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Electrophilic Alkylation of Arenes

1.1
General Aspects

For large-scale industrial organic syntheses, electrophilic alkylations of arenes
are essential (Scheme 1.1). Their attractive features include the absence of waste
when alcohols or olefins are used as electrophiles, the large scope of available
starting materials, and the high structural complexity attainable in a single step.
The main issues are low regioselectivity, overalkylations, and isomerization of
the intermediate carbocations. Important products resulting from this chemistry
include isopropylbenzene (cumene – starting material for phenol and acetone),
ethylbenzene (starting material for styrene), methylphenols, geminal diarylalkanes
(monomers for polymer production), trityl chloride (from CCl4 and benzene [1]),
dichlorodiphenyltrichloroethane (DDT) (from chloral and chlorobenzene), and
triarylmethane dyes.

To obtain acceptable yields, careful optimization of most reaction parameters is
often required. Because the reactivity of an arene increases upon alkylation (around
2–3-fold for each new alkyl group), multiple alkylation can be a problem. This
may be prevented by keeping the conversion low, or by modifying the reaction
temperature, the concentration, the rate of stirring, or the solvent used (e.g.,
to provide for a homogeneous reaction mixture). In dedicated plants, processes
are usually run at low conversion if the starting materials can be recycled. In
the laboratory or when working with complex, high-boiling compounds, though,
electrophilic alkylations of arenes can be more difficult to perform.

Typical electrophilic alkylating reagents for arenes include aliphatic alcohols,
alkenes, halides, carboxylic and sulfonic esters, ethers, aldehydes, ketones, and
imines. Examples of alkylations with carbonates [2], ureas [3], nitroalkanes [4],
azides [5], diazoalkanes [6], aminoalcohols [7], cyclopropanes [8], and thioethers
(Scheme 1.14) have also been reported. Amines can be used as alkylating agents
either via intermediate conversion to N-alkylpyridinium salts [9] or by transient
dehydrogenation to imines [10]. Some examples of Friedel–Crafts alkylation are
given in Scheme 1.2.

In most instances, the electrophilic alkylation of arenes proceeds via
carbocations, and complete racemization of chiral secondary halides or alcohols is
usually observed. Only if neighboring groups are present and capable of forming
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Scheme 1.1 Mechanism of the Friedel–Crafts alkylation.

cyclic configurationally stable cations, arylations can occur with retention of
configuration [18].

Stabilized carbocations (e.g., tertiary carbocations) are easy to generate, but they
are less reactive (and more selective) than less stable cations. Thus, the trityl or
tropylium (C7H7

+) cations react with anisole but not with benzene. On the other
hand, carbocations destabilized by a further positively charged group in close
proximity will show an increased reactivity [7, 19]. Highly stabilized cations may
even be generated and arylated under almost neutral reaction conditions [20].

1.1.1
Catalysis by Transition-Metal Complexes

Electrophilic alkylations of arenes by olefins or alkyl halides can be catalyzed
by soft electrophilic transition metals, for example, by Pd, Rh, or Ru complexes
(Scheme 1.3). Most of the reported examples proceed via aromatic metallation
through chelate formation. With Ru-based catalysts, selective meta-alkylation can
be achieved when using sterically demanding electrophiles (fifth equation in
Scheme 1.3).

Reactions where carbocation formation is the slowest (rate-determining) step can
be catalyzed by any compound capable of stabilizing the intermediate carbocation
(and thereby promote its formation). This form of catalysis should be most
pronounced in nonpolar solvents, in which free carbocations are only slightly
stabilized by solvation. Some transition-metal complexes, for example, IrCl3 and
H2[PtCl6], catalyze Friedel–Crafts alkylations with benzyl acetates, probably by
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Scheme 1.2 Examples of Friedel–Crafts alkylations [11–17].
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Scheme 1.3 Transitions-metal-catalyzed arene alkylations [21–26].
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Scheme 1.4 Catalysis of Friedel–Crafts alkylations [28].

transient formation of benzylic metal complexes (Scheme 1.4). Because racemi-
zation is also observed in these instances, the intermediate complexes are likely
to undergo fast transmetallation. Ru-based catalysts have been developed that
enable the preparation of enantiomerically enriched alkylbenzenes and alkylated
heteroarenes from racemic alcohols [27] (Scheme 1.18).

