Contents

Foreword to the Second Edition XIII

Introduction 1
What is Biophysical Chemistry? – An Example from Drug Screening 1

Part One Basic Methods in Biophysical Chemistry 11

1 Basic Optical Principles 13
1.1 Introduction 13
1.2 What Does the Electronic Structure of Molecules Look Like? Orbitals, Wave Functions and Bonding Interactions 15
1.3 How Does Light Interact with Molecules? Transition Densities and the Transition Dipole Moment 20
1.4 Absorption Spectra of Molecules in Liquid Environments. Vibrational Excitation and the Franck–Condon Principle 24
1.5 What Happens After Molecules have Absorbed Light? Fluorescence, Nonradiative Transitions and the Triplet State 27
1.6 Quantitative Description of all Processes: Quantum Efficiencies, Kinetics of Excited State Populations and the Jablonski Diagram 33
Problems 38
Bibliography 39

2 Optical Properties of Biomolecules 41
2.1 Introduction 41
2.2 Experimental Determination of Absorption and Fluorescence Spectra 41
2.3 Optical Properties of Proteins and DNA 45
2.3.1 Intrinsic Absorption and Fluorescence of Amino Acids, Peptides and Proteins 45
2.3.2 Intrinsic Absorption of Nucleotides, DNA and RNA 47
2.4 Optical Properties of Important Cofactors 49
2.4.1 Haem 49
2.4.2 Nicotinamide Adenine Dinucleotides 52
2.4.3 Flavins 53
2.4.4 Chlorophylls 54
2.4.5 Carotenoids 56
Problems 58
Bibliography 58

3 Basic Fluorescence Techniques 61
3.1 Introduction 61
3.2 Fluorescent Labelling and Linking Techniques 61
3.2.1 Primary Amino Group Reactive Labels 63
3.2.2 Thiol Group Reactive Labels 64
3.2.3 Avidin–Biotin Techniques 65
3.2.4 His-Tag 66
3.2.5 Thioliinkers and Gold Surfaces 67
3.2.6 Fluorescent Proteins 67
3.3 Fluorescence Detection Techniques 68
3.4 Fluorescence Polarization Anisotropy 70
3.4.1 Principles and Theoretical Background 70
3.4.2 Application Example: Receptor–Ligand Interactions 78
3.4.3 Application Example: Estimation of Molecular Mass 79
3.4.4 Application Example: Enzyme Function and Kinetics 80
3.4.5 Application Example: Enzyme Inhibition, Activation and Regulation 83
3.5 Förster Resonance Energy Transfer 84
3.5.1 Principles and Theoretical Background 84
3.5.2 Application Examples 90
3.6 Fluorescence Kinetics 93
3.7 Fluorescence Recovery after Photobleaching 98
3.8 Biochemiluminescence 99
Problems 100
Bibliography 103

4 Chiroptical and Scattering Methods 105
4.1 Chiroptical Methods 105
4.1.1 Circular Dichroism (CD) 105
4.1.2 Optical Rotatory Dispersion 107
4.2 Light Scattering 109
4.2.1 Scattering of Light at Molecules Smaller than the Optical Wavelength 110
4.2.2 Scattering of Light at Particles Equal to or Larger than the Optical Wavelength 112
4.2.3 Dynamic Light Scattering 115
4.3 Vibrational Spectra of Biomolecules 115
5 Magnetic Resonance Techniques 121
5.1 Nuclear Magnetic Resonance of Biomolecules 121
5.1.1 Principles 121
5.1.2 Theoretical Framework 123
5.1.3 Primary Information Deduced from NMR Spectra 125
5.1.4 Pulsed NMR Spectroscopy 126
5.1.5 Two-Dimensional NMR Spectroscopy 130
5.1.6 Correlated Spectroscopy (COSY) 130
5.1.7 Nuclear Overhauser Effect and NOESY Spectra 135
5.1.8 NMR-Based Structural Analysis of Biomolecules 138
5.2 Electron Paramagnetic Resonance 141
Problems 145
Bibliography 147

6 Mass Spectrometry 149
6.1 Introduction 149
6.2 MALDI-TOF 149
6.2.1 Ionization 149
6.2.2 Analyser 152
6.2.3 Detector 153
6.2.4 Signals and Signal Improvements 154
6.3 ESI-MS 156
6.3.1 Ionization 156
6.3.2 Analyser and Detection 158
6.3.3 Signals and Signal Improvements 161
6.4 Structural and Sequence Analysis Using Mass Spectrometry 163
Problems 164
Bibliography 165

Part Two Advanced Methods in Biophysical Chemistry 167

7 Fluorescence Microscopy 169
7.1 Introduction 169
7.2 Conventional Fluorescence Microscopy 169
7.2.1 Confocal Fluorescence Microscopy 169
7.2.2 Laser Scanning Microscopy 174
7.2.3 Wide-Field Fluorescence Microscopy 174
7.3 Total Internal Reflection Fluorescence Microscopy 176
7.4 Light-Sheet Microscopy 178
Problems 180
Bibliography 181
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2 Fluorescing Nanoparticles</td>
</tr>
<tr>
<td>12.3 Surface Plasmon Resonance Detection</td>
</tr>
<tr>
<td>12.4 DNA Origami</td>
</tr>
<tr>
<td>12.5 DNA Microarrays</td>
</tr>
<tr>
<td>12.6 Flow Cytometry</td>
</tr>
<tr>
<td>12.7 Fluorescence In Situ Hybridization</td>
</tr>
<tr>
<td>12.8 Microspheres and Nanospheres</td>
</tr>
<tr>
<td>Problems</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Assay Development, Readers and High-Throughput Screening</td>
</tr>
<tr>
<td>13.1 Introduction</td>
</tr>
<tr>
<td>13.2 Assay Development and Assay Quality</td>
</tr>
<tr>
<td>13.3 Microtitre Plates and Fluorescence Readers</td>
</tr>
<tr>
<td>13.4 Application Example: Drug Discovery and High-Throughput Screening</td>
</tr>
<tr>
<td>Problems</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>

Index 339