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Introduction 1
1.1
Biology in Time and Space

Biological systems such as organisms, cells, or biomolecules
are highly organized in their structure and function. They
have developed during evolution and can only be fully
understood in this context. To study them and to apply
mathematical, computational, or theoretical concepts, we
have to be aware of the following circumstances.
The continuous reproduction of cell compounds neces-

sary for living and the respective flow of information is
captured by the central dogma of molecular biology,
which can be summarized as follows: genes code for
mRNA, mRNA serves as template for proteins, and pro-
teins perform cellular work. Although information is
stored in the genes encoded by the DNA sequence, it is
made available only through the cellular machinery that
can decode this sequence and can translate it into struc-
ture and function. In this book, we will explain that from
various perspectives.
A description of biological entities and their properties

encompasses different levels of organization and different
time scales. We can study biological phenomena at the
level of populations, individuals, tissues, organs, cells, and
compartments down to molecules and atoms. Length
scales range from the order of meter (e.g., the size of
whale or human) to micrometer for many cell types,
down to picometer for atom sizes. Time scales include
millions of years for evolutionary processes, annual and
daily cycles, seconds for many biochemical reactions, and
femtoseconds for molecular vibrations. Figure 1.1 gives
an overview about scales.
In a unified view of cellular networks, each action of a

cell involves different levels of cellular organization,
including genes, proteins, metabolism, or signaling path-
ways. Therefore, the current description of the individual
networks must be integrated into a larger framework.

Many current approaches pay tribute to the fact that
biological items are subject to evolution. The structure
and organization of organisms and their cellular machin-
ery has developed during evolution to fulfill major func-
tions such as growth, proliferation, and survival under
changing conditions. If parts of the organism or of the
cell fail to perform their function, the individual might
become unable to survive or replicate.
One consequence of evolution is the similarity of bio-

logical organisms of different species. This similarity
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allows for the use of model organisms and for the critical
transfer of insights gained from one cell type to other cell
types. Applications include, for example, prediction of
protein function from similarity, prediction of network
properties from optimality principles, reconstruction of
phylogenetic trees, or the identification of regulatory
DNA sequences through cross-species comparisons.
However, the evolutionary process also leads to genetic
variations within species. Therefore, personalized medi-
cine and research is an important new challenge for bio-
medical research.

1.2
Models and Modeling

If we observe biological phenomena, we are confronted
with various complex processes that often cannot be
explained from first principles and the outcome of which
cannot reliably be foreseen from intuition. Even if general
biochemical principles are well established (e.g., the
central dogma of transcription and translation or the bio-
chemistry of enzyme-catalyzed reactions), the bio-
chemistry of individual molecules and systems is often
unknown and can vary considerably between species.
Experiments lead to biological hypotheses about individ-
ual processes, but it often remains unclear whether these
hypotheses can be combined into a larger coherent pic-
ture because it is often difficult to foresee the global

behavior of a complex system from knowledge of its
parts. Mathematical modeling and computer simulations
can help us to understand the internal nature and
dynamics of these processes and to arrive at predictions
about their future development and the effect of interac-
tions with the environment.

1.2.1
What Is a Model?

The answer to this question will differ among communi-
ties of researchers. In a broad sense, a model is an
abstract representation of objects or processes that
explains features of these objects or processes (Figure 1.2).
A biochemical reaction network can be represented by a
graphical sketch showing dots for metabolites and arrows
for reactions; the same network could also be described by
a system of differential equations, which allows simulating
and predicting the dynamic behavior of that network. If a
model is used for simulations, it needs to be ensured that it
faithfully predicts the system’s behavior – at least those
aspects that are supposed to be covered by the model.
Systems biology models are often based on well-established
physical laws that justify their general form, for instance,
the thermodynamics of chemical reactions. Besides this, a
computational model needs to make specific statements
about a system of interest – which are partially justified by
experiments and biochemical knowledge, and partially by
mere extrapolation from other systems. Such a model can
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Figure 1.1 Length and time scales in biology. (Data from the BioNumbers database at bionumbers.hms.harvard.edu.)
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summarize established knowledge about a system in a
coherent mathematical formulation. In experimental biol-
ogy, the term “model” is also used to denote a species that
is especially suitable for experiments; for example, a geneti-
cally modified mouse may serve as a model for human
genetic disorders.

