Contents

List of Contributors XVII Preface XXV

Part A Molecular Biology, Enzyme Screening and Bioinformatics 1

1	Engineering Lipases with an Expanded Genetic Code <i>3</i> Alessandro De Simone, Michael Georg Hoesl, and Nediljko Budisa
1.1	Introduction 3
1.2	Enzyme Activity of Lipases from Different Sources and Engineering Approaches 4
1.3	Noncanonical Amino Acids in Lipase Design and Engineering 5
1.4	Case Study: Manipulating Proline, Phenylalanine, and Methionine Residues in Lipase 7
1.5	"Unnatural" Lipases Are Able to Catalyze Reactions under Different Hostile Environments 8
1.6	Lipase Engineering via Bioorthogonal Chemistries: Activity and Immobilization 9
1.7	Conclusions and Perspectives 10 References 11
2	Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology 13 Jennifer Chow and Wolfgang R. Streit
2 2.1	Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology 13 Jennifer Chow and Wolfgang R. Streit Introduction 13
2 2.1 2.2	Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology 13 Jennifer Chow and Wolfgang R. Streit Introduction 13 Sequence- versus Function-Based Metagenomic Approach to Find Novel Biocatalysts 14
2 2.1 2.2 2.2.1	Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology 13 Jennifer Chow and Wolfgang R. Streit Introduction 13 Sequence- versus Function-Based Metagenomic Approach to Find Novel Biocatalysts 14 Functional Metagenomics – from Single Clones to High-Throughput Screening 16
2 2.1 2.2 2.2.1 2.2.1 2.2.2	Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology 13 Jennifer Chow and Wolfgang R. Streit Introduction 13 Sequence- versus Function-Based Metagenomic Approach to Find Novel Biocatalysts 14 Functional Metagenomics – from Single Clones to High-Throughput Screening 16 Screening for Different Classes of Enzymes 16
2 2.1 2.2 2.2.1 2.2.1 2.2.2 2.2.2.1	Screening of Enzymes: Novel Screening Technologies to Exploit Noncultivated Microbes for Biotechnology 13 Jennifer Chow and Wolfgang R. Streit Introduction 13 Sequence- versus Function-Based Metagenomic Approach to Find Novel Biocatalysts 14 Functional Metagenomics – from Single Clones to High-Throughput Screening 16 Screening for Different Classes of Enzymes 16 EC 1: Oxidoreductases 17
2 2.1 2.2 2.2.1 2.2.2 2.2.2 2.2.2.1 2.2.2.2	Screening of Enzymes: Novel Screening Technologies to ExploitNoncultivated Microbes for Biotechnology13Jennifer Chow and Wolfgang R. StreitIntroduction13Sequence- versus Function-Based Metagenomic Approach to FindNovel Biocatalysts14Functional Metagenomics – from Single Clones to High-ThroughputScreening16Screening for Different Classes of Enzymes16EC 1: Oxidoreductases17EC 2: Transferases18
2 2.1 2.2 2.2.1 2.2.2 2.2.2.1 2.2.2.2 2.2.2.3	Screening of Enzymes: Novel Screening Technologies to ExploitNoncultivated Microbes for Biotechnology 13Jennifer Chow and Wolfgang R. StreitIntroduction 13Sequence- versus Function-Based Metagenomic Approach to FindNovel Biocatalysts 14Functional Metagenomics – from Single Clones to High-ThroughputScreening 16Screening for Different Classes of Enzymes 16EC 1: Oxidoreductases 17EC 2: Transferases 18EC3: Hydrolases 19

