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1.1
Photochromic Systems

1.1.1
General Introduction

Nowadays, the word “photochromism” (or “photochromic”) has been entered
in several dictionaries [1]. It stems from the Greek words 𝛗𝛚𝜏ó𝛓 (photos) and
𝛘𝛒�̃�𝛍𝛂 (chroma) meaning light and color, respectively. A simple definition of
photochromism is the property to undergo a light-induced reversible change of
color based on a chemical reaction [2].
Everyone, even without being familiar with this topic, can easily understand

that materials possessing such a feature can find useful applications. Generally,
using light as a stimulus is extremely attractive for at least two reasons: it can be
conveyed to long distances with the “speed of light”; and it is an unlimited energy
source although unevenly available in time and space. In addition, the notion of
reversible change can be easily connected to objects, useful in everyday life, such
as knobs, buttons, dials, handles, and levers, which are used to switch on and off
domestic appliance and other devices and machines. Photochromic substances
are widely present in glass lenses, initially clear, which turn dark under sunshine
[3] (Figure 1.1). They are also present in trendy cosmetics and clothes.
In addition to these objects that have been around for a long time, the digital age

has tremendously expanded the fields, where photochromic materials may play a
role. The broad and current interest is transmitting, gating, and storing digital
data [5]. CD and DVD are among the widely spread storage media, where light
writes (and erases) information and optical properties are used to read, just as in
photochromic systems. Due their reversible feature, photochromic species match
the requirement of the rewritable recording media (CD-RW, DVD-RW), where
memory bits have to commute between the two binary states (“0” and “1”) upon
request. In this domain, there is a race for high-capacity data storagemedia, where
information can be written and erased at high speed. As changes in photochromic
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Figure 1.1 Photochromic lenses and clothes: contributions to comfort and to fashion [4].

systems occur in sub-nanosecond timescales, these are suitable for fast switch-
ing. Moreover, molecule is the elemental switching unit, comparable to a bit, and
occupies less than a cubic nanometer. This means that the memory density can
potentially reach a value of more than 1018 bitmm−3. Proofs of concept of such
media are given in the literature (Figure 1.2a, b), where two-photon phenomena
are used to get a high resolution [6].
More recent contributions of photochromism can be found in the topic of fluo-

rescencemicroscopy imaging, which is spreading very fast inmany scientific fields
of applications, such as biology, medicine, and materials science. Recent techno-
logical progresses have led to fastermicroscopeswith better resolution, alongwith
the development of stable and bright fluorescent probes. However, the optical res-
olution of conventional microscopy instruments is restricted by the fundamental
diffraction limit, whereas the features to be probed are often smaller than 200 nm.
To break this severe constraint and limitation, “super-resolution techniques” (or
“sub-diffraction imaging methods”) were developed and have shown that reso-
lution beyond the diffraction limit was accessible by exploiting controlled opti-
cal deactivation processes of fluorescent probes. Among them, microscopy based
on photoswitchable fluorophores, such as photochromic fluorescent labels, has
been successfully implemented. Figure 1.3a–e shows an example of the compar-
ison between conventional wide-field microscopy and sub-diffractive imaging of
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Figure 1.2 Rewritable optical memory medium based on photochromic compounds: (a)
general structure of the recording medium [6d] and (b) alphabet letters recorded on the dif-
ferent layers [6b].
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Figure 1.3 Super-resolution image of HeLa
cells expressing keratin19 rsCherryRev1.4
by wide-field conventional microscopy
(a) and by RESOLFT microscopy (b) (scale
bar= 5 μm) and the corresponding magni-

fications of the highlighted area (c and d,
scale bar= 500 nm). Line profiles (e) across
the region between the arrows marked in (c)
(full line) and (d) (dashed line) [7].

live HeLa cells expressing fluorescent photochromic proteins. No wonder pho-
tochromic compounds have entered the bio- and nano-worlds [8].
Light reflection or transmission change, used in the above-mentioned applica-

tion, is the representative property modified in the photochromic process. As for
color, in photochromic systems, traditionally, light is used as a trigger not only to
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Figure 1.4 (a) Concomitant color and solubility changes of a photochromic solution [13a]
and (b) color and shape changes of a photochromic crystal [14c].

induce the change but also to reveal the state of the system at a given moment.
Other properties related to light, such as refractive index [9], fluorescence [8c,
10], and even nonlinear optical properties [11], are employed to read out. Indeed,
concomitantly to the color, these properties are changed.
Photoswitching other physical or chemical characteristics, such as magnetic,

electrical, conductive, or redox properties, is also a matter of interest [12]. Fur-
thermore, one can take advantage of photochromism upon altering or taking the
control of features, such as phase, solubility, reactivity, stereochemistry, complex-
ation, or interaction between molecules or ions (Figure 1.4a) [13]. In materials,
photochromism can induce shape changes, and opens up a wide field of interest
in photo-induced mechanics (Figure 1.4) [14].

1.1.2
Basic Principles

In order to describe photochromism, the most common model introduced is a
simple two-way reaction between two molecular species A and B. Although it
may sometimes involve other species, the reaction is assumed to be unimolecular
(Figure 1.5a).
A and B are separated by a potential barrier (ΔE). If this barrier is low, B is

metastable and can revert back spontaneously to A. Previously described pho-
tochromic glass lenses operate according to this scheme. Such systems are called
T-type referring to the thermally induced reaction from B to A. On the contrary, a
high barrier features a bistable system. In this case, only photons are able to cause
the reaction, and such systems are called P-type. In other words, nothing changes
in the absence of light.
This last characteristic is important since it makes the difference between pho-

tochromic bistable systems and others, such as ferroelectric or (ferro)magnetic
systems. In the latter, shuttling between the two states of the bistable system does
not follow the same route, displaying the well-known hysteresis, when the polar-
ization or the magnetization is plotted versus the electric or the magnetic field.
In photochromic systems, no concept of hysteresis is involved in the rationale of
bistability.
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Figure 1.5 Photochromism: a two-way light-induced reaction between two molecules A and
B. (a) Potential energy diagram and (b) the related schematic absorption spectra.

