Contents

List of Contributors xiiiAbout the Series Editors xv v

1 Introduction and Overview 1 John Villadsen

Part One Fundamentals of Bioengineering 3

2	Experimentally Determined Rates of Bio-Reactions 5 John Villadsen Summary 5
2.0	Introduction 5
2.1	Mass Balances for a CSTR Operating at Steady State 7
2.2	Operation of the Steady-State CSTR 13
	References 16
3	Redox Balances and Consistency Check of Experiments 17
	John Villadsen
	Summary 17
3.1	Black-Box Stoichiometry Obtained in a CSTR Operated
	at Steady State 17
3.2	Calculation of Stoichiometric Coefficients by Means
	of a Redox Balance 20
3.3	Applications of the Redox Balance 23
3.4	Composition of the Biomass $X = 28$
3.5	Combination of Black-Box Models 30
3.6	Application of Carbon and Redox Balances in Bio-Remediation
	Processes 34
	References 38
4	Primary Metabolic Pathways and Metabolic Flux Analysis 39
	John Villadsen
	Summary 39

VI Contents

4.0	Introduction 39
4.1	Glycolysis 43
4.2	Fermentative Metabolism: Regenerating the NAD ⁺
	Lost in Glycolysis 47
4.3	The TCA Cycle: Conversion of Pyruvate to NADH + $FADH_2$,
	to Precursors or Metabolic Products 50
4.4	NADPH and Biomass Precursors Produced in the PP Pathway 56
4.5	Oxidative Phosphorylation: Production of ATP from
	NADH (FADH ₂) in Aerobic Fermentation 57
4.6	Summary of the Biochemistry of Primary Metabolic
	Pathways 59
4.7	Metabolic Flux Analysis Discussed in Terms of Substrate
	to Product Pathways 61
4.8	Metabolic Flux Analysis Discussed in Terms of Individual
	Pathway Rates in the Network 88
4.9	Propagation of Experimental Errors in MFA 94
4.10	Conclusions 96
	References 96
5	A Primer to ¹³ C Metabolic Flux Analysis 97
	Wolfgang Wiechert, Sebastian Niedenführ, and Katharina Nöh
	Summary 97
5.1	Introduction 97
5.2	Input and Output Data of ${}^{13}C$ MFA 99
5.3	A Brief History of ¹³ C MFA 101
5.4	An Illustrative Toy Example 102
5.5	The Atom Transition Network 104
5.6	Isotopomers and Isotopomer Fractions 104
5.7	The Isotopomer Transition Network 105
5.8	Isotopomer Labeling Balances 107
5.9	Simulating an Isotope Labeling Experiment 109
5.10	Isotopic Steady State 110
5.11	Flux Identifiability 112
5.12	Measurement Models 113
5.13	Statistical Considerations 114
5.14	Experimental Design 115
5.15	Exchange Fluxes 116
5.16	Multidimensional Flux Identifiability 118
5.17	Multidimensional Flux Estimation 120
5.18	The General Parameter Fitting Procedure 121
5.19	Multidimensional Statistics 123
5.20	Multidimensional Experimental Design 124
5.21	The Isotopically Nonstationary Case 127
5.22	Some Final Remarks on Network
	Specification 130

 5.23 Algorithms and Software Frameworks for ¹³C MFA 132 Glossary 135 References 137

6 Genome-Scale Models 143

- Basti Bergdahl, Nikolaus Sonnenschein, Daniel Machado, Markus Herrgård, and Jochen Förster
- Summary *143* 6.1 Introduction *143*
- b.1 Introduction 143
- 6.2 Reconstruction Process of Genome-Scale Models 144
- 6.3 Genome-Scale Model Prediction 147
- 6.3.1 Mathematical Description of Biochemical Reaction Systems 147
- 6.3.2 Constraint-Based Modeling 148
- 6.3.3 Pathway Analysis 148
- 6.3.4 Flux Balance Analysis 150
- 6.3.5 Engineering Applications of Constraint-Based Modeling 151
- 6.4 Genome-Scale Models of Prokaryotes 152
- 6.4.1 Escherichia Coli 153
- 6.4.2 Other Prokaryotes 156
- 6.4.3 Prokaryotic Communities 158
- 6.5 Genome-Scale Models of Eukaryotes 159
- 6.5.1 Saccharomyces Cerevisiae 160
- 6.5.2 Other Unicellular Eukaryotes *164*
- 6.5.3 Other Multicellular Eukaryotes 166
- 6.6 Integration of Polyomic Data into Genome-Scale Models 169
- 6.6.1 Integration of Transcriptomics and Proteomics Data 170
- 6.6.2 Metabolomics Data 171
- 6.6.3 Integration of Multiple *Omics* 172 Acknowledgment 172 References 173