VII

VIII	Contents

2.4	Future Perspectives 26 References 27
3	Robust Biocatalysts – Routes to New Diversity <i>31</i> Anna Krüger, Skander Elleuche, Kerstin Sahm, and Garabed Antranikian
3.1	Introduction 31
3.2	Metagenomics to Retrieve New Genes from Extremophilic Microorganisms 32
3.3	Microbial Expression Hosts for the Production of Extremozymes 36
3.4	Molecular Biology Approaches for Enzyme Improvement 39
3.4.1	Gene Fusions in Molecular Biology 40
3.4.2	Synergism of Fusion Enzymes for Lignocellulose Biomass Degradation 44
3.5	Conclusions and Future Perspectives 45
	References 46
4	Application of High-Throughput Screening in Biocatalysis 53 Xin Ju, Jie Zhang, Kui Chan, Xiaoliang Liang, Junhua Tao, and Jian-He Xu
4.1	Introduction 53
4.2	Discussions 54
4.2.1	Screening of Ketoreductases (KREDs) 54
4.2.2	Screening of Nitrilases 56
4.2.3	Screening of Oxygenases 58
4.2.4	Screening of Alcohol Oxidases 59
4.2.5	Screening of Epoxide Hydrolases 60
4.2.6	Screening of Lipases and Esterases 60
4.2.7	Screening Transaminases 63
4.2.8	Screening of Aldolases 64
4.2.9	Screening of Hydroxynitrile Lyases (Oxynitrilases) 64
4.2.10	Screening of Glycoside Hydrolases 66
4.2.11	Screening Glycosyltransferases 66
4.3	Summary 68 References 68
5	Supporting Biocatalysis Research with Structural Bioinformatics 71 Nadine Schneider, Andrea Volkamer, Eva Nittinger, and Matthias Rarey
5.1	Introduction 71
5.2	Computational Tools to Assist Biocatalysis Research 71
5.2.1	Computational Tools for Protein Engineering 72
5.2.2	Computational Tools for Function Prediction and Analysis of Enzymes 73
5.3	From Active Site Analysis to Protein Stability Considerations 75
5.3.1	Computer-Aided Active Site Analysis of Protein Structures 76
5.3.1.1	DoGSite: Binding Site Detection and Derivation of Representative Binding Site Descriptors 77

Contents IX

5.3.1.2 5.3.2	DoGSiteScorer: Descriptor-Based Protein Classification 78 Molecular Docking to Assist Functional Characterization of New
5.3.3	Energetic Estimation of Protein-Ligand and Protein-Protein Interactions 81
5.3.3.1 5.3.3.2	The Concept behind the HYDE Scoring Function 82 HYDE – Estimation of Hydrogen Bonding and Dehydration Energy 83
5.3.3.3	Estimation of Protein-Protein Interactions Using HYDE 84
5.4	Applying DoGSiteScorer and HYDE to Biocatalytical Questions 85
5.4.1	Enzymatic Function Prediction Using the DoGSiteScorer 86
5.4.2	Docking-Based Functional Protein Classification 87
5.4.3	Predicting Potential Mutation Sites Using DoGSite and Molecular Modeling 88
5.4.4	Predicting the Potential of a Target to be Modulated by
	Low-Molecular-Weight Compounds 90
5.4.5	Prediction of Competitive Substrate Inhibition 91
5.4.6	Classification of Biological and Artificial Protein Complexes 93
5.4.7	Available Web Services to Support Biocatalysis Research 94
5.5	Conclusion and Future Directions 95
	Acknowledgments 96
	References 97
6	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg
6 6.1	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101
6 6.1 6.2	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102
6 6.1 6.2 6.3	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104
6 6.1 6.2 6.3 6.4	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105
 6.1 6.2 6.3 6.4 6.5 	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108
 6.1 6.2 6.3 6.4 6.5 6.6 	Engineering Proteases for Industrial Applications101Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, TimothyO'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich SchwanebergProteases in Industry101Serine Proteases and Subtilisins102Proteases as Additives in Laundry Detergents104Engineering B. lentus Alkaline Protease toward Increased Inhibitionby Benzylmalonic Acid105Engineering Subtilisin Protease toward Increased OxidativeResistance108Increasing Protease Tolerance against Chaotropic Agents111
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112
 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116 Acknowledgment 116
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering <i>B. lentus</i> Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116 Acknowledgment 116 References 117
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	 Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering B. lentus Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116 Acknowledgment 116 References 117 Part B Biocatalytic Synthesis 121
 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	 Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering B. lentus Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116 Acknowledgment 116 References 117 Part B Biocatalytic Synthesis 121
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	 Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering B. lentus Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116 Acknowledgment 116 References 117 Part B Biocatalytic Synthesis 121 Biocatalytic Synthesis of Natural Products by O-Methyltransferases 123
 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 	 Engineering Proteases for Industrial Applications 101 Ljubica Vojcic, Felix Jakob, Ronny Martinez, Hendrik Hellmuth, Timothy O'Connell, Helge Mühl, Michael G. Lorenz, and Ulrich Schwaneberg Proteases in Industry 101 Serine Proteases and Subtilisins 102 Proteases as Additives in Laundry Detergents 104 Engineering B. lentus Alkaline Protease toward Increased Inhibition by Benzylmalonic Acid 105 Engineering Subtilisin Protease toward Increased Oxidative Resistance 108 Increasing Protease Tolerance against Chaotropic Agents 111 Directed Evolution of Subtilisin E toward High Activity in the Presence of Guanidinium Chloride and Sodium Dodecylsulfate 112 Summary 116 Acknowledgment 116 References 117 Part B Biocatalytic Synthesis 121 Biocatalytic Synthesis of Natural Products by O-Methyltransferases 123 Ludger Wessiohann Anne-Katrin Bayer Martin Dinne Jakob Ley and