In usual photochromic systems, A absorbs in the UV or near-UV, with a char-
acteristic absorption band at wavelength (𝜆A). The absorption coefficient of A at
this wavelength is 𝜀A. When a photon at 𝜆A is absorbed, A is excited from the
ground to the excited state. The excited A yields B with a probability of 𝜙A→B (see
Appendix), known as the quantum yield. On the other hand, B reverts back to A,
with an analogous pattern, provided that the B is excited at 𝜆B, where it absorbs.
The spectral position of the absorption bands gives an indication of not only the
color of light needed to induce the reaction but also the color of the molecule
itself (Figure 1.5b). Further quantitative development of this scheme is given in
Appendix.

1.1.3
Photochromic Molecules: Some History

Thehistorical reference of photochromism dates back to ancient times and the era
of theAlexander theGreat (356–323BC). AsKing ofMacedonia, he got into a vast
world conquest. He conquered Asia Minor (now western Turkey) and extended
his kingdom to the northwest of India in the east and Egypt to the south. Strategy
and carefully coordinated attacks are essential conditions for victory.Thus,Mace-
donian headwarriors were equippedwith photochromic bracelets (the compound
remains unknown up to now) exhibiting a color change when exposed to sunlight.
Such color change was used by all warriors to indicate the right moment to begin
the fight [15].
Over 2000 years later in 1867, Fritzsche reported for the first time the follow-

ing peculiar behavior of tetracene solution: the initial orange color of the solution
fades when the sample is irradiated by sunlight but can be recovered as initially
when placed in a dark room (Figure 1.6) [16].
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Figure 1.6 Photochromic reaction of tetracene.
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Figure 1.8 Solid-state photochromic reaction of 2,3,4,4-tetrachloronaphthalen-1-(4H)-one.

This first observation was followed by some studies [17] on solutions and
materials with a similar behavior. Wislicenus noticed the color change of
benzalphenylhydrazines (Figure 1.7) [17d]. Later, Biltz confirmed these obser-
vations and demonstrated the same behavior for some osazones (Figure 1.7)
[18]. Finally, in 1899 Markwald, apart from his work on 1-benzylidene-2-
phenylhydrazine (Figure 1.7) and tetrachloro-1,2-ketonaphthalenone (Figure 1.7),
discovered the first solid-state photochromic organic compound [19]: the 2,3,4,4-
tetrachloronaphthalen-1-(4H)-one (Figure 1.8). By that time, he was the first
person to recognize this phenomenon as a new reversible photoreaction and gave
the name (in German) of “Phototropie.”
Other main families of photochromic molecules dating back to this period

are fulgides [20], salicylideneanilines (also called anils) [21], stilbenes [22], and
nitrobenzylpyridines [23].
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Figure 1.9 Photochromic reactions of semicarbazones, bianthrone, and spiropyrans.

Until the 1920s, much of the work was dedicated to the study of the phe-
nomenon under a practical and descriptive approach than under a deeper
scientific approach, that is, on the understanding of mechanisms. Therefore,
all the efforts were focused on the synthesis of new molecules and on the
optimization of irradiation conditions and fatigue resistant properties [24]. In the
1930s, although attraction for photochromism was low, nevertheless some major
advances took place during this period. Indeed, Harris and Gheorghiu were
pioneers in mechanistic studies of this phenomenon, respectively, on malachite
green [25] and semicarbazones (Figure 1.9) [26].
The 1950s and 1960s probably represent a significant period for photochromic

compounds, with the advent of technologies and methods enabling their inves-
tigations, especially spectroscopy, contrasting with the period described previ-
ously. Many new molecules, both organic and inorganic, were then synthesized
and further studies on the mechanism were conducted during this period [15b,
24, 24g, 27]. Among all studies, the work of Hirschberg with the synthesis of the
first bianthrone [28] and spiropyrans [29] (Figure 1.9) enabled major advances in
the field of photochromism. Also, it was the period when it became usual to call
this phenomenon “photochromism.”
Although there is a considerable amount of research going on azobenzene

derivatives and other photochromic systems such as azine [30] and thioindigoides
[31] (Figure 1.10), bottlenecks such as the lack of photoresistance of organic
photochromic molecules, leading to degradation, prevented a fast development
of applications in the 1960s and the early 1970s. However, during the 1980s,
spirooxazines [32], particularly spironaphthoxazines, were developed for their
high fatigue resistance, along with chromenes. This marked a significant turning
point for photochromism in their use in variable transmission glasses. In such
applications, T-type systems are required. In the meantime, compounds such as
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Figure 1.10 General formula and reaction schemes for azines and thioindigoides.

azobenzene derivatives, known for long as dyes and reported to be photochromic
half a century earlier [33], were being intensively investigated for their photo-
switching properties [34]. Other families of photochromic compounds, such as
dihydropyrenes [35], anthraquinones bearing aryloxy groups [36], viologens,
based on a photoinduced electron transfer [37], or flavylium [38] and oxazolidines
[39], exhibiting both photochromism and acidochromism can be mentioned.
Regarding families of P-type molecules, applications for data storage [6c,

40] and molecular switches emerged in the 1990s. Although molecules such
as fulgides have a century-long history as already mentioned, this period cor-
responds to the discovery of the diarylethene family. This domain certainly
contributes to a tremendous increase in the number of publications since the
1990s. More details are given in the following section, which focuses on the most
widely investigated photochromic systems.
Photochromism can be considered as being a fast growing domain of research,

as it can be substantiated by a simple survey on the evolution of the number of
publications in this subject (Figure 1.11). Since the 1990s, a fivefold increase in
this number was observed. It is noteworthy to mention that a large number of
special issues and review articles appeared during recent years [41] in addition to
the references already cited.

1.2
Organic Photochromic Molecules: Main Families

The molecules presented in the previous section made the history of organic
photochromism of the twentieth century. Some families of compounds spread,
and others almost disappeared from the scientific scene. From the year 2000 to the
present, most studies on organic photochromism deal with a group of less than
10 families of compounds. More than 2000 publications concern the diarylethene
family. An approaching number of publications is reached when spiropyran,
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Figure 1.11 Number of publications on photochromism. (Source: ISI Web of Science.)

spiroxazine and chromene are added up. Azobenzene derivatives are also widely
studied, and these totalize more than 1000 publications during the same period.
A few other families of organic photochromic molecules exceed 100 publications,
such as salicylideneanilines (anils), fulgides, and hexaarylbiimidazoles (HABIs).
This section mainly focuses on the families that are categorized by the type of

chemical reaction involved during the photochromic process.