1.1.2
Typical Side Reactions

The rearrangement of intermediate carbocations is a common side reaction in
Friedel–Crafts chemistry (Scheme 1.5). Rearrangements can sometimes be avoided
with the aid of transition-metal-based catalysts, because the intermediate complexes
are less reactive than uncomplexed carbocations.

Carbocations can also act as oxidants and abstract hydride from other molecules
[31]. The newly formed carbocations may also alkylate arenes and lead to the
formation of complex product mixtures (Scheme 1.6).

When using noble metal halides as catalysts, or α-haloketones, α-haloesters
(Section 1.3.5), or perhaloalkanes as electrophiles, arenes may undergo
halogenation instead of alkylation (Scheme 1.7). Alkyl halides with the halogen



6 1 Electrophilic Alkylation of Arenes

+ F Br

BF3

0−20 °C, 2 h

89%

Br

64joc23174 eq 1 eq

+ TfO

1 eq 2 eq

5% AuCl3/3 AgOTf

120 °C, DCE, 48 h
+

40% 50%

04ja13596
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bound to good leaving groups (positions where a carbanion would be stabilized)
are electrophilic halogenating reagents.

If the concentration of alkylating reagent is too low, arenes may undergo
acid-catalyzed oxidative dimerization (Scholl reaction) [35]. This reaction occurs
particularly easily with electron-rich arenes, such as phenols and anilines.

1.2
Problematic Arenes

1.2.1
Electron-Deficient Arenes

Yields of alkylations of electron-deficient arenes by carbocations are usually low.
This is mainly because the reaction is too slow, and the carbocation undergoes rear-
rangement and polymerization before attacking the arene. If no alternative reaction
pathways are available for the carbocation, though, high-yielding Friedel–Crafts
alkylations of electron-deficient arenes can be achieved (Scheme 1.8).
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Scheme 1.8 Friedel–Crafts alkylation of electron-deficient arenes [36–38].
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Electron-deficient arenes can be alkylated by olefins or alkyl halides via inter-
mediate arene metallation. Chelate formation is usually required and crucial for
the regioselectivity of transition-metal-catalyzed reactions (Scheme 1.9). The Ru-
and Rh-catalyzed ortho-alkylation of acetophenones and acetophenone-imines by
alkenes can even proceed at room temperature [39]. With sterically demanding alkyl
halides, Ru complexes can mediate meta-alkylations [24]. When conducted in the
presence of oxidants, these reactions can yield styrenes instead of alkylbenzenes
[40–42] (see also Section 2.3).
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Scheme 1.9 Ru-, Rh-, and Pd-catalyzed, chelate-mediated alkylation of electron-deficient
arenes [43–46].

The metals used as catalysts for this ortho-alkylation of acetophenones insert
not only into C–H bonds but also at similar rates into C–O and C–N bonds
(Scheme 1.10). The selectivity can sometimes be improved by the precise choice of
the catalyst [47]. Another potential side reaction of the alkylations described above
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Scheme 1.10 Ru-catalyzed ortho-alkylation and -arylation of acetophenones [50, 51]. Further
examples: [52, 53].

is aromatic hydroxylation, which can readily occur if oxidants are present in the
reaction mixture [48, 49].

Some heteroarenes, such as pyridine N-oxides, thiazoles, or imidazoles, are
strongly C–H acidic, and can be metallated catalytically even without chelate
formation. In the examples in Scheme 1.11, the intermediates are, in fact, metal
carbene complexes.