1.2.2
Purpose and Adequateness of Models

Modeling is a subjective and selective procedure. A
model represents only specific aspects of reality but, if
done properly, this is sufficient since the intention of
modeling is to answer particular questions. If the only
aim is to predict system outputs from given input signals,
a model should display the correct input–output relation,
while its interior can be regarded as a black box. How-
ever, if instead a detailed biological mechanism has to be
elucidated, then the system’s structure and the relations
between its parts must be described realistically. Some
models are meant to be generally applicable to many
similar objects (e.g., Michaelis–Menten kinetics holds for
many enzymes, the promoter–operator concept is appli-
cable to many genes, and gene regulatory motifs are com-
mon), while others are specifically tailored to one

particular object (e.g., the 3D structure of a protein, the
sequence of a gene, or a model of deteriorating
mitochondria during aging). The mathematical part can
be kept as simple as possible to allow for easy implemen-
tation and comprehensible results. Or it can be modeled
very realistically and be much more complicated. None of
the characteristics mentioned above makes a model
wrong or right, but they determine whether a model is
appropriate to the problem to be solved. The phrase
“essentially, all models are wrong, but some are useful”
coined by the statistician George Box is indeed an appro-
priate guideline for model building.

1.2.3
Advantages of Computational Modeling

Models gain their reference to reality from comparison
with experiments, and their benefits therefore depend on
the quality of the experiments used. Nevertheless, model-
ing combined with experimentation has a lot of advan-
tages compared with purely experimental studies:

� Modeling drives conceptual clarification. It requires
verbal hypotheses to be made specific and conceptually
rigorous.
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Figure 1.2 Typical abstraction steps in mathematical modeling. (a) E. coli bacteria produce thousands of different proteins. If a specific
protein type is labeled with a fluorescent marker, cells glow under the microscope according to the concentration of this marker. (Courtesy of
M. Elowitz.) (b) In a simplified mental model, we assume that cells contain two enzymes of interest, X (red) and Y (blue), and that the molecules
(dots) can freely diffuse within the cell. All other substances are disregarded for the sake of simplicity. (c) The interactions between the two
protein types can be drawn in a wiring scheme: each protein can be produced or degraded (black arrows). In addition, we assume that proteins
of type X can increase the production of protein Y. (d) All individual processes to be considered are listed together with their rates a
(occurrence per time). The mathematical expressions for the rates are based on a simplified picture of the actual chemical processes. (e) The list
of processes can be translated into different sorts of dynamic models, in this case, deterministic rate equations for the protein concentrations x
and y. (f) By solving the model equations, predictions for the time-dependent concentrations can be obtained. If the predictions do not agree
with experimental data, this indicates that the model is wrong or too much simplified. In both cases, the model has to be refined.
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� Modeling highlights gaps in knowledge or understanding.
During the process of model formulation, unspecified
components or interactions have to be determined.

� Modeling provides independence of the modeled
object.

� Time and space may be stretched or compressed ad
libitum.

� Solution algorithms and computer programs can be
used independently of the concrete system.

� Modeling is cheap compared with experiments.
� Models exert by themselves no harm on animals or
plants and help to reduce ethical problems in experi-
ments. They do not pollute the environment.

� Modeling can assist experimentation. With an adequate
model, one may test different scenarios that are not
accessible by experiment. One may follow time courses
of compounds that cannot be measured in an experi-
ment. One may impose perturbations that are not feasi-
ble in the real system. One may cause precise
perturbations without directly changing other system
components, which is usually impossible in real sys-
tems. Model simulations can be repeated often and for
many different conditions.

� Model results can often be presented in precise mathe-
matical terms that allow for generalization. Graphical
representation and visualization make it easier to
understand the system.

� Finally, modeling allows for making well-founded and
testable predictions.

The attempt to formulate current knowledge and open
problems in mathematical terms often uncovers a lack of
knowledge and requirements for clarification. Further-
more, computational models can be used to test whether
proposed explanations of biological phenomena are feasi-
ble. Computational models serve as repositories of cur-
rent knowledge, both established and hypothetical, about
how systems might operate. At the same time, they pro-
vide researchers with quantitative descriptions of this
knowledge and allow them to simulate the biological pro-
cess, which serves as a rigorous consistency test.