1.2.1
Proton Transfer

Derivatives of salicylideneaniline are probably the most studied photochromic
molecules involving a proton transfer [42]. Also called anils, they are mainly
substituted salicylideneanilines and variants, where aniline is replaced by groups,
such as aminopyridine or aminothiophene. In fact, anils are Schiff bases. Reports
on the photochromism of anils date back to the beginning of the twentieth
century [21]. However, thorough studies leading to significant characterization
started only during the 1960s [43]. Proton transfer reactions are present in
different mechanisms involving natural systems [44]. Photochromism of anils can
be performed in several media, from solution to inclusions or encapsulatedmedia
[6, 41l, 45], and even in some cases in the solid state, with medium-dependent
behavior.
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Figure 1.12 Photoreaction (phototautomerism) of anils: the enol to keto reaction.

Under UV irradiation, an intramolecular proton transfer is induced and allows
the passage from the enol (in fact a phenol) to the cis-keto (ketone) form in the
excited state called excited-state intramolecular proton transfer (ESIPT). This
transfer is quickly followed by a cis–trans isomerization at an excited state to
reach a trans-keto form (Figure 1.12). Considering the result of this reaction,
it may also be called phototautomerism. All the process occurs within a few
picoseconds in solution, and a few hundred picoseconds even in solid state [46].
Enol form absorbs only in the UV (or near-UV) and is pale yellow inmost cases,

whereas the keto isomer is usually red. Conjugation is less extended in the latter, so
such feature may sound unexpected; however, the bathochromic shift is due to an
n–𝜋* transition evolving in the keto form [47]. Upon UV excitation, a lumines-
cence can be observed (Figure 1.13). Investigations during the last few decades
show that this is concomitant to the ESIPT: the deexcitation of the keto state is
then responsible for it, leading to a Stokes shift of more than 150 nm [46d, 48].
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Figure 1.13 Photochromism of anils: schematic diagram illustrating the UV and visible light-
induced reactions, and the excited-state intramolecular proton transfer (ESIPT).
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Figure 1.14 Synthesis of anils: basic method by condensation of salicylaldehyde and aniline
derivatives.

Anils are of T-type. In a solution, the keto photoproduct reverts back to the enol
very quickly, typically within a few milliseconds [47d, 49], whereas in the solid
state, it may vary from a few seconds to several months [42b, 50]. A consequence
of this is that the photochromism of anils can barely be observed in solution (see
Section 1.3.4 for detailed explanations), but only in the solid state.
The synthesis of anils is rather straightforward (Figure 1.14). Based on the con-

densation of salicylaldehyde and aniline derivatives in an acidic medium, hun-
dreds of molecules with various substituents providing steric and/or electronic
features were synthesized.
The secondmost studied family of compoundswith a proton transfer is the dini-

trobenzylpyridine (DNBP). Although its color change upon UV irradiation was
evidenced in the 1920s [23], unraveling the nature of the species and the reac-
tions involved was possible only several decades later [51].The colorless CH form
(Figure 1.15) is the most stable, and UV excitation yields the OH and NH forms.
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Figure 1.15 Photochromism of dinitrobenzylpyridine (DNBP) between the CH and NH forms,
involving the OH species.
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Figure 1.16 Trans–cis isomerization of stilbene and azobenzene.

TheOH form is the least stable and spontaneously converts to its isomers. DNBP
can be obtained by nitration in HNO3/H2SO4 mixture from benzylpyridine.

1.2.2
Trans–Cis Photoisomerization

Most chemists have heard about the isomerization around carbon–carbon dou-
ble bonds at the early stage of their studies when they learn about trans–cis (or
E–Z) isomerism. Textbook cases are stilbene, as well as azobenzene (Figure 1.16)
and their derivatives. These reactions can be induced by light, which circumvents
the relatively high-energy barrier in the ground state. Moreover, in many pho-
tochromic systems, trans–cis reaction is one step of the process, as it is the case
for anils and spiropyrans (see Sections 1.2.1 and 1.2.4), and appears as an alternate
photoinduced process in fulgides or diarylethenes (see Section 1.2.4).
Theknowledge of the development of azobenzene derivatives that has been used

as dyes for more than a century is essential; nowadays, they represent the main
family of photochromic molecules based on trans–cis reaction. It would not be
possible to cite the over thousand publications, but there are some reference book
chapters and book reviews [34, 52].
For the sake of simplicity, in the following, the derivatives of the azobenzene

called azobenzene(s) are discussed. The color of azobenzene is generally yellow
and its substitution yields a bathochromic shift, providing an orange or red color.
Both isomers have two characteristic bands, 𝜋–𝜋* and n–𝜋*, the latter one lying
in a lower energy region and being less intense, as it is symmetry forbidden.
Changes in the absorption spectra between the two forms are generally not

very pronounced due to a small difference in electron delocalization between
the two isomers, and the color change is invisible by the naked eye. In contrast,
the photochromic reaction induces very significant change of the free volume
of the molecule [53]. Therefore, these molecules are extensively used to induce
mass rotation or migration in materials, leading to dichroic and birefringent
media, surface relief patterning (Figure 1.17a–c) [11, 54], or mechanical effects
[14b,d]. In addition, azobenzenes are introduced for their switching ability when
properties not related to color, for example, magnetic, are sought [55].
There are several different methods to synthesize azobenzenes and are thor-

oughly described in a recent review article [52b]. The most widely used methods
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Figure 1.17 Crossed surface relief grating obtained by 2D photopatterning on a thin film
of azobenzene derivative: (a) atomic force microscope (AFM) topographic image, (b, c) one-
and two-photon transmission images with dark areas corresponding to hills [54b].
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Figure 1.18 Synthesis scheme of the Mills reaction used to obtain azobenzenes.

are the diazo coupling and the Mills reaction between aromatic nitroso and aro-
matic amine compounds (Figure 1.18).