Under forcing conditions, fluoro- or nitrobenzenes can also be metallated with-
out chelate formation, and trapped in situ with a number of electrophiles, including
aldehydes and ketones (Scheme 1.12). Owing to the competing Cannizzaro reaction
and the potential cleavage of ketones by strong nucleophiles (e.g., Haller–Bauer
reaction), these reactions may require a large excess of electrophile and
careful optimization.

Electron-deficient arenes and heteroarenes, such as pyridinium salts, can react
with carbon-centered, electron-rich radicals. These can be generated from alkanes,
alkyl halides, carboxylic acids, and some diacylperoxides [58] (Scheme 1.13), or
by oxidation of boranes [59]. The regioselectivity of such alkylations is, however,
often poor.

1.2.2
Phenols

Phenols are inherently problematic nucleophiles in Friedel–Crafts type chemistry
because the free hydroxyl group can deactivate Lewis acids and because phenols
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Scheme 1.11 Metallation and alkylation of C–H acidic heteroarenes [54–56].
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are tautomers of enones and may themselves act as electrophiles (see below).
Moreover, phenols readily dimerize to biaryls in the presence of oxidants.

Under suitable reaction conditions, though, phenols can be alkylated at carbon,
without extensive O-alkylation. Stabilized carbocations are soft electrophiles, and
react preferentially with soft nucleophiles, such as arenes or olefins. Phenol
O-alkylation under acidic conditions is observed only with hard alkylating reagents
(diazomethane, dimethyl carbonate, methanol, methyl esters, alkoxyphosphonium
salts (Mitsunobu reaction), or acetals). O-Alkylated phenols sometimes rearrange
to C-alkylated phenols in the presence of acids [66] (Scheme 1.14).

At high temperatures, phenols and aluminum phenolates are C-alkylated by
olefins (Scheme 1.15). This reaction proceeds less readily and has a narrower scope
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Scheme 1.13 Alkylation of arenes with radicals [59–64]. Further examples: [65].



12 1 Electrophilic Alkylation of Arenes

+

N

N

CO2HHO2C

CO2H

1 eq 10 eq

0.6 eq AgNO3

10 eq NH4S2O8

excess 10% aq H2SO4

80 °C
24%

N

N

N

NN

N

WO 2008048967

N

N

OH

+

KF3B

1 eq 1 eq

2.5 eq Mn(OAc)3

1 eq TFA

AcOH/H2O 1 : 1

50 °C, 18 h

59%
N

N

OH

11ol1852

N

+

N

I

Boc

1 eq 2 eq

0.9 eq FeSO4

6 eq H2O2 (30% in H2O)

2 eq H2SO4, DMSO

40 °C, 3 h

50%

N

N

Boc

09joc6354

Scheme 1.13 (Continued)

than the corresponding reaction of aluminum anilides (see next section). Although
ortho-alkylation occurs first, upon prolonged reaction with an excess of olefin,
2,4,6-trialkylated and higher alkylated phenols result [72, 73]. At high pressure,
even Diels–Alder reactions with the olefin may occur [74]. Today, a number of
important alkylphenols are prepared by high-temperature alkylations with olefins
in the presence of heterogeneous catalysts [73, 75].

Some bis-electrophiles can alkylate phenols both at oxygen and at carbon. 1,3-
Dienes, for instance, react with phenols in the presence of acids [78] or Rh
complexes [79] to yield chromanes (Scheme 1.16).

Phenols are tautomers of cyclohexadienones, and may react as such. In particu-
lar, 1- or 2-naphthols, 1,3-dihydroxybenzenes, and 1,3,5-trihydroxybenzenes show
strong cyclohexenone character. Phenols and arylethers react with arenes in the
presence of aluminum halides or HF/SbF5 to yield 3- or 4-arylcyclohexenones
[81–83]. The precise outcome of these reactions is difficult to predict; depending on
the amount of acid used and the basicity of the phenol, either conjugate arylation
of an enone or arylation of a dication can occur (Scheme 1.17). Moreover, 4,4-
disubstituted cyclohexenones, which also may be formed, undergo acid-mediated
rearrangement to 3,4-disubstituted cyclohexanones. Phenols substituted with leav-
ing groups (halides, hydroxyl groups) can undergo elimination after the arylation
and yield 3- or 4-arylphenols.
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Scheme 1.14 C-Alkylation of phenols and thiophenols under acidic conditions [67–71].