7 Kinetics of Bio-Reactions 183

John Villadsen

Summary 183

- 7.1 Simple Models for Enzymatic Reactions and for Cell Reactions with Unstructured Biomass 184
- 7.2 Variants of Michaelis–Menten and Monod kinetics 189
- 7.3 Summary of Enzyme Kinetics and the Kinetics for Cell Reactions 201
- 7.4 Cell Reactions with Unsteady State Kinetics 203
- 7.5 Cybernetic Modeling of Cellular Kinetics *211*
- 7.6 Bioreactions with Diffusion Resistance 213
- 7.7 Sequences of Enzymatic Reactions: Optimal Allocation of Enzyme Levels 221 References 230

VIII Contents

8	Application of Dynamic Models for Optimal Redesign
	of Cell Factories 233
	Matthias Reuss
	Summary 233
8.1	Introduction 233
8.2	Kinetics of Pathway Reactions: the Need to Measure in a
	Very Narrow Time Window 235
8.2.1	Sampling 238
8.2.2	Quenching and Extraction 240
8.2.3	Analysis 241
8.2.4	Examples for Quantitative Measurements of Metabolites
	in Stimulus–Response Experiments 242
8.3	Tools for In Vivo Diagnosis of Pathway Reactions 245
8.3.1	Modular Decomposition of the Network: the Bottom-Up
	Approach 247
8.4	Examples: The Pentose-Phosphate Shunt and Kinetics of
	Phosphofructokinase 247
8.4.1	Kinetics of the Irreversible Reactions of the Pentose-Phosphate
	Shunt 247
8.4.2	Kinetics of the Phophofructokinase I (PFK1) 252
8.5	Additional Approaches for Dynamic Modeling Large Metabolic
	Networks 256
8.5.1	Generalized Mass Action 259
8.5.2	S-Systems Approach 260
8.5.3	Convenience Kinetics 260
8.5.4	Log–Lin and Lin–Log Approaches 260
8.6	Dynamic Models Used for Redesigning Cell Factories.
	Examples: Optimal Ethanol Production in Yeast
	and Optimal Production of Tryptophan in E. Coli 268
8.6.1	Dynamic Model 269
8.6.2	Metabolic Control (Sensitivity) Analysis 270
8.6.3	Synthesis Amplification of Hexose Transporters 271
8.6.4	Objective Function 273
8.6.5	Optimal Solutions 275
8.6.6	Flux Optimization of Tryptophan Production with
	E. Coli 276
8.7	Target Identification for Drug Development 280
	References 285
9	Chemical Thermodynamics Applied in Bioengineering 293
	John Villadsen
	Summary 293
9.0	Introduction 293
9.1	Chemical Equilibrium and Thermodynamic State
	Functions 296

- 9.2 Thermodynamic Properties Obtained from Galvanic Cells 305
- 9.3 Conversion of Free Energy Harbored in NADH and FADH₂ to ATP in Oxidative Phosphorylation *310*
- 9.4 Calculation of Heat of Reaction $Q=(-\Delta H_c)$ and of $(-\Delta G_c)$ Based on Redox Balances 312 References 317

Part Two Bioreactors 319

- 10 Design of Ideal Bioreactors 321 John Villadsen Summary 321
- 10.0 Introduction 321
- 10.1 The Design Basis for a Once-Through Steady-State CSTR 322
- 10.2 Combination of Several Steady-State CSTRs in Parallel or in Series *329*
- 10.3 Recirculation of Biomass in a Single Steady-State CSTR 332
- 10.4 A Steady-State CSTR with Uptake of Substrates from a Gas Phase 338
- 10.5 Fed-Batch Operation of a Stirred Tank Reactor in the Bio-Industry *340*
- 10.6 Loop Reactors: a Modern Version of Airlift Reactors 349 References 355
- 11 Mixing and Mass Transfer in Industrial Bioreactors 357 John Villadsen Summary 357