1.2.3
Homolytic Cleavage

In this class of compounds, HABI discovered by Hayashi and Maeda in the 1960s
and its derivatives play an essential role [56]. The homolytic cleavage of the C–N
bond between the two imidazole rings involved in this type of compound can be
induced by heating, light irradiation, or pressure. It leads to the formation of two
radicals (TPIR triphenylimidazolyl radical) as depicted in Figure 1.19. Recombina-
tion to revert back to the starting imidazole dimer (also called TPID triphenylim-
idazolyl dimer) can be carried out thermally and driven by radical diffusion.
TPIR has a large absorption band in the visible light, whereas TPID absorbs

only in the UV light and is thus colorless. Compounds of this family exhibit

Triphenylimidazolyl dimer (TPID) Triphenylimidazolyl radical (TPIR)

N N
N N

N N
N Nhν

Δ

Figure 1.19 Photochromism of hexaarylbiimidazole (HABI) between the triphenylimidazolyl
dimer (TPID) and the triphenylimidazolyl radical (TPIR) pair.
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Figure 1.20 Basic synthesis scheme of HABI.

a T-type photochromism. Although the cleavage upon UV irradiation takes
place within less than 100 fs, recombination can take up to few minutes at room
temperature [57].
The preparation of HABI is rather straightforward (Figure 1.20), at least for

the simplest and basic methods.The precursor, triarylimidazole (lophine), known
since the end of the nineteenth century, can be obtained by the reaction between
benzoin and an aldehyde in the presence of ammonium acetate.
Along with photochromism, HABI also exhibits piezo- or thermochromism.

This has to be related to the controversy about the way the two imidazole moi-
eties are connected: in fact, upon the synthesis of the TPID form, several isomers
are formed. Studies carried out during several decades lead to the conclusion that
C–N bonded ones lead to photochromism, whereas C–C bonded ones lead to
piezo- or thermochromism [58]. During the 1970s, HABI was used as industrial
photoinitiator for imaging and photoresists. In the process, the TPIR abstracts
hydrogen atoms from crystal violet precursor enabling imaging [59].

1.2.4
Cyclization Reaction

In the mostly encountered photochromic systems, the reaction is a cyclization. In
most examples, the reaction involves six 𝜋 electrons delocalized over six different
atoms.This is the case for spiropyran, fulgides, and diarylethenes and some related
families such as spirooxazine, chromene, and fulgimides. Overall, they represent
a largely predominant part of the research carried out on organic photochromism
during the last decades.

1.2.4.1 Spiropyrans, Spirooxazines, and Chromenes

As illustrated in Figure 1.21, the most common type of spiropyran is based on
indoline and benzopyran.This basic structure can bear substituents (alkyl, alkoxy,
nitro, halogeno, etc.), and it can also be extended to larger structures (e.g., naph-
thopyran instead of benzopyran) or to modified structures (e.g., thioindoline in
place of indoline) [29, 60].
Spiropyrans have been extensively studied along the past half-century. For such

compounds, UV light irradiation of the colorless closed form (also called the spiro
or the N form, for normal) leads to the carbon–oxygen bond cleavage (open ring
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Figure 1.21 Photoisomerization of spiropyrans between the closed and open merocyanine
(MC) forms. Resonant zwitterionic and quinonic forms of MC.

reaction) of the pyran ring, followed by a cis–trans isomerization to finally reach
the colored merocyanine (MC) form. The latter is highly conjugated and has two
mesomeric (resonant) forms, zwitterionic and quinonic. This feature can be con-
nected to the presence of an intense absorption band in the visible, and the color
of the MC form. On the contrary, in the closed form, conjugation is broken at
the spiro carbon atom and the molecule is colorless and absorbs only in the UV
region.
Spiropyran is a typical example of T-type compounds family as no P-type

molecule has been reported yet. In a majority of cases, the closed form is the
more stable one, the MC form being metastable, although a noticeable amount
of the MC may exist at equilibrium for some compounds [61] and also in polar
media [62]. Due to its electronic structure, the MC form is highly solvatochromic
and its stability is strongly solvent dependent: for example, in one represen-
tative compound, the so-called 6-nitro-BIPS (1′,3′-dihydro-1′,3′,3′-trimethyl-6-
nitrospiro(2H-1-benzopyran-2,2′-2H-indole)), the rate of the thermal reaction is
300 times slower in ethanol than in benzene and is related to a higher activation
barrier of the ground state of the former than that of the latter [63].
In spiropyrans, nonbonding orbitals bearing lone pairs of the nitrogen and oxy-

gen atoms connected to the spiro carbon, respectively, interact with the antibond-
ing orbitals of the C–O (𝜎*(C–O)) and the C–N (𝜎*(C–N)) bonds. As illustrated
in Figure 1.22, the former is stronger than the latter and leads to a weakening of
the C–O bond even in the ground state. This C–O bond is then cleaved upon UV
irradiation.
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Spirooxazines and chromenes are other families of molecules featuring pho-
tochromism under a similar reaction pattern, and also they are of T-type. In
spirooxazines, a CH group has been replaced by a nitrogen atom (Figure 1.23)
[32b,c, 64]. As shown in this synthesis scheme, the simplest method to obtain the
most common indoline-based spiropyran or spirooxazine is a reaction between
the Fischer’s base (1,3,3-trimethyl-2-methylene-indoline) and the corresponding
salicylaldehyde or the nitrosophenol derivative.
When applications are targeted, molecules are introduced in a polymer matrix

as dopants, or covalently attached to a polymer chain, the more so because
spiropyrans are photochromic in the pure solid state only in a few cases [65].
Due to their high fatigue resistance, spirooxazine with an extended group (naph-
thopyrans rather than benzopyrans) finds applications in the field of eyewears,
in fact more than spiropyrans. Another family of compounds named chromene
[64, 66] is also used industrially for the same purpose, and its photochromism is
based on a similar reaction (Figure 1.24).
However less common, it is worth mentioning that there are other examples