1.3
Basic Notions for Computational
Models

1.3.1
Model Scope

Systems biology models consist of mathematical elements
that describe properties of a biological system, for instance,
mathematical variables describing the concentrations of

metabolites. As a model can only describe certain aspects
of the system, all other properties of the system (e.g., con-
centrations of other substances or the environment of a
cell) are neglected or simplified. It is important – and, to
some extent, an art – to construct models in such ways
that the disregarded properties do not compromise the
basic results of the model.

1.3.2
Model Statements

Alongside the model elements, a model can contain vari-
ous kinds of statements and equations describing facts
about the model elements, most notably, their temporal
behavior. In kinetic models, the basic modeling paradigm
considered in this book, the dynamics is determined by a
set of ordinary differential equations describing the sub-
stance balances. Statements in other model types may
have the form of equality or inequality constraints (e.g.,
in flux balance analysis), maximality postulates, stochastic
processes, or probabilistic statements about quantities
that vary in time or between cells.

1.3.3
System State

In dynamical systems theory, a system is characterized by
its state, a snapshot of the system at a given time. The
state of the system is described by the set of variables that
must be kept track of in a model: in deterministic models,
it needs to contain enough information to predict the
behavior of the system for all future times. Each modeling
framework defines what is meant by the state of the sys-
tem. In kinetic rate equation models, for example, the
state is a list of substance concentrations. In the corre-
sponding stochastic model, it is a probability distribution
or a list of the current number of molecules of a species.
In a Boolean model of gene regulation, the state is a string
of bits indicating for each gene whether it is expressed
(“1”) or not expressed (“0”). Also, the temporal behavior
can be described in fundamentally different ways. In a
dynamical system, the future states are determined by the
current state, while in a stochastic process, the future
states are not precisely predetermined. Instead, each pos-
sible future history has a certain probability to occur.

1.3.4
Variables, Parameters, and Constants

The quantities in a model can be classified as variables,
parameters, and constants. A constant is a quantity with a
fixed value, such as the natural number e or Avogadro’s
number (number of molecules per mole). Parameters are
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quantities that have a given value, such as the Km value of
an enzyme in a reaction. This value depends on the
method used and on the experimental conditions and
may change. Variables are quantities with a changeable
value for which the model establishes relations. A subset
of variables, the state variables, describes the system
behavior completely. They can assume independent val-
ues and each of them is necessary to define the system
state. Their number is equivalent to the dimension of the
system. For example, the diameter d and volume V of a
sphere obey the relation V= πd3/6, where π and 6 are
constants, V and d are variables, but only one of them is
a state variable since the relation between them uniquely
determines the other one.
Whether a quantity is a variable or a parameter

depends on the model. In reaction kinetics, the enzyme
concentration appears as a parameter. However, the
enzyme concentration itself may change due to gene
expression or protein degradation, and in an extended
model, it may be described by a variable.

1.3.5
Model Behavior

Two fundamental factors that determine the behavior of
a system are (i) influences from the environment (input)
and (ii) processes within the system. The system struc-
ture, that is, the relation among variables, parameters,
and constants, determines how endogenous and exoge-
nous forces are processed. However, different system
structures may still produce similar system behavior (out-
put); therefore, measurements of the system output often
do not suffice to choose between alternative models and
to determine the system’s internal organization.

1.3.6
Model Classification

For modeling, processes are classified with respect to a
set of criteria.

� A structural or qualitative model (e.g., a network graph)
specifies the interactions among model elements. A
quantitative model assigns values to the elements and to
their interactions, which may or may not change.

� In a deterministic model, the system evolution through
all following states can be predicted from the knowl-
edge of the current state. Stochastic descriptions give
instead a probability distribution for the successive
states.

� The nature of values that time, state, or space may
assume distinguishes a discrete model (where values are
taken from a discrete set) from a continuous model
(where values belong to a continuum).

� Reversible processes can proceed in a forward and back-
ward direction. Irreversibility means that only one
direction is possible.

� Periodicity indicates that the system assumes a series of
states in the time interval {t, t+Δt} and again in the
time interval {t+ iΔt, t+ (i+ 1)Δt} for i= 1,2, . . . .