X Contents

7.1	Introduction 123
7.2	Classification and Mechanistic Aspects of
	O-Methyltransferases 124
7.3	Cofactor Dependence and Regeneration 126
7.4	Natural OMT Products in Industrial Applications 129
7.5	OMTs in Biocatalytic Synthesis 132
7.6	Challenges and Perspectives 139
7.7	Conclusions 141
	Abbreviations 141
	Acknowledgments 142
	References 142
0	Discretely the Discrete synthesis of Matter balians 147
ö	BioCatalytic Prosphorylation of Metabolites 14/
	Dominik Gauss, bernhard Schonenberger, Gelachew S. Molia, Birnanu M.
	Kiniu, Jenniier Chow, Anareas Liese, Woligang R. Streit, and
0 1	Roland Wongemuch
0.1	Sunthatic Aspects of Diagotalytic Dhamhamilations 140
0.2 0.2 1	Piocetalytic O Describerylations 149
0.2.1	Biocatalytic O-Phosphorylations 149
0.2.2	Biocatalytic N-Phosphorylations 151
0.2.3	Biocatalytic C-Phosphorylations 151
0.2.4	Division Development of Analytical Matheda 152
0.0	Separation Methodologies 152
0.3.1	Spartion Methodologies 152
0.J.2 Q /	Stability of Dhosphorylated Matabalitas 154
0. 4 8.5	Phosphate Dopors 156
8.6	Emerging Biocatalytic Phosphorylation Reactions 157
87	Reaction Engineering for Biocatalytic Phosphorylation
0.7	Processes 160
871	Reaction System Ontimization 160
872	Reaction Kinetics of Biocatalytic Phosphorylation 164
8.7.3	Process Optimization 165
8.8	Summary and Outlook 167
	References 168
9	Flavonoid Biotechnology – New Ways to High-Added-Value
	Compounds 179
	Ioannis V. Pavlidis, Mechthild Gall, Iorsten Geißler, Egon Gross, and Uwe I.
	Bornscheuer
9.1	Flavonoids 1/9
9.1.1	Flavonoids Chemistry 179
9.1.2	Bioactivity of Flavonoids 179
9.1.2.1	Kole of Flavonoids in Plants $1/9$
9.1.2.2	Nutritional and Health Benefits for Human 181
9.2	Nietadolic Pathways of Flavonoids 182

Contents XI

9.2.1	Biosynthesis of Flavonoids in Plants 182
9.2.2	Degradation Pathways 183
9.3	Biotechnological Processes for the Production of High-Added-Value Flavonoids 186
9.3.1	Host Systems for the Production of Flavonoids 187
9.3.2	Reconstitution of Biosynthetic Pathways for the Production of
	Natural Occurring Flavonoids 187
9.3.3	Production of High-Added-Value Flavonoids or Novel (Nonnaturally Occurring) Flavonoids 189
9.4	Future Prospects 191
	Acknowledgments 192
	References 192
10	Transaminases – A Biosynthetic Route for Chiral Amines 199
	Henrike Brundiek and Matthias Höhne
10.1	Introduction 199
10.2	Biocatalysts as Attractive Alternatives to Access Enantiopure Chiral
	Amines 199
10.3	Transaminases as a Biosynthetic Route for Chiral Amines 201
10.4	Amine Transaminases (ATAs) for the Production of Chiral
	Amines 203
10.4.1	Transaminase Mechanism 203
10.4.2	(R)- and (S)-Selective ATAs 204
10.5	Kinetic Resolution and Asymmetric Reductive Amination Using ATAs 207
10.5.1	Kinetic Resolution of Amines Employing ATAs 207
10.5.2	Asymmetric Synthesis of Amines Using ATAs 208
10.5.3	Recent Advances in Industrially Relevant Asymmetric Reductive
	Amination Reactions 211
10.5.4	ATA Screening Kit 212
10.6	Outlook 213
	Acknowledgment 214
	References 214
11	Biocatalytic Processes for the Synthesis of Chiral Alcohols 219
	Gao-Wei Zhena Van Ni and Jian-He Xu
11 1	Introduction 210
11.1	Statin Side Chain 220
11.2	Reductase and Dehalogenase 220
11.2.1	Nitrilace 223
11.2.2	Aldolase 223
11.2.5	Lipse 224
11.2. т	a-Chloromandelic Acid and Its Derivatives 226
11 3 1	Hydroxynitrile I vase 226
11 3 2	Nitrilace 227
11 3 3	Ketoreductase 228
11.0.0	Actoreductuse 220