where color is evolved upon light-induced ring opening, with other types of bond
cleavage: spirodihydroindolizines where a C–C bond is broken [67] and spiroper-
imidines [68] based on a C–N bond cleavage.
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1.2.4.2 Fulgides and Fulgimides
Similar to spiropyrans and the related compounds described previously, pho-
tochromism in fulgides and fulgimides (Figure 1.25) is based on a cyclization
reaction. More specifically, a conversion between 𝜋 and 𝜎 bonds leads to an
electrocyclization, and the main difference with the case of spiropyrans is that
the open form is colorless and the cyclized form is the colored species.
Fulgides have been known since the early twentieth century and their name

comes from the Latin “fulgere” meaning “shine” [69] because the first compounds
synthesized by Stobbe in 1905 exhibited a bright character when crystallized [20,
70]. Nevertheless, to have interesting photochromic features, fulgides must have
at least one exo-methylene carbon substituted with an aryl group. By this method,
a 1,3,5-hexatriene-type structure is constructed and may lead to an electrocyclic
reaction [71]. The first fulgides had a significant thermal back-reaction and were
T-type photochromic compounds. But during the 1980s, the introduction of hete-
rocycles as aryl groups (e.g., furylfulgides or indolinofulgides) enabled the thermal
stabilization of the closed form and the P-type photochromic compound could be
obtained [71, 72]. The open form may undergo trans–cis reactions, especially the
one swapping R1 and R2. Although studies on fulgides report on such observa-
tions [73], this reaction is less appealing because it induces only a minor change
of color and other properties compared to the ring-closure reaction.
In addition to their use in rewritable optical storage devices of information [74],

furylfulgides are also well known as chemical actinometers [2, 75], particularly
the Aberchrome 450 [76] (Figure 1.25). Fulgimides [69c–e, 77] have also been
widely studied because of the possibility to attach a broad variety of substituents,
without deeply affecting the photochromic properties [77]. Thus, fulgimides have
been substituted with not only polymer chains [78] but also fluorophores [79] or
proteins [80].
One classical synthesis method of fulgides is mainly based on a double Stobbe

condensation, which involves a dialkylsuccinate reacting sequentially in aldol-like
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reactions with a ketone bearing the R3 and R4 moieties, and another one bear-
ing the R1 and R2 moieties followed by ester hydrolysis and a dehydration, which
enables the formation of the anhydride ring.

1.2.4.3 Diarylethenes
The first report on the photochromism of diarylethenes dates back to 1988 by Irie
[81]. They represent the most studied family of photochromic compounds due
to their very good fatigue resistance and their highly bistable character [82], and
hence they were considered as very serious candidates for optoelectronic applica-
tions (memories, switches, etc.). Molecular engineering, based on theoretical and
experimental basis, to improve the performances of diarylethenes has occupied
(and still occupies) an important place in the scientific topics since that time and
will be described later.
As for fulgides, diarylethenes undergo a ring-closure reaction between a col-

orless open form and a colored closed form (Figure 1.26). Although “aryl” may
include other aromatic structures, most of the diarylethenes are based on hetero-
cycles. For reasons developed in 1.3.3, the dithienylethene subgroup is nowadays
the most widespread group.
All diarylethenes display a 1,3,5-hexatriene structure in the colorless open

form. According to Woodward–Hoffman rules [82] based on the symmetry
of 𝜋 orbitals, electrocyclization reactions on such structures follow a con-
rotatory mechanism under photochemical control. Under UV irradiation,
a 1,3-cyclohexadiene (colored closed form) is evolved. The reverse reaction
(cycloreversion) is induced by irradiation in the visible range. Extension of the
delocalization of the 𝜋 system explains the color of the closed form.
A previously introduced compound in the part dealing with trans–cis photoi-

somerization, stilbene, is in fact a type of diarylethene, as the two phenyl groups
are linked by an ethene bridge. In addition to the trans–cis isomerization, its cis
isomer is known to undergo a light-induced cyclization reaction, leading to the
formation of dihydrophenanthrene [83] (Figure 1.27). However, it oxidizes irre-
versibly to yield phenanthrene by the elimination of hydrogen. Introducing sub-
stituents on the reacting carbon atoms can avoid this undesirable reaction, thus
hydrogen atoms are replaced in diarylethenes (R3 and R4 positions, Figure 1.26)
by a large variety of groups, the most common ones being alkyl and alkoxy.



1.2 Organic Photochromic Molecules: Main Families 19

6

5

4 3

2

5′

2′

3′
4′

Cis-stilbene Dihydrophenanthrene Phenanthrene

In presence of O2

–H2

H H

6′
hν1

Δ

Figure 1.27 Photocyclization reaction of cis-stilbene and the subsequent oxidation to
phenanthrene.

R2

R1

R3

R4

R5

R6

S S

O O O
F

F

F F

F

F
R2

R1

R3

R4

R5

R6

S S

R2

R1

R3

R4

R5

R6

S S

Maleic anhydride Cyclopentene Perfluorocyclopentene

Figure 1.28 Typical examples of rings including the ethene bridge in diarylethenes (more
specifically, dithienylethenes).

The analogy with cis-stilbene leads us to care about the trans–cis reaction,
which competes with the cyclization reaction. Since the former induces less
change than the latter for most properties, it is usually considered to be less
interesting and is even avoided. In order to do so, in many molecules, the ethene
bridge is included in a cyclic group (Figure 1.28).
At the time diarylethenes emerged in the world of photochromism, spiropyran

and the related compounds, as previously described, were occupying the front
scene for T-type compounds. Diarylethenes quickly showed some potential as
P-type systems, and much effort was invested in the molecular engineering to
increase the stability of both forms of the molecule (see Section 1.3.3).
Various synthetic methods have been developed for the preparation of

diarylethenes [64]. Diarylethenes with hexafluorocyclopentene as ethene
bridge can be, in general, synthesized by the reaction of appropriate heteroaryl
organolithium reagent with octafluorocyclopentene (Figure 1.29a). However,
Pd-catalyzed cross-coupling, Suzuki cross-coupling, for example, is another quite
general synthetic approach to diarylethenes (Figure 1.29b) [84].
It would be unrealistic to list all the diarylethene derivatives that have been

developed based on dithienylethenes, even if one focuses only on compoundswith
dithienylperfluorocyclopentene bridges. A lot of modifications in diarylethene
structure were done in order to modify their photochromic properties. Beyond
dithienylethenes, variants of diarylethenes with thiazolyl cycles (see Section
1.3.5), terarylenes [85], or arylbutadienes [86] can be mentioned as other
photochromic systems.
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1.3
Molecular Design to Improve the Performance

1.3.1
Figures of Merit

In order to fulfill the requirements as photoswitches, several characteristics are
necessary and a lot of research has been carried out to improve them.
Some of them are rather obvious and “universal”:

1) The number of cycles that a photochromic system is capable to complete
should be as high as possible. In otherwords, fatigue resistance is an important
feature.