1.2.3
Anilines

Regardless of being N-protonated by acids, anilines can be alkylated at carbon and
at nitrogen under acidic reaction conditions. Suitable alkylating reagents include
alcohols, ethers, alkenes, aldehydes, ketones, and alkyl halides.

Despite the electron-withdrawing effect of ammonium groups, Friedel–Crafts
alkylations of anilines usually proceed with ortho and para selectivity, and more
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Scheme 1.15 Alkylation of aluminum phenolates with alkenes [76, 77].

OH

+

0.5% TfOH

DCE, 20 °C, 2 h

1.0 eq 1.5 eq

63%

O

11joc9353

OH
O

+
HO

HO

1.0 eq 1.2 eq

1% RuH(PhH)(PCy3)(CO)BF4

3 eq cyclopentene

PhMe, 100 °C, 12 h

43%

12ja7325
 

Scheme 1.16 Formation of chromanes from phenols [68, 80].

readily than Friedel–Crafts alkylations of the corresponding benzenes. Thus,
although aniline hydrochloride can be para-tritylated in acetic acid (first example
in Scheme 1.18), benzene does not react with the trityl cation.

The precise outcome of the reaction of anilines with alkylating reagents can
be difficult to predict. Stoichiometric amounts of strong acids usually favor C-
alkylations. At high temperatures or in the presence of acids, N-alkylanilines
may be dealkylated and act as alkylating agents themselves [91–93]. Occasionally,
mixtures of N- and C-alkylated products are obtained (Scheme 1.19).

If anilines are treated with aldehydes or ketones in the presence of acids at
room temperature, reversible aminal, imine, or enamine formation usually occurs.
Upon heating, irreversible alkylation at carbon can take place. Thus, if aniline is
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Scheme 1.17 Acid-mediated arylation of phenols [84, 85].

treated with formaldehyde at a low temperature, only aminals, benzylamines, or
Tröger’s base are formed. At higher temperatures, though, diarylmethanes are
the main products (Scheme 1.20). Hydride transfer from aldehydes or anilines to
intermediate iminium salts causes the formation of N-alkylanilines as byproducts.
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Scheme 1.18 Examples of C-alkylations of anilines [27, 86–90].
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Scheme 1.19 Examples of C- and N-alkylations of anilines [94–97]. Further examples:
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Scheme 1.20 Formation of diarylmethanes from anilines and formaldehyde [100–103].
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One side reaction often observed during the preparation of diarylmethanes from
anilines is the formation of triarylmethane dyes. A suitable oxidant is air, and
the oxidation can be catalyzed by vanadates (Scheme 1.21). Even if oxygen is
rigorously excluded, small amounts of these dyes will result from oxidation by the
intermediate iminium salts.

Anilines can be selectively ortho-alkylated with olefins under basic reaction
conditions. This requires conversion of the aniline into an aluminum anilide by
treatment with Al/AlCl3 (Scheme 1.22). This interesting reaction is, however, of
little scope, and not well suited to alkylate phenols [76].
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Scheme 1.21 Formation of triarylmethane dyes from diarylmethanes [104].
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Scheme 1.22 Alkylation of anilines with olefins [105–107]. Further examples: [108].
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1.2.4
Azoles

Azoles with a free NH group can be alkylated at nitrogen or at carbon. The outcome
of such reactions is barely predictable, in particular for substrates containing arenes
(e.g., indoles, benzimidazoles, etc.). Azoles may also be alkylated after stoichio-
metric metallation, which enhances the scope of regioselectivities even further.
N-Alkylation is favored by hard electrophiles (e.g., methylating reagents), while
soft electrophiles (e.g., olefins) lead sometimes to clean C-alkylations. Illustrative
examples of the alkylation of non-metallated azoles are given in Scheme 1.23.
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Scheme 1.23 Alkylation of azoles [109–111].

