagrams 75
– defining symbols 75
– entity relationship diagrams 75
– state transition diagrams 75
Systems Biology Markup Language (SBML) 9, 72
– element similarities 79
– semantics annotations in 79
systems biology models 4, 243
– optimality in 243
– teleological modeling approaches 244
Systems Biology Ontology (SBO) 469
Systems Biology Workbench (SBW) 460, 462, 463
system state 6

\textbf{t}
tacit assumption in pathway modeling 165
tags 72
TALE (transcription activator like effector) 371
TALENs (transcription activator like effector nucleases) 371
TATA-box 356
tau-leaping method 472
TaxTree search 451
TCA. see tricarboxylic acid (TCA) cycle
teleological modeling 244
telomere attrition 316
telomere shortening theory 315
temporal change of response coefficients 59
temporal evolution, of equation system 42
testing statistical hypotheses 399
tests for differential expression 427
– DNA arrays 427, 428
– next-generation sequencing 428
theorem of Glivenko–Cantelli 396
theoretical model 17
thermodynamics 15, 39, 41
– of chemical reactions 4
– constraints 31
– on rate constants 94
– equilibrium and detailed balance 418
– kinetic rate laws 95
– laws, practical consequences for biochemical models 425
– chemical potentials 425
– constraints on model parameters 425
– equilibrium states 425
– partial fluxes 425
– thermodynamic forces 425
– in systems biology 425
thermophilic bacteria 335
threonine 289
– synthesis pathway model 289
time-dependent flux response 60
time-dependent response coefficients 59
T lymphocytes 12
total protein concentration 257
transcription 4, 351
transcriptional feedback 220
transcriptional regulation networks 145, 164
transcription factor (TF) binding sites 357
transcription factor databases
– JASPAR 453
– Transcription Factor Encyclopedia 454
– TRED (transcriptional regulatory element database) 453, 454
transcription factors 153
– -initiated gene regulation 171
transcription networks 146, 153
– motifs 153
– network motifs in transcription network
 of S. cerevisiae 155
– positive and negative regulation 153
– potential regulation patterns with one, two, or three nodes 155
– regulation network of transcription factors
 in E. coli bacteria 154
– regulation structures and network motifs 155, 156
– transcriptional regulation of sugar utilization genes
 in E. coli bacteria 155
transcriptome 9
transcriptomics 8
transforming probability densities 395
transgenic animals 370
transition probabilities 407, 409
transition state theory 41
translation 4, 353–355
TrEMBL 447
trial-and-error process 262
tricarboxylic acid (TCA) cycle 286
α-trimmed mean 396
two sample location tests 400
– gamma function 400
– unpaired Student’s t-test 400
– Wilcoxon test 401
typical abstraction steps, in mathematical modeling 5
u
unbeatable 275
uncertainty analysis 211
– and principle of minimal information 211
uncompetitive inhibition 45
upper glycolysis, as realistic model 58
– flux and concentration control coefficients 58, 59
urn models 392
UV light fluoresces 359
v
validity criteria, for systems biology models 83
variability 210
– analysis 211
– and biochemical models 210
– elasticity sampling 213
– flux sampling 212
– kinetic models, propagation of parameter
 variability 214
– parameter fluctuations 216
– uncertainty analysis 210
– propagation of 214
variables 6, 16, 30
variance 397
variational principle, for flux states 424
VCML (Virtual Cell Markup Language) 473
Virtual Cell (VCell) 70–72
visualization
– of sample characteristics by box plots 397
– techniques 9
w
Wegscheider conditions 423
Western blot 362, 363
Westfall and Young step-down correction 429
Wiener process 408
Wnt/β-catenin signaling pathway 301
Wolfram SystemModeler Link (WSMLink) 472
x
xenografts 12
Xenopus laevis 334
XML-based native format 70
XML-compliant format 72
XML-like language style 9
y
yeast artificial chromosomes (YACs) 360
Yeast two-hybrid (Y2H) system 368, 369
z
zinc finger nucleases (ZFN) 370
zymomonas mobilis 253