2) The switching should not be greedy in energy, in order to have an efficient
conversion in terms of extent and speed. To be under such conditions, the
quantum yield of the photoreaction should be high (see Appendix).

There are also other important characteristics; however, the expectations may
vary according to the targeted application. For instance:
3) The absence of a thermal reaction leading to a complete bistability (the com-

position remains the same as in the absence of light) is essential in P-type
systems,whereas for aT-type system, the reversion fromB toA state is desired
to occur in a glance.

4) Usually, a large absorption spectrum shift between A and B states is sought:
not only this means a large color change but it is also linked to a large change
of other properties. However, in some applications, performing asmuch A–B
cycles as possible is necessary, and a large overlap of their spectra can be
advantageous.

Finally, in terms of most applications, photochromic systems should be capable
to operate in the solid state, and structural properties of the molecules have an
important influence on their ability to undergo reactions in the solid state.
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In the following, for a selection of figures of merits, such as fatigue resistance,
bistability for P-type systems, or speediness of the back-reaction for T-type sys-
tems, molecular design related to their improvement is presented.

1.3.2
Fatigue Resistance: Increasing the Number of Operating Cycles

Towork as a switch, photochromic systems should be able to undergo a large num-
ber of cycles. For example, it would be inconceivable to change a glass panel on
a building or a car windshield every year. In applications where a 10-year prod-
uct lifetime would be reasonable, one should consider not only that the material
should withstand the 3650 day/night cycles but also that the A–B photoreaction is
permanently occurring during daytime, even at photostationary state (PSS) where
the global composition of the medium remains constant (see Appendix).
Unfortunately, as in all reactive media, fatigue is also present in photochromic

systems. A few decades ago, investigation on side products and degradationmech-
anism was intensively conducted on spiropyrans [87]. Electronic effects of the
substituents showed that the introduction of electron-donating groups (EDGs)
at almost all positions improved the fatigue resistance, whereas the introduction
of electron-withdrawing groups (EWGs) had the opposite effect [88]. In addition,
comparative studies between spiropyrans and analogous spirooxazines were car-
ried out and showed that the latter had a better fatigue resistance [89]. A difference
of deactivation processes withmolecular oxygen between the two compound fam-
ilies was reported: in spirooxazines, the mechanism is more photophysical than
photochemical.
Diarylethenes are reputed for their good fatigue resistance, owing to many

molecular engineering works, although not totally exempt from irreversible
side reactions under some conditions [84c, 90]. In Section 1.2.4, issues related
to trans–cis photoisomerization and oxidation of a tricyclic compound were
discussed in the case of stilbene. Substituting hydrogen wherever this atom can
be involved in a side reaction, is an answer to avoid it. The same design is applied
in fulgides [91].
Back to diarylethenes, the extent of side reactions depends on both the molec-

ular structure of the switch and experimental conditions, leading to diarylethenes
with cycling ability ranging from a few tens to hundreds of thousands cycles [90a].
Despite the abundance of literature data on diarylethenes, it is still impossible to
predict the photoresistance of a diarylethene, as there are several different meth-
ods of degradation [92]. Nevertheless, some empirical correlations are observed
between the fatigue behavior of a diarylethene and its molecular structure. When
the reacting carbon atoms are not substituted, a possible side reaction is an oxi-
dation reaction concomitant to the cyclization, analogously to the one described
for stilbene (see Section 1.2.4, Figure 1.27).
First, all else being equal, hexafluorocyclopentene as ethenic bridge confers, in

general, higher fatigue resistance to diarylethenes than cyclopentene does [93].
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Note that maleic anhydride or maleimide as ethenic bridge offers comparable
photoresistance to hexafluorocyclopentene but has lower chemical stability [90a].
Second, diarylethenes with benzo[b]thiophenes as heteroaryl are, in general,

more fatigue resistant than those with thiophenes. Within the thiophene-based
diarylethenes, the fatigue resistance is very sensitive to small structure changes.
For instance, a simple methyl substitution of thiophene ring was found to bring
about a spectacular improvement in its photoresistance (Figure 1.30) [90a]. Note
also that diarylethenes with thiazole or oxazole, which are more electron defi-
cient than thiophene and benzothiophene, are also known for their high fatigue
resistance [90a, 94].
Finally, the fatigue resistance of a diarylethene is sensitive not only to the nature

of the two heteroaryl groups directly involved in the photochromic reactions but
also to peripheral structure changes. Indeed, a clear correlation has been estab-
lished between the fatigue resistance and the peripheral substitution of phenyl
groups in two families of diarylethenes, dithienylethenes and dithiazolylethenes
(Figure 1.31) [84c].
Contrary to spiropyrans, substitution of phenyl rings by EWGwas clearly found

to have beneficial effect on their photoresistance, while that of EDG produced the
opposite effect. The most spectacular improvement of the fatigue resistance was
observedwhen the phenyl rings are substituted at 3- and 5-positions by chemically
inert and strongly electron-withdrawing trifluoromethyl group (CF3) or pentaflu-
orosulfanyl group (SF5). More importantly, this enhancement of fatigue resistance
was achieved without altering their photoreactivity [84c].
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1.3.3
Bistability: Avoiding Unwanted Thermal Back-Reaction in the Dark