1.3
Problematic Electrophiles

1.3.1
Methylations

Because Friedel–Crafts alkylations require the formation of free carbocations or
carbocation-like intermediates, methylations do not proceed readily. Phenols can
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Scheme 1.24 Methylation of arenes with methanol, methyl chloride, and methyl radicals
[112–115].

be C-methylated with MeOH, but high temperatures are required (Scheme 1.24).
In acid-catalyzed methylations, free methyl cations are probably not formed, and a
complex of catalyst with the methylating reagent is more likely to be the reactive
intermediate [112].

1.3.2
Olefins

Upon reaction with an arene under acidic reaction conditions, unsymmetric olefins
can yield two different products: the one resulting from the more stable carbocation
(the Markovnikov product), or the one resulting from the less stable but more
reactive carbocation (the anti-Markovnikov product). As with other acid-mediated
additions to alkenes, arenes are usually alkylated by the predominant, more stable
carbocation. This can also be the case for transition-metal-catalyzed alkylations
[116]. Catalysts have been developed, however, that enable the preparation of linear
alkylarenes from terminal olefins [117, 118] (Scheme 1.3).
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Olefins substituted with electron-withdrawing groups (Michael acceptors) alky-
late arenes with the more electrophilic β-carbon (e.g., [119]). Nitroalkenes do so,
too, but may be hydrolyzed to ketones upon treatment with strong aqueous acids
(Scheme 1.25).
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Scheme 1.25 Aromatic alkylations with olefins [120, 121].

A typical side reaction of acid-mediated alkylations with olefins is the oligomer-
ization of the alkene. Styrenes and acrylates polymerize particularly easily. This can
sometimes be avoided by keeping the concentration of alkene low, because olefins
require a minimum concentration to polymerize. In the presence of oxidants or
transition metals, the reaction of arenes with olefins can yield styrenes instead of
alkylarenes (Section 2.3).

1.3.3
Allylic Electrophiles

The reaction of arenes with allylic electrophiles often yields mixtures of isomeric
products. It is not always the dominant (more stable but less reactive) resonance
formula that controls regioselectivity; steric effects also influence the course of the
reaction (Scheme 1.26). The results may always be rationalized somehow, but the
predictive value of such rationalizations is limited.

In the presence of acids, allylic electrophiles are synthetic equivalents of the
1,3-propylene dication. Accordingly, one potential side reaction is the cyclization
of the product to yield indanes. Such cyclizations can sometimes be avoided by a
large excess of arene. If Pd-based catalysts are used, Heck-type vinylations (instead
of allylic substitution) are a further side reaction to be expected (Scheme 1.27).
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Scheme 1.26 Examples of the alkylation of arenes with allylic electrophiles [122–124]. Fur-
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Scheme 1.27 Cyclizations and Heck reaction of allylic electrophiles [126–128].
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Acrylates are a further type of 1,3-dielectrophile that can cause the formation of
bicyclic products upon acid-mediated reaction with arenes (Scheme 1.28).
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Scheme 1.28 Acid-mediated reactions of acrylic acids with arenes [129].

1.3.4
Epoxides

Arenes are usually alkylated by epoxides at the carbon atom that forms the
more stable carbocation. Alkyl-, aryl-, or alkenylepoxides will therefore mostly
yield primary alcohols, while epoxides substituted with electron-withdrawing
groups will mostly yield secondary alcohols. Epichlorohydrin and glycidyl ethers
also tend to yield secondary alcohols upon acid-mediated reaction with arenes
(Scheme 1.29).