XII Contents

11.4	Ethyl 2-Hydroxy-4-phenylbutyrate 229
11.4.1	Lipase 229
11.4.2	Reductase 229
11.5	Ethyl 4-Chloro-3-hydroxybutanoate 230
11.5.1	Ketoreductase 231
11.5.2	Halohydrin Dehalogenase 232
11.6	3-Quinuclidinol 232
11.6.1	Protease 232
11.6.2	Ketoreductase 233
11.7	3-Hydroxy-3-phenylpropanenitrile 235
11.7.1	Lipase 235
11.7.2	Nitrilase 236
11.7.3	Ketoreductase 236
11.8	Menthol 237
11.9	Halogen-Substituted 1-Phenylethanol 240
11.9.1	1-(4'-Fluorophenyl)ethanol 240
11.9.2	2,2,2-Trifluoro-1-phenylethanol 240
11.9.3	1-[3',5'-Bis-(Trifluoromethyl)phenyl]ethanol 241
11.9.4	2-Chloro-1-phenylethanol 242
11.9.5	1-(4'-Chlorophenyl)ethanol 243
11.10	Summary and Outlook 243
	References 244

Part C Reaction and Process Engineering 251

12	Inorganic Adsorbents in Enzymatic Processes 253 Ulrich Sohling, Kirstin Suck, Patrick Jonczyk, Friederike Sander, Sascha Beutel, Thomas Scheper, Axel Thiefes, Ute Schuldt, Claudia Aldenhoven, Gabriella Egri, Lars Dähne, Annamaria Fiethen, Hubert Kuhn, Oliver Wenzel, Heike Temme, Bernd Niemeyer, Paul Bubenheim, and Andreas Liese
12.1	Introduction 253
12.1.1	Inorganic Adsorbents 254
12.1.1.1	Kerolite Clays 254
12.1.1.2	Synthetic Zeolites 254
12.1.1.3	Aluminum Oxide/Oxide Hydrate and Amorphous
	Aluminosilicate 257
12.1.1.4	Precipitated silica 258
12.2	Porous Inorganic Adsorbents for Enzyme Purification Processes
	(Alumina, Aluminosilicates, Precipitated Silica) 259
12.2.1	Introduction 259
12.2.2	Static Adsorption Experiments 260
12.2.3	Dynamic Adsorption Systems 261
12.2.4	Lipase and Esterase Purification from Culture Supernatants 262
12.2.5	Conclusion 265