1.3.7
Steady States

The concept of stationary states is important for the
modeling of dynamical systems. Stationary states (other
terms are steady states or fixed points) are determined by
the fact that the values of all state variables remain con-
stant in time. The asymptotic behavior of dynamic sys-
tems, that is, the behavior after a sufficiently long time, is
often stationary. Other types of asymptotic behavior are
oscillatory or chaotic regimes.
The consideration of steady states is actually an abstrac-

tion that is based on a separation of time scales. In nature,
everything flows. Fast and slow processes – ranging from
formation and breakage of chemical bonds within nano-
seconds to growth of individuals within years – are
coupled in the biological world. While fast processes often
reach a quasi-steady state after a short transition period,
the change of the value of slow variables is often negligi-
ble in the time window of consideration. Thus, each
steady state can be regarded as a quasi-steady state of a
system that is embedded in a larger nonstationary envi-
ronment. Despite this idealization, the concept of station-
ary states is important in kinetic modeling because it
points to typical behavioral modes of the system under
study and it often simplifies the mathematical problems.
Other theoretical concepts in systems biology are only

rough representations of their biological counterparts. For
example, the representation of gene regulatory networks
by Boolean networks, the description of complex enzyme
kinetics by simple mass action laws, or the representation
of multifarious reaction schemes by black boxes proved to
be helpful simplifications. Although being a simplification,
these models elucidate possible network properties and
help to check the reliability of basic assumptions and to
discover possible design principles in nature. Simplified
models can be used to test mathematically formulated
hypotheses about system dynamics, and such models are
easier to understand and to apply to different questions.

1.3.8
Model Assignment Is Not Unique

Biological phenomena can be described in mathematical
terms. Models developed during the last few decades
range from the description of glycolytic oscillations with
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ordinary differential equations to population dynamics
models with difference equations, stochastic equations
for signaling pathways, and Boolean networks for gene
expression. However, it is important to realize that a cer-
tain process can be described in more than one way: a
biological object can be investigated with different exper-
imental methods and each biological process can be
described with different (mathematical) models. Some-
times, a modeling framework represents a simplified lim-
iting case (e.g., kinetic models as limiting case of
stochastic models). On the other hand, the same mathe-
matical formalism may be applied to various biological
instances: statistical network analysis, for example, can be
applied to cellular transcription networks, the circuitry of
nerve cells, or food webs.
The choice of a mathematical model or an algorithm to

describe a biological object depends on the problem, the
purpose, and the intention of the investigator. Modeling
has to reflect essential properties of the system and differ-
ent models may highlight different aspects of the same
system. This ambiguity has the advantage that different
ways of studying a problem also provide different insights
into the system. However, the diversity of modeling
approaches makes it also very difficult to merge estab-
lished models (e.g., for individual metabolic pathways)
into larger supermodels (e.g., models of complete cell
metabolism).

1.4
Networks

The network is a crucial concept in systems biology. We
study protein–protein interaction networks, protein–
RNA interaction networks, metabolic networks (see
Chapters 3 and 4 and Section 12.1), signaling networks
(Section 12.2), guilt-by-association networks, and net-
works connecting gene defects with diseases or diseases
with other diseases via common gene defects [1].
Throughout this book, you will find more examples.
Networks are best represented by graphs that consist of

nodes and edges, which connect the nodes, as illustrated
in Figure 1.3. In protein–protein interaction networks, for
example, nodes are proteins and edges are their interac-
tions as can for instance be determined by yeast two-
hybrid experiments (see Chapter 14). If appropriate, one
can introduce different types of nodes for different types
of components. For example, the metabolites and con-
verting enzymes in metabolic networks can be repre-
sented with bipartite networks, which possess two types
of nodes – one for metabolites and the other for enzymes
– that are never directly connected by an edge, but only
via the other type of node. Petri net type of modeling

takes that property into account representing metabolites
as places and enzyme-catalyzed reactions as transitions
(see Section 7.1). By contrast, classical metabolic model-
ing considers only one type of node, but different types in
different approaches. Systems of ordinary differential
equations describing metabolite dynamics take metabo-
lites as nodes and enzymatic reactions as edges (Chapter
4), while flux balance analysis restricts itself to steady
states and now focusses on the fluxes through the
reactions (now as nodes) that are linked by the stationary
metabolites as edges.