Epoxides are reactive intermediates and may lead to product mixtures if
the reaction conditions are not carefully chosen. Typical side reactions include
rearrangement of the oxiranes to aldehydes or ketones, dimerization or oligomer-
ization of the oxirane, and alkylation of the arene by the newly formed alcohol
(Scheme 1.30).



24 1 Electrophilic Alkylation of Arenes

N
H

+
Cl

O

montmorillonite

SbCl3
20 °C, 0.3 h

70%
N
H

OH

Cl

09thl916

O

O

2.5% AuCl3/3 AgOTf

DCE, 83 °C, 4 h

65%

O

OH

04ja5964

H
N

H
N

H
NS

Tol

OO

(racemic)

N

S
Tol

O

O

+

0.1 eq InCl3
CH2Cl2

20 °C, 6.5 h

74%

1.0 eq 1.4 eq
02thl1565

Scheme 1.29 Examples of the alkylation of arenes with epoxides and aziridines [130–132].
Further examples: [133].
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Scheme 1.30 Side reactions during the alkylation of arenes by epoxides [134–136].
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1.3.5
𝛂-Haloketones and Related Electrophiles

Alkylhalides with the halogen attached to a C–H acidic position (α-haloketones,
α-haloesters, α-halonitriles, etc.) display a peculiar reactivity. Removal of the halide
to produce a (destabilized) carbocation is difficult, and only a few examples of
acid-catalyzed arene alkylations with such electrophiles have been reported [137,
138] (Scheme 1.31). Nucleophilic substitutions at such alkyl halides, however, can
proceed with ease. Initial addition of the nucleophile to the carbonyl group is a
possible reason for the enhanced reactivity of these electrophiles [139].

+

O

Cl

7.5 eq 1 eq

2 eq AlCl3
80 °C, 5 h

32%

O

40ja1622

CO2Me

O
S

O O

4 eq C6H6, 2 eq AlCl3
80 °C, 6 h

80%

CO2Me

85joc3945

O
CO2HO

O

S

O O

+

1 eq

3 eq AlCl3
45 °C, 16 h

then NaOH

then HCl

83%

EP 0665212solvent

+ CO2HCl

2% KBr, 0.4% Fe2O3

200−218 °C, 20 h

1 eq3 eq

CO2H

70% (crude)

34% (purified)

50ja4302

Scheme 1.31 Electrophilic alkylation of arenes with α-haloketones and related electrophiles
[140–143].

Because arenes can also react with ketones, esters, and nitriles, this is a side
reaction to be expected when alkylating arenes with α-haloketones and related
electrophiles (Scheme 1.32). Moreover, α-haloketones may also act as halogenating
reagents or oxidants [144], and can dimerize or trimerize in the presence of bases.

Ketones and esters may also be converted to radicals, which can then add to
arenes or heteroarenes. The most common strategies to generate these radicals
include the photolysis of α-haloketones or -esters, and the oxidation of ketones
(Scheme 1.33). Because aliphatic α-haloesters absorb UV light of short wavelengths
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Scheme 1.32 Arene alkylation or acylation with α-chloroketones and -nitriles [145–148].

only, the arene cannot usually be used as solvent, because it would not allow the
required UV light to reach the haloester (second example in Scheme 1.33).
α-Diazoketones or α-diazoesters are precursors to metal carbene complexes,

which can undergo direct insertion into aromatic C–H bonds (Scheme 1.34).
The intermediate carbene complexes, though, are highly reactive and electrophilic,
and can alkylate many functional groups and abstract hydride and cyclopropanate
alkenes, alkynes, and even arenes. For this reason, diazocarbonyl compounds (or
diazoalkanes [6]) are only rarely used as electrophilic alkylating reagents for arenes.

The arylation of α-haloketones and related electrophiles via vicarious nucleophilic
substitution is discussed in Section 8.2.3.