Contents XIII

12.3	Immobilization of Phospholipase A1 and A2 for the Degumming of Edible Oils 265
12.4	Immobilization of <i>Alcohol Dehydrogenase</i> 'A' and <i>Candida antarctica</i> Lipase B on Precipitated Silica by Layer-by-Layer-Technology 270
12.5	Molecular Modeling Calculations of the ADH-'A' Immobilization onto Polyelectrolyte Surfaces 273
12.5.1	The Polyethylenimine Layer on the Substrate Surface 273
12.5.2	Modeling of the Physisorption of the ADH-'A' 274
12.5.3	Prediction of the Orientations of the ADH in the Covalently Coupled
	Form 277
12.5.4	Conclusions 277
12.6	Application of Clays and Zeolites for Adsorption of Educts and Products of Reactions with Alcohol Dehydrogenase in Aqueous Reaction Media 278
12.7	Product Separation from Complex Mixtures of Biocatalytic Transformations 283
1271	Separation of Diols from Ketone – Alcohol Mixtures 283
12.7.1	Continuous Production and Discontinuous Selective Adsorption of
	Short-Chain Alcohols in a Fixed-Bed Reactor with Alumina
	Oxides 287
12.9	Summary and Outlook 290
	Acknowledgment 291
	References 291
13	Industrial Application of Membrane Chromatography for the
13	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297
13	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper
13 13.1	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 208
13 13.1 13.2 12.2 1	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298
13 13.1 13.2 13.2.1 13.2.2	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298
13 13.1 13.2 13.2.1 13.2.2 13.2.2	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute
1313.113.213.2.113.2.213.2.3	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299
 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301
 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302
 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302
 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 13.4.2 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302 Membrane Adsorber Modules 302
 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 13.4.2 13.5 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302 Membrane Adsorber Modules 302
 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 13.4.2 13.5 13.6 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302 Membrane Adsorber Modules 302 Case Study 1: Purification of Penicillin G Amidase 302 Case Study 2: Purification of Cellulase Cel5A 307
 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 13.4.2 13.5 13.6 13.7 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302 Membrane Adsorber Modules 302 Case Study 1: Purification of Penicillin G Amidase 302 Case Study 2: Purification of Cellulase Cel5A 307 Case Study 3: Purification of Lipase aGTL 310
 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 13.4.2 13.5 13.6 13.7 13.8 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302 Membrane Adsorber Modules 302 Case Study 1: Purification of Penicillin G Amidase 302 Case Study 2: Purification of Cellulase Cel5A 307 Case Study 3: Purification of Lipase aGTL 310 Conclusion and Outlook 313
 13.1 13.2 13.2.1 13.2.2 13.2.3 13.3 13.4 13.4.1 13.4.2 13.5 13.6 13.7 13.8 	Industrial Application of Membrane Chromatography for the Purification of Enzymes 297 Sascha Beutel, Louis Villain, and Thomas Scheper Introduction 297 Membrane Adsorber 298 Used Membrane Platform 298 Used Functional Groups 299 Membrane Adsorber Module Design for Bind&Elute Application 299 Case Studies and Used Model Enzymes 301 Experimental 302 Chemicals 302 Membrane Adsorber Modules 302 Case Study 1: Purification of Penicillin G Amidase 302 Case Study 2: Purification of Cellulase Cel5A 307 Case Study 3: Purification of Lipase aGTL 310 Conclusion and Outlook 313 Acknowledgment 313

XIV Contents

14	Fermentation of Lactic Acid Bacteria: State of the Art and New Perspectives 317
	Ralf Pörtner, Rebecca Faschian, and Detlef Goelling
14.1	Introduction 317
14.1.1	Taxonomy and Metabolism 317
14.1.2	Applications of LAB 319
14.1.2.1	LAB in Dairy Industry 319
14.1.2.2	LAB Used for the Production of Lactic Acid 320
14.1.2.3	LAB Used for the Production of 3-HPA 321
14.2	Factors Effecting Growth and Productivity of Lactic Acid Bacteria 322
14.3	Fermentation Techniques for Growth and Production 323
14.4	Case Study: Fixed-Bed Reactor with Immobilized Cells 328
14.4.1	Fixed-Bed Reactor System – Principle 328
14.4.2	Examples for Fixed-Bed Cultivation 330
14.5	Conclusions 335
	Acknowledgment 336
	References 337
15	The Bubble Column Reactor: A Novel Reactor Type for Cosmetic
	Esters 343
	Sören Baum, Jakob J. Mueller, Lutz Hilterhaus, Marrit Eckstein, Oliver Thum,
	and Andreas Liese
15.1	Introduction 343
15.2	Bubble Column Reactor in Comparison to Other Reactor
	Types 346
15.2.1	Bubble Column Reactor 346
15.2.2	Other Reactor Types for the Synthesis of Cosmetic Esters 348
15.3	Case Study: Enzymatic Production of Cosmetic Esters 349
15.3.1	Synthesis of High-Viscous Polyglycerol-3 Laurate 349
15.3.2	Synthesis of Low-Viscous Myristyl Myristate 351
15.3.3	Synthesis of High-Viscous α -Methyl Glycoside Laurate 355
15.4	<i>In situ</i> Online Measurements in a Bubble Column Reactor by Means of Fourier Transformed Mid-Infrared Spectroscopy 357
15 / 1	Online Monitoring of Fatty Acid Conversion and Water
13.1.1	Concentration 358
1542	Online Monitoring of Mono- Di- and Triglycerides
10.1.2	Composition 362
15.5	Summary and Outlook 364
	References 365
16	Pharmaceutical Intermediates by Biocatalysis: From Fundamental
	Science to Industrial Applications 367
	Ramesh N. Patel
16.1	Introduction 367