1.5
Data Integration

Systems biology has evolved rapidly in the last few years,
driven by the new high-throughput technologies. The
most important impulse was given by large sequencing
projects such as the Human Genome Project, which
resulted in the full sequence of the human and other
genomes [2,3]. Proteomic technologies have been used to
identify the translation status of complete cells (2D gels,
mass spectrometry) and to elucidate protein–protein
interaction networks involving thousands of compo-
nents [4]. However, to validate such diverse high-
throughput data, one needs to correlate and integrate
such information. Thus, an important part of systems
biology is data integration.
On the lowest level of complexity, data integration

implies common schemes for data storage, data represen-
tation, and data transfer. For particular experimental

Figure 1.3 Network with nodes (circles) and edges (lines between
circles). Different node colors indicate different types of connected
components (e.g., proteins, mRNAs, and metabolites).
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techniques, this has already been established, for example,
in the field of transcriptomics with Minimum Information
About a Microarray Experiment [5], Minimum Informa-
tion for Reporting Next Generation Sequence Genotyp-
ing [6], in proteomics with proteomics experiment data
repositories [7], and the Human Proteome Organization
consortium [8]. On a more complex level, schemes have
been defined for biological models and pathways such as
Systems Biology Markup Language (SBML) [9],
CellML [10], or Systems Biology Graphical Notation
(SBGN) [11], which all use an XML-like language style.
Data integration on the next level of complexity con-

sists of data correlation. This is a growing research field
as researchers combine information from multiple
diverse data sets to learn about and explain natural pro-
cesses [12,13]. For example, methods have been devel-
oped to integrate the results of transcriptome or
proteome experiments with genome sequence annota-
tions. In the case of complex disease conditions, it is clear
that only integrated approaches can link clinical, genetic,
behavioral, and environmental data with diverse types of
molecular phenotype information and identify correlative
associations. Such correlations, if found, are the key to
identifying biomarkers and processes that are either caus-
ative or indicative of the disease. Importantly, the identi-
fication of biomarkers (e.g., proteins and metabolites)
associated with the disease will open up the possibility to
generate and test hypotheses on the biological processes
and genes involved in this condition. The evaluation of
disease-relevant data is a multistep procedure involving a
complex pipeline of analysis and data handling tools such
as data normalization, quality control, multivariate statis-
tics, correlation analysis, visualization techniques, and
intelligent database systems [14]. Several pioneering
approaches have indicated the power of integrating data
sets from different levels, for example, the correlation of
gene membership of expression clusters and promoter
sequence motifs [15], the combination of transcriptome
and quantitative proteomics data in order to construct
models of cellular pathways [13], and the identification of
novel metabolite–transcript correlations [16]. Finally,
data can be used to build and refine dynamical models,
which represent an even higher level of data integration.

1.6
Standards

As experimental techniques generate rapidly growing
amounts of data and large models need to be developed
and exchanged, standards for both experimental proce-
dures and modeling are a central practical issue in sys-
tems biology. Information exchange necessitates a

common language about biological aspects. One seminal
example is the Gene Ontology that provides a controlled
vocabulary that can be applied to all organisms, even as
the knowledge about genes and proteins continues to
accumulate. SBML [9] has been established as exchange
language for mathematical models of biochemical
reaction networks. SBGN [11] defines graphical elements
to unambiguously represent biochemical reaction sets
and large regulatory networks. A series of “minimum-
information-about” statements based on community
agreement defines standards for certain types of experi-
ments. Minimum Information Requested in the Annota-
tion of Biochemical Models (MIRIAM) [17] describes
standards for this specific type of systems biology models.
Minimum Information About a Simulation Experiment
(MIASE) [18] helps authors to describe all elements of a
computational experiment such that readers can repeat
the simulations and create figures as shown in the
publication.