1.3.6
Nitroalkanes

A few examples have been reported of the alkylation of arenes with nitroalkanes,
with the nitro group acting as leaving group [4] (Scheme 1.35). This reaction
is complicated by numerous potential side reactions. Nitro groups can act as
carbon electrophiles without loss of the nitro group. Moreover, in the presence
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Scheme 1.33 Arylation of α-haloesters and ketones via radicals [149–151].

of strong acids, nitro groups can react with arenes at oxygen. For instance,
2-aryl-1-nitroethanes are converted to O-aryloximes when treated with triflic acid
(Scheme 1.35). In this type of reactions, nitro groups become electrophilic at
oxygen. Examples have also been reported of electrophilic aromatic aminations
with nitro groups (last example, Scheme 1.35).

In the presence of dehydrating reagents, primary nitroalkanes (RCH2NO2) can
be converted to nitrile oxides, which are highly reactive and readily dimerize,
polymerize, rearrange to isocyanates, react with nucleophiles, or undergo 1,3-
dipolar cycloadditions.

1.3.7
Ketones

Upon catalysis by acids, simple dialkylketones react cleanly with only electron-rich
arenes, such as phenols, anilines, or pyrroles, but not with benzene or toluene.
The resulting tertiary benzylic alcohols usually alkylate a second arene molecule,
to yield geminal diaryl alkanes. Dehydratization of the intermediate alcohols and
oligomerization of the resulting olefin are also occasionally observed. If the alcohol
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Scheme 1.34 Reaction of α-diazoesters with arenes [152, 153].

is the desired product, a mildly acidic catalyst and carefully optimized conditions
will often be required.

Isopropenylbenzene, for instance, cannot be directly prepared from acetone and
benzene (for recent research, see [159]) because the readily formed cumyl cation
reacts with benzene [160]. The direct preparation of isopropenylbenzene from
acetone would be valuable because, during the production of phenol from cumene
hydroperoxide, one equivalent of acetone is formed, which cannot currently be
used directly for the preparation of cumene. Processes have been developed in
which acetone is hydrogenated to isopropanol, which is then converted to propene
and used to alkylate benzene (Scheme 1.36). The direct alkylation of benzene
with isopropyl alcohol is possible [161, 162], but most catalysts for Friedel–Crafts
alkylations are deactivated by water, and isopropylations with propene are therefore
more convenient than isopropylations with isopropanol.

Only ketones substituted with electron-withdrawing groups, such as trifluo-
romethylketones, 1,2-diketones, or α-ketocarboxylic esters, react with unactivated
arenes. Fluorenones are also quite reactive because O-protonated fluorenones are
antiaromatic. The initially formed alcohols do not form carbocations readily and
can often be isolated (Scheme 1.37).

Potential side reactions of the Friedel–Crafts alkylation with ketones is the
formation of diarylmethanes, the oligomerization of the products, and aldol con-
densation of the starting ketone. Moreover, in the presence of oxidants, ketones
may be α-arylated via intermediate radical formation [151]. If Friedel–Crafts alky-
lations with ketones are conducted in the presence of hydride donors, a reductive
alkylation of arenes can occur (Scheme 1.38).
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Scheme 1.35 Reactions of nitroalkanes with arenes [154–157]. Further examples: [158].

Strongly C–H acidic ketones, such as β-ketoesters, are readily palladated at
carbon. The resulting intermediates can undergo β-hydride elimination to yield
α,β-unsaturated ketones. The latter are Michael acceptors, capable of alkylating
electron-rich arenes (Scheme 1.39).

Occasionally, benzylic electrophiles are attacked by nucleophiles not at the
benzylic position but at the arene (e.g., first equation in Scheme 1.37). Examples
have been reported of the electrophilic arylation of unsubstituted arenes with
tetralones and related aryl ketones (Scheme 1.40).
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Scheme 1.37 Alkylation of arenes and heteroarenes by ketones [163–167].
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Scheme 1.38 Reductive aromatic alkylation with ketones [168].
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Scheme 1.40 Arylation of benzene with tetralone [83].