11.0 Introduction 357

- 11.1 Definitions of Mixing Processes 358
- 11.2 The Power Input *P* Delivered by Mechanical Stirring 362
- 11.3 Mixing and Mass Transfer in Industrial Reactors 367
- 11.4 Conclusions 372 References 376

Part Three Downstream Processing 379

12	Product Recovery from the Cultures 381	
	Sunil Nath	
	Summary 381	
12.0	Introduction 381	
12.1	Steps in Downstream Processing and Product Recovery	383
12.2	Baker's Yeast 383	

X Contents

•	
12.3	Xanthan Gum 384
12.4	Penicillin 385
12.5	α-A Interferon 386
12.6	Insulin 390
12.7	Conclusions 391
	References 391
13	Purification of Bio-Products 393
	Sunil Nath
	Summary 393
13.1	Methods and Types of Separations in Chromatography 394
13.2	Materials Used in Chromatographic Separations 396
13.3	Chromatographic Theory 398
13.4	Practical Considerations in Column Chromatographic
	Applications 399
13.5	Scale-Up 401
13.6	Industrial Applications 402
13.7	Some Alternatives to Column Chromatographic Techniques 403
13.8	Electrodialysis 403
13.9	Electrophoresis 404
13.10	Conclusions 407
	References 407

Part Four Process Development, Management and Control 409

14	Real-Time Measurement and Monitoring of Bioprocesses 411 Bernhard Sonnleitner Summary 411
14.1	Introduction 411
14.2	Variables that should be Known 414
14.3	Variables Easily Accessible and Standard 415
14.4	Variables Requiring More Monitoring Effort and Not Yet
	Standard 422
14.4.1	Biomass 422
14.4.2	Products and Substrates 427
14.5	Data Evaluation 433
	References 434
15	Control of Bioprocesses 439 Jakob Kjøbsted Huusom
	Summary 439
15.1	Introduction 439
15.2	Bioprocess Control 440
15.2.1	Design Variables in Bioreactor Control 443

- 15.2.2 Challenges with Respect to Control of a Bioreactor 450
- 15.3 Principles and Basic Algorithms in Process Control 450
- 15.3.1 Open Loop Control 450
- 15.3.2 Feed-forward and Feedback Control 451
- 15.3.3 Single-Loop PID Control 452
- 15.3.4 Diagnostic Control Strategies 456
- 15.3.5 Plant-Wide Control Design 458 References 460

16 Scale-Up and Scale-Down 463 Henk Noorman Summary 463

- 16.1 Introduction 463
- 16.2 Description of the Large Scale 465
- 16.2.1 Mixing 468
- 16.2.2 Mass Transfer 472
- 16.2.3 CO₂ Removal 475
- 16.2.4 Cooling 475
- 16.2.5 Gas-Liquid Separation 476
- 16.3 Scale Down 480
- 16.3.1 One-Compartment Systems 482
- 16.3.2 Two-Compartment Systems 484
- 16.4 Investigations at Lab Scale 485
- 16.4.1 Gluconic Acid 485
- 16.4.2 Lipase 486
- 16.4.3 Baker's Yeast 488
- 16.4.4 Penicillin 490
- 16.5 Scale Up *491*
- 16.6 Outlook 494 References 495
- 17 Commercial Development of Fermentation Processes 499 Thomas Grotkjær Summary 499
- 17.1 Introduction 499
- 17.2 Basic Principles of Developing New Fermentation Processes 501
- 17.3 Techno-economic Analysis: the Link Between Science, Engineering, and Economy 506
- 17.3.1 Value Drivers and Production Costs of Fermentation Processes 506
- 17.3.2 Assessment of New Fermentation Technologies 519
- 17.3.3 Assessment of Competing Petrochemical Technologies 526
- 17.4 From Fermentation Process Development to the Market 528
- 17.4.1 The Value Chain of the Chemical Industry 530
- 17.4.2 Innovation and Substitution Patterns in the Chemical Industry 534
- 17.5 The Industrial Angle and Opportunities in the Chemical Industry 537

XII Contents

17.6 Evaluation of Business Opportunities 540
17.7 Concluding Remarks and Outlook 542 Acknowledgment 543 References 543

Index 547