In some applications, the required system should undergo switching only during
the application of the light stimulus. For example, in memories, recorded infor-
mation should not be altered in the dark. To reach this goal, P-type systems are
sought where the ground-state potential barrier is particularly high for the B form
(ΔE in Figure 1.5).
In the case of diarylethenes, a comparative study between different types of

aromatic groups leads to the result: the lower the aromaticity of the aryl group,
the smaller the ground-state energy difference between B and A forms, and thus,
the higher the ΔE value [82, 90a]. Figure 1.32 shows the comparison between
diphenylethene and difurylethene where the ground-state energy differences are,
respectively, 27.3 and 9.2 kcalmol−1. For dithienylethene, this energy difference is
−3.3 kcal. Consequently, for arylmoieties with a low aromatic stabilization energy,
such as furans, thiophenes, and thiazoles, the B form is thermally stable com-
pared to phenyl, pyrrole, or indole [90a].This is the reason why a large majority of
diarylethenes bears thiophene (or benzothiophene) moieties, although molecules
based on other groups, such as thiazole and oxazole, are now growing in impor-
tance.
It is also important to note that one can also play with the substitution of these

heteroaryl groups as well as the nature of the ethenic bridge to tune the thermal
stability of the colored B form of such a diarylethene, as exemplified below.
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1.3.3.1 Influence of Ethenic Bridge on the Thermal Stability of the B Form

With hexafluorocyclopentene as the ethene bridge, the B form is extremely ther-
mally stable, with a half-lifetime estimated to be 4.7× 105 years at 30 ∘C [95], while
that of the analog with a phenylthiazole bridge is only about 3.3 years at 20 ∘C [96]
(Figure 1.33). The main reason for such a huge difference is that the cyclization
results in a larger energy loss in the case of a phenylthiazole bridge than with
hexafluorocyclopentene due to an extra loss of aromatic stabilization energy
associated with the central thiazole. In other words, the ground-state energy
difference between A and B forms is larger with phenylthiazole than that with
hexafluorocyclopentene, leading to a smaller energy barrier for the thermal back-
reaction, therefore a lower thermal stability of the B form with a phenylthiazole
bridge.
Introducing six-member rings to bridge the aryl groups can be advantageous

to develop new molecular structures and functionalities and also to increase the
quantum yield of 𝜙A→B to some extent [97]. However, concomitantly, it induces
a high aromaticity, thus leading to T-type systems, unless EWG such as benzo-
bisthiadiazoles are introduced [98].

1.3.3.2 Impact of the Heteroaryl Substituents on the Thermal Stability of the B Form

Figure 1.34 describes two situations, where the stability of the colored form B
is influenced by the strength of the C–C single bond created upon the A to B
reaction. Indeed, the B form is destabilized by a weakening of this bond, which
can stem from either a larger steric hindrance (Figure 1.34a) when passing from
methyl to isopropyl substituent on the reactive carbon atoms [99], or a stronger
electron-withdrawing effect of the substituent at 5-position of thiophene moiety
(Figure 1.34b) when going from aldehyde to dicyanoethene group [12]. In both
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cases, a weaker C–C bond means a higher energy difference between B and A,
thus leading to a lower energy barrier to the thermal back-reaction.

1.3.4
Fast Photochromic Systems: Reverting Back Spontaneously to the Colorless State
in a Glance

In 1.3.3, the design to reach molecules with a perfect stability of both A and B
forms was described, thus leading to systems that are not affected in the absence
of light.These are based on P-type photochromic molecules for applications such
as memories. In the contrary, another interesting development of photochromic
compounds is to target systems, which revert back to the initial state when light
is switched off. For example, ophthalmic applications require such a behavior. T-
typemolecules have appropriate characteristics, provided that the reaction occurs
in a glance from A to B when light is switched on, and the other way around when
it is switched off.
Evidently, a high thermal B toA reaction rate (k) is required for a rapid color fad-

ing when light is switched off. However, as described in Appendix, a high k value
would inconveniently lower the conversion extent, 𝛼B(𝜆irr), under UV irradiation.
The consequence would be that only a low absorbance in the visible spectrum is
reached underUV irradiation.Hence, a compromise for the value of k is necessary.
Since the eye’s reflex rate is at the order of some 10ms, the trade-off value is some
10 s−1, considering applications where the human’s vision is involved. In addition,
high UV light intensity and/or strong absorption coefficient of the B form in the
visible spectrum help the performance of the photochromic system.
Many efforts are carried out to control k by a careful design ofmolecules for sev-

eral families of molecules.Within the literature on T-typemolecule families, such
as spiropyrans and azobenzene, thermal back-reaction rate is probably among the
most discussed properties in feature chapters and reviews [29, 34, 52, 60]. For the
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latter, substituents such as amino groups or further conjugated push–pull struc-
tures speed up the thermal back-reaction, and recent work reports on the capabil-
ity of fluorine substituents in slowing down the back-reaction rate drastically[100].
As mentioned previously, HABI undergoes a photochromic reaction between

a TPID dimeric form and a pair of radicals TPIR (see Section 1.2.3, Figure 1.19).
Once colored, the fading of the color of TPIR lasts for several minutes in
solution [56]. In the last decade, an important work was carried out, leading to a
series of fast HABI molecules. To speed up the thermal back-reaction, Abe has
developed a new type of HABI structure where a naphthalene or cyclophane
moiety bridges the two parts of the molecule and prevents the two radicals from
leaving apart [101] (Figure 1.35). Diffusion of TPIR is thus annihilated [102].
The back-reaction is considerably accelerated and takes place in 180ms. Other
compounds, structured identically, have been the subject of several studies to
modulate photochromic properties [103] or to understand the photodissociation
mechanism [104].
In addition to the molecular structure, the environment can drastically influ-

ence k for a givenmolecule.The case of spiropyrans has been presented previously
(see Section 1.2.4), where the stability of the coloredMC is strongly solvent depen-
dent. In addition, the case of anils can be pointed out: the thermal back-reaction
ranges from a few milliseconds in solution, where the photochromism is merely
visible due to an excessive value of k (see Appendix), to several days, in some cases
even years, in the bulk [41l, 50b, 105].