1.7
Model Organisms

Model organisms are species that have developed over
the years to be extremely popular for scientific investiga-
tions. The reasons for such popularity can be manifold.
Of great importance is, of course, an easy handling of the
organism, that is, culture conditions (temperature, pres-
sure, etc.) that can be set up in the laboratory without
much effort and that tolerate some degree of variation, so
that results are comparable between groups that use
slightly different growth conditions. However, other fac-
tors are also important, such as costs (for housing, food,
etc.), size (the smaller the size, the more individuals can
be studied), or lifespan (short-lived species are more pop-
ular for aging studies). Often model organisms are also
used to represent important taxonomical properties (pro-
karyotes, eukaryotes, unicellular organisms, multicellular
organisms, vertebrates, and invertebrates), but in all cases
the hope is that important biochemical findings made in
such model organisms are also of relevance for other
species of that taxonomical group or even for humans.
Figure 1.4 shows a selection of popular model species,
which will be discussed in the next sections. They range
from prokaryotic organisms to single and multicellular
eukaryotic species up to mammals.

1.7.1
Escherichia coli

E. coli is probably the oldest and best studied model
organism of all (Figure 1.4a). It is a rod-shaped
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bacterium that is found in the intestines of many orga-
nisms, including humans. It is a facultative anaerobic
organism, which means that it can grow under aerobic
as well as anaerobic conditions. E. coli is roughly 2 μm
long with a diameter of 0.5 μm. Under laboratory condi-
tions, it can easily be cultivated and doubles its number
in less than 30min. It has been studied for more than
50 years and is the most popular prokaryotic model
organism. The genome of the E. coli strain K-12 has
completely been sequenced in 1997 [19] and contains
around 4200 genes dispersed along 4.6 million base
pairs (Mbp). It is a very streamlined genome containing
very few intergenic sequences. The E. coli family con-
sists of a large number of strains, and a comparison of
the sequence of more than 60 strains has shown that
they contain in total more than 15 500 genes, while

only 6% of this pan-genome is present in each
strain [20]. E. coli was of pivotal importance for devel-
oping many of the experimental techniques described in
Chapter 14. Today, a large number of scientific
resources regarding this model species are available on
the Internet. A good starting point is EcoCyc (ecocyc.
org), which provides information about the genome and
biochemical machinery of the E. coli strain K-12
MG1655. Other websites provide information about
protein–protein interactions (bacteriome.org/) and sys-
tematic single-gene knockout mutants (http://ecoli.aist-
nara.ac.jp/gb6/Resources/deletion/deletion.html), or a
database of available strains (cgsc.biology.yale.edu). For
modelers, the CyberCell Database (ccdb.wishartlab.com/
CCDB) is also of interest since it aims at providing
enzymatic, genetic, and biological information suitable

Figure 1.4 Popular model organisms for studies of problems in biochemistry and molecular biology. (a) E. coli is a rod-like bacterium
and the best studied prokaryotic model system. (Public domain image from Wikimedia, http://commons.wikimedia.org/wiki/File:
EscherichiaColi_NIAID.jpg.) (b) The yeast S. cerevisiae is a simple unicellular eukaryote and is of considerable scientific and industrial
interest. (Public domain image from Wikimedia, http://commons.wikimedia.org/wiki/File:S_cerevisiae_under_DIC_microscopy.jpg.) (c) The
nematode C. elegans is approximately 1mm and is a popular representative for simple and short-lived multicellular organisms. (“Adult
Caenorhabditis elegans” by Kbradnam (http://en.wikipedia.org/wiki/User:Kbradnam) is licensed under CC BY-SA-2.5, http://
creativecommons.org/licenses/by-sa/2.5.) (d) The fruit fly D. melanogaster is like C. elegans a model for simple multicellular organisms and
has extensively been studied in developmental biology. (“Drosophila melanogaster” by A. Karwath (http://commons.wikimedia.org/wiki/
User:Aka) is licensed under CC BY-SA-2.5, http://creativecommons.org/licenses/by-sa/2.5.) (e) Finally, the mouse M. musculus is a popular
model species for mammals and is thus also of great relevance for humans. (Public domain image from Wikimedia, http://commons.
wikimedia.org/wiki/File:House_mouse.jpg.)
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for developing mathematical models of all parts of a cell
of E. coli strain K-12.