Contents XV

16.2	Boceprevir: Oxidation of 6,6-Dimethyl-3-azabicyclo[3.1.0]hexane by Monoamine Oxidase 367
16.3	Pregabalin: Enzymatic Preparation of (<i>S</i>)-3-Cyano-5-methylhexanoic Acid Ethyl Ester 369
16.4	Glucagon-Like Peptide-1 (GLP-1): Enzymatic Synthesis of (<i>S</i>)-Amino-3-[3-{6-(2-methylphenyl)} pyridyl]-propionic Acid 371
16.5	Rhinovirus Protease Inhibitor: Enzymatic Preparation of (<i>R</i>)-3-(4-Fluorophenyl)-2-hydroxy Propionic Acid <i>373</i>
16.6	Saxagliptin: Enzymatic Synthesis of (<i>S</i>)- <i>N</i> -boc-3-Hydroxyadamantylglycine 374
16.7	Sitagliptin: Enzymatic Synthesis of Chiral Amine 375
16.8	Montelukast: Enzymatic Reduction for the Synthesis of Leukotriene D (LTD) 4 Antagonists 377
16.9	Clopidogrel: Enzymatic Preparation of (<i>S</i>)-2-Chloromandelic Acid Esters <i>378</i>
16.10	Calcitonin Gene-Related Peptide Receptors Antagonist: Enzymatic Preparation of (<i>R</i>)-2-Amino-3-(7-methyl-1 H-indazol-5-yl)propanoic Acid <i>379</i>
16.11	Chemokine Receptor Modulators: Enzymatic Desymmetrization of Dimethyl Ester 381
16.12	Regioselective Enzymatic Acylation of Ribavirin 383
16.13	Atorvastatin: Enzymatic Preparation of
	(<i>R</i>)-4-Cyano-3-hydroxybutyrate 384
16.14	Atazanavir, Telaprevir, Boceprevir: Enzymatic Synthesis of (S)-Tertiary-leucine
16.15	Relenza (Zanamivir): Enzymatic Synthesis of <i>N</i> -Acetylneuraminic Acid 387
16.16	Atorvastatin, Rosuvastatin: Aldolase-Catalyzed Synthesis of Chiral Lactol Intermediates 389
16.17	Anticancer Drugs: Epothilone B and Microbial Hydroxylation of Epothiolone B <i>390</i>
16.18	Corticotropin-Releasing Factor-1 (CRF-1) Receptor Antagonist: Enzymatic Synthesis of (S)-1-Cyclopropyl-2-methoxyethanamine 392
16.19	Conclusion 393 Acknowledgment 394 References 395
17	Biocatalysis toward New Biobased Building Blocks for Polymeric Materials 405
	Katrien Bernaerts, Luuk Mestrom, and Stefaan De Wildeman
17.1	Introduction 405
17.2	Questions and Answers that Lead Us toward Sustainability in Plastic Materials 406

XVI Contents

17.2.1	How Dominant Are the Fossil "Evergreen" Building Blocks Used
17.2.2	How Matching (to Their Applications) Are the Plastics We Use
17.2.3	How Do We Measure Ecological Impact of Biobased Materials
1704	Here Clobal Can a Piceson arry Po2 400
17.2.4	How Giobai Call a Dioeconolly De: 409
17.2.3	Market? 410
17.2.6	How Are Biobased Products Perceived? 410
17.2.7	"Biobased Building Blocks Have a Large Potential." Which Biobased Building Blocks Have a Large Potential? 411
1728	New Resources – New Laws 412
17.3	Criteria and Qualifiers for New Biobased Building Blocks for Plastics
17.5	Applications 413
17.4	Criteria and Oualifiers for Launching New Biobased Building Blocks
	for Plastics Applications in New Value Chains 414
17.5	Position of Biobased Building Blocks Innovation in the Plastics
	Pyramid 414
17.6	Biocatalysis Conversions and Challenges toward newBBBB 415
17.6.1	EC 1: Oxidoreductases 416
17.6.1.1	Reported and/or Established Biocatalyzed Redox Reactions toward
	newBBBB 417
17.6.1.2	Challenging but Potentially Desired Biocatalytic Redox Reactions
	toward newBBBB 418
17.6.2	EC 2: Transferases 420
17.6.3	EC 3: Hydrolases 420
17.6.4	EC 4: Lyases 421
17.6.4.1	Hydratases: Broader Substrate Spectrum on Unactivated Double
	Bonds 422
17.6.4.2	Cyclases 422
17.7	Biocatalytic Cascade Reactions to Functional Building Blocks for
	Materials 423
17.7.1	Example 1: Complete Biocatalytic Conversion from Amino Acid Waste 423
17.7.2	Example 2: Enzymatic Resolution as a Tool to Upgrade the Material
	Properties 423
17.7.2.1	Example 3: Exploiting Regioselective Control for New BBBBs 423
17.8	Conclusion 424
	References 426

Index 429