1.3.8
Alcohols

Alcohols are widely used electrophiles for Friedel–Crafts alkylations. Alcohols are
often more reactive than alkyl halides, but require more acid to alkylate arenes.
Primary, non-benzylic alcohols are rarely used as alkylating reagents, owing to their
fast rearrangement to more stable secondary or tertiary cations.

As is the case with other electrophiles, alcohols that do not readily form carbo-
cations are not well suited for arene alkylation. No examples for cationic arene
alkylations with 2,2,2-trihaloethanols or cyanohydrins, for instance, could be found.
Only a few examples have been reported of alkylations with α-hydroxycarboxylic
acids or α-hydroxyketones, and most of these examples were alcohols with
carbocation-stabilizing α-substituents (e.g., benzylic alcohols).

Under strongly basic conditions, indole can be alkylated at C-3 with glycolic
acid, but this reaction proceeds by oxidation of the alcohol to an intermediate
aldehyde (Scheme 1.41). A similar alkylation of fluorene with alcohols at the
benzylic methylene group has also been reported [170, 171].
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Alcohols or esters thereof, which upon dehydratization yield Michael acceptors,
react as soft electrophiles, and are well suited for the alkylation of electron-rich
arenes (first equation, Scheme 1.41).

2-Amino- and 2-alkoxyethanols are further types of alcohol that do not readily
alkylate arenes under acidic conditions. Oxygen and nitrogen are more electro-
negative than carbon, and the corresponding carbocations are destabilized by an
inductive effect. Moreover, the acids will protonate amines and ethers, and thus
further slow down the formation of the required dications. Otherwise, only activated
alcohols (e.g., benzylic or allylic alcohols) or intramolecular alkylations proceed in
acceptable yields (Scheme 1.42).
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10. Imm, S., Bähn, S., Tillack, A., Mevius,
K., Neubert, L., and Beller, M. (2010)
Selective ruthenium-catalyzed alkylation
of indoles by using amines. Chem. Eur.
J., 16, 2705–2709.
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Hódossy, L., Borbéli, G., and Halász,
I. (1992) Process for the Preparation
of Ring-Alkylated Anilines by Iso-
merization of N-alkylanilines Over
Acidic Zeolites as Catalysts. Ger. Offen.
4023652.

94. Bourns, A.N., Embleton, H.W.,
and Hansuld, M.K. (1963)
1-Phenylpiperidine. Org. Synth., Coll.
Vol. 4, 795–798.

95. Glass, D.B. and Weissberger, A. (1955)
Julolidine. Org. Synth., Coll. Vol. 3,
504–505.

96. Lapis, A.A.M., DaSilveira Neto, B.A.,
Scholten, J.D., Nachtigall, F.M.,
Eberlin, M.N., and Dupont, J. (2006)
Intermolecular hydroamination and
hydroarylation reactions of alkenes
in ionic liquids. Tetrahedron Lett., 47,
6775–6779.

97. Motokura, K., Nakagiri, N., Mizugaki,
T., Ebitani, K., and Kaneda, K. (2007)
Nucleophilic substitution reactions of
alcohols with use of montmorillonite
catalysts as solid Brønsted acids. J. Org.
Chem., 72, 6006–6015.

98. Tsuji, Y., Huh, K.-T., Ohsugi, Y., and
Watanabe, Y. (1985) Ruthenium com-
plex catalyzed N-heterocyclization.
Syntheses of N-substituted piperidines,
morpholines, and piperazines from
amines and 1,5-diols. J. Org. Chem., 50,
1365–1370.

99. Wei, H., Qian, G., Xia, Y., Li, K., Li,
Y., and Li, W. (2007) BiCl3-catalyzed
hydroamination of norbornene with
aromatic amines. Eur. J. Org. Chem.,
2007, 4471–4474.

100. Didier, D. and Sergeyev,
S. (2007) Bromination and
iodination of 6H,12H-5,11-
methanodibenzo[b,f ][1,5]diazocine:
a convenient entry to unsymmetrical
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