1.7.2
Saccharomyces cerevisiae

The yeast S. cerevisiae is a unicellular fungus, belonging
to the ascomycetes (Figure 1.4b). It is not only a useful
organism needed for the production of wine, beer, and
bread, but also the best studied eukaryotic model system.
The cells are easy to grow and double under optimal
conditions every 90–100min. Like E. coli, also S. cerevi-
siae can live under aerobic as well as anaerobic condi-
tions. If oxygen is present, the majority of energy is
generated via oxidative phosphorylation at the inner
mitochondrial membrane and without oxygen energy is
produced via glycolysis and fermentation. The yeast nor-
mally propagates as a diploid organism via mitosis. Under
stress, however, the diploid cells can undergo sporulation,
producing four haploid cells in the process. These hap-
loid cells belong to one of two mating classes (sexes),
called “a” and “α”. Haploids can either propagate via nor-
mal mitosis or mate with other haploids of the different
mating class, resulting again in diploid cells. This life
cycle makes S. cerevisiae interesting for genetic studies; it
has also been extensively used by experimental and
modeling studies of the cell cycle, glycolysis, osmotic
shock, and mating process [21–28]. Cell division occurs
in S. cerevisiae in an asymmetric fashion called budding
and single-cell studies have shown that yeast cells exhibit
replicative senescence with a maximum of 30–40 divi-
sions [29]. Since this process is very reminiscent of the
replicative senescence known from human fibro-
blasts [30], S. cerevisiae is also employed as a model sys-
tem for investigations of the aging process. Furthermore,
S. cerevisiae was also the first eukaryotic organism to be
sequenced and its genome consists of about 12Mbp con-
taining roughly 6000 genes distributed over 16 chromo-
somes [31]. Homologous recombination (the exchange of
sequences between similar strands of DNA) is very effi-
cient in S. cerevisiae, which makes the organism also a
convenient model for studies of synthetic biology. Using
this mechanism, it was possible to replace the complete
chromosome 16 with a new, synthetic one through 11
successive rounds of transformation (see Chapter 14) [32].
The synthetic chromosome was streamlined by removing
all introns and superfluous tRNA genes and using only two
of the three possible stop codons. This opens the possibility
to extend the genetic code by a further amino acid once all
chromosomes are modified in this way. A good online
resource for further information about this model orga-
nism is the Saccharomyces Genome Database (www
.yeastgenome.org).

1.7.3
Caenorhabditis elegans

Of course, model systems for multicellular organisms are
also needed and the nematode C. elegans (Figure 1.4c)
has become such a model since Sidney Brenner intro-
duced it to the research community [33]. Like the other
model organisms, it is easy to cultivate (feeding on bacte-
ria or synthetic medium) and thousands of the about
1mm long animals can live on a large Petri dish. Wild
populations of C. elegans consist mainly of hermaphro-
dites together with a few males. Hermaphrodites not only
are capable of self-fertilization (leading to natural inbred
lines), but can also mate with males. The hermaphrodite
then lays eggs that develop into larvae after hatching and
after a total of four larval stages (L1–L4) the adult animal
emerges. The complete life cycle from egg to egg takes
between 2.5 and 5.5 days, depending on the temperature.
The total lifespan of C. elegans is rather short with 2–3
weeks. This made C. elegans another popular model sys-
tem for the investigation of the aging process [34]. How-
ever, the nematode is also an important model for other
fields of research such as molecular biology or neurology.
RNA interference (RNAi), for instance, is an important
experimental technique (Chapter 14) that was developed
based on experiments in C. elegans [35]. Furthermore,
adult nematodes have a fixed number of somatic cells
that is identical for all individuals (1031 in the male and
959 in the hermaphrodite), which makes it possible to
generate very detailed anatomical models of the worm.
The “slidable worm” (www.wormatlas.org/slidableworm.
htm), which is a resource available on the webpage of the
WormAtlas database, presents the results of such ana-
tomical studies using an easy-to-use interface. C. elegans
is also the only animal for which the complete wiring
diagram (connectome) of the nervous system has been
determined (using electron microscopy serial sec-
tions) [36,37]. Finally, C. elegans has also been the first
multicellular organism for which the complete genome
sequence has been determined [38,39]. The 97Mbp contain
approximately 19 000 genes dispersed over six chromo-
somes. Good online starting points for more information
are WormBase (www.wormbase.org), WormBook (www
.wormbook.org/), or WormAtlas (www.wormatlas.org/).

1.7.4
Drosophila melanogaster

The fruit fly D. melanogaster (Figure 1.4d) is another,
immensely popular, model organism that shares many of
the properties of C. elegans. The animals are easy to breed
in captivity and because of their small size (around 1mm)
it is possible to perform studies involving thousands of
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individuals (e.g., for selection or population studies). The
generation time (about 7 days at 29 °C) and lifespan
(about 30 days at 29 °C) are very short and depend
strongly on the ambient temperature. This facilitates, for
example, artificial selection studies, which take several
generations [40]. D. melanogaster has four chromosomes
(2n= 8), which can even be studied under the light micro-
scope because of a phenomenon called polyteny. As in
many insect larvae, the cells of the salivary glands of
D. melanogaster undergo multiple rounds of replication
without cell division, leading to hundreds of sister chro-
matids aligned to each other. Polytene chromosomes are
found in cells that need to express a large amount of a
specific gene product and transcriptionally active areas
appear under the microscope as swollen regions, so-called
puffs. Although this technique is now outdated regarding
the analysis of transcriptional activity, polytene chromo-
somes are still valuable for taxonomic problems. After
staining, the puffs form a specific banding pattern that
can be used to identify chromosomal deletions and dupli-
cations. This can be used in taxonomy to differentiate and
classify closely related subspecies. D. melanogaster was
arguably the most important model species for investigat-
ing developmental processes in multicellular orga-
nisms [41], which has led to the discovery of Hox
genes [42]. These genes code for a set of transcription
factors that contain a common 180 bp motif (the homeo-
domain) and control the development of the anterior–
posterior axis of the animal. A unique feature of these
genes is that they are arranged on the chromosomes in
the same linear order as the body region that they affect
(called collinearity). Thus, Hox genes at one end of the
cluster control the development of the anterior region
(head), while the genes at the other end of the cluster
influence the development of the posterior region (tail).
Although originally found in Drosophila, Hox genes have
been found in many metazoans, including vertebrates [43].
The complete genome was sequenced in 2000 [44] and
somewhat surprisingly the number of genes is with
approximately 14 000 clearly smaller than the number of
genes in C. elegans. Further information, tools, and
resources are available at FlyBase (flybase.org) and
Ensembl Genome Browser (www.ensembl.org/Drosophila_
melanogaster).

1.7.5
Mus musculus

The last model system that we want to introduce here is
the house mouse M. musculus domesticus (Figure 1.4e). It
is clearly the model organism with the largest similarity
to humans and is therefore also of great relevance for

human research. Humans and mice are both mammals
and thus share a common ancestor roughly 80 million
years ago, a rather short time span compared with the
other model organisms. Consequently, the genome struc-
ture and organization is also very similar. The mouse
genome, sequenced in 2002 [45], contains 2.5Gbp and is
thus somewhat smaller than the human genome with
2.9 Gbp [2,3], although both genomes contain approxi-
mately 20 000–25 000 genes. The similarity at the gene
level is quite amazing insofar that for more than 99% of
mouse genes a homolog can also be found in the human
genome [3], and vice versa. The mouse is also a popular
model system because it is very amenable to genetic
manipulations. The first mice were cloned in 1998 [46]
and today it is common routine to create transgenic mice
by introducing DNA constructs into fertilized egg cells
and to study the function of existing genes by knocking
them out or down (see Chapter 14). The Knockout
Mouse Project (KOMP), for instance, aims at generating
and providing mouse embryonic stem cells (and eventu-
ally whole mice) with single-gene knockout for every
gene in the mouse genome (www.komp.org). Because
mice have been used for such a long time as model spe-
cies, many different inbred strains have been developed,
which differ in various aspects of their phenotype (e.g.,
size, lifespan, and disease susceptibility). Of special inter-
est are the various strains of nude mice that have a dele-
tion of the FOXN1 gene, which prevents the formation of
a functioning thymus. Without a thymus, these mice can-
not produce mature T lymphocytes and therefore lack
most forms of immune response (the lack of fur is a side
effect of this mutation). As a consequence, they are valu-
able tools to study tumor development and are also used
for transplantation studies, since they do not reject allo-
or xenografts. Useful starting points for further informa-
tion are, for instance, the Mouse Genome Informatics
(www.informatics.jax.org/), the Mouse Atlas Project
(www.emouseatlas.org), or the Ensembl Genome Browser
(www.ensembl.org/Mus_musculus).
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