1.3.5
Gaining Efficiency of the Photoreaction: the Example of Diarylethenes

Traditionally, clear and strong color change in photochromic systems used to be
the target in many cases. In such context, colorability, which is the product of 𝜀B
in the visible light spectrum and the quantum yield 𝜙A→B [106], is one indicator to
measure the efficiency of a photochromic system.The advantage of colorability is
that it can be determined directly from the experiment, knowing the experimental
conditions, even if the value of 𝜀B is unknown.This is useful in the case for T-type
systems, where the B form is metastable and difficult to characterize. However,
when properties other than color change are themain interests, the relevant figure
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Table 1.1 Quantum yield (𝜙B→A): effect of substituents on 1- and 5-positions of 1,2-bis(2,6-
dimethyl-3-thienyl)perfluorocyclopentene (Figure 1.26, –R2 = –R6 = –CH3).

Substituent at R1 and R5 positions 𝝓A→B 𝝓B→A

–H 0.21 0.13
–CN 0.44 7.5× 10−2
–Ph 0.46 1.5× 10−2

–Ph–NEt2 0.37 2.5× 10−3
–Th–CN 0.12 1.3× 10−3

–Th–Th–CN 0.12 1.3× 10−4

Ph and Th stand for phenyl and thienyl, respectively.

would rather be the quantum yield(s). As it appears clearly in the expression of
the conversion extent (see Appendix), the values of the quantum yields 𝜙A→B and
𝜙B→A count.
Coming back to diarylethenes, the bridging ethylene is included in a five-

membered ring. This is the result of a compromise between the color change and
the quantum yield,𝜙A→B [82, 90a].Molecules of interest have a𝜙A→B value of a few
10−1, whereas 𝜙B→A can vary in a wide range of several decades. Regarding 𝜙B→A,
it is lowered by the extension of the conjugation. For example, on 1,2-bis(2,6-
dimethyl-3-thienyl)perfluorocyclopentene (Figure 1.26, –R2 =–R6 =–CH3),
𝜙B→A lowers from 0.13 to 7.5× 10−2, 1.5× 10−2, and 2.5× 10−3 when, respectively,
cyano, phenyl, and aminophenyl substituents are introduced at 1- and 5-positions
(Table 1.1) [107]. Even the B to A photoreaction is annihilated when substituents
belong to carotenoids family [108].
In addition, substituents linked to reactive carbon atoms (–R3 and –R4) affect

𝜙B→A [109]: bulky groups and EDG lower its value, whereas EWG increase it, as
illustrated in Table 1.2 [13e, 109b, 110].
From the data in the tables, it is difficult to draw any clear tendency about the

influence of the substituent’s properties on the quantum yield of the forward reac-
tion, 𝜙A→B.
Furthermore, conformational analysis of diarylethenes shows that two con-

formations of the A form exist: antiparallel (ap) and parallel (p). The former

Table 1.2 Quantum yield (𝜙B→A): effect of substituents on 3- and 4-positions of 1,2-bis(1,5-
diphenyl-3-thienyl)perfluorocyclopentene (Figure 1.26, –R1 = –R5 = –Ph).

Substituent at R3 and R4 positions 𝝓A→B 𝝓B→A

–CH3 0.59 1.3× 10−2
–C2H5 0.52 8.1× 10−3
–CN 0.42 0.41

–OCH3 0.44 <2× 10−5
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Figure 1.36 Antiparallel (ap) and parallel (p) conformations of the open form of
diarylethenes. Only the ap conformer is reactive.

is symmetric with respect to 180∘ rotation about a C2 axis, and the latter is
symmetric with respect to reflection in a mirror plane. As it is rationalized by
Woodward–Hoffmann’s rule, only the ap conformer can undergo a photochem-
ical ring-closure reaction (Figure 1.36) [82, 90a]. Usually for conformers, both
spectra overlap and it is practically impossible to irradiate selectively one of them.
In this context, obtaining a diarylethene with 100% ap conformation is sought
after because a 50 : 50 ratio between the conformations would fix an upper limit
of 𝜙A→B to 50%.
Assuming these considerations, the proportion of ap form, and therefore the

efficiency, can be increased by placing the dithienylethenes in a confined space,
such as in crystalline phase [111], in doped polymer [112] or in inclusion material
like cyclodextrin [113]. In contrast, parallel conformation can be largely favored,
for example, by the formation of a rigid bridge between the two aromatics arms
through hydrogen bonds. Such structure freezing leads to the unresponsiveness of
the compound under light irradiation [114]. Freezing/defreezing can be achieved
in specific cases by acid–base reaction [115].
In addition, several strategies in the molecular design have been endeavored to

increase the proportion of the ap form.
One possibility is the introduction of bulky groups. Literature reports on an

example where substitution of methyl by bulkier isopropyl groups on the reacting
carbon atoms increases significantly the ap:p ratio (94 : 6 instead of 65 : 35), leading
to more favorable 𝜙A→B value (0.52 compared to 0.35) [99a]. Bulkiness can also be
introduced elsewhere: a high 𝜙A→B value of 0.83 was reached by introducing four
methyl groups on the five-membered bridging ring [116] (Figure 1.37a).
Also, linking the two aryl groups with an additional bridge at ortho-positions of

the reacting carbon atoms can favor the ap conformation [117] (Figure 1.37b).
During the past 5 years, several research groups have been working on the

intramolecular interactions between the aryl groups and the bridging ring,
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Figure 1.38 Intramolecular interactions favoring the ap conformation and solvent effect on
the 𝜙A→B value [118b].

in order to introduce some rigidity and block the structure within the ap
conformation. Representative results were obtained on a series of teraryl-type
diarylethenes, where intramolecular interactions play a crucial role [118]. As
a result, 𝜙A→B reaches high values of 0.90 and 0.98 (Figure 1.38) in hexane. In
methanol, the S–N bond, present in one of the molecules, apparently weakens
and 𝜙A→B is lowered, thus showing the importance of these intramolecular
interactions. This is also illustrated in another example where the methanol
solvent plays a crucial role in the intramolecular interactions, fixing the confor-
mation to ap and increasing 𝜙A→B compared with what is observed in hexane
(Figure 1.39) [119].
Blocking the conformation, in order to prevent the interconversion between ap

and p conformers, has also been achieved in a diarylethene with thiazole groups
and in a bridging six-membered benzo(thiadiazole) ring. A quantum yield as high
as 0.91 was obtained for the cyclization of the ap form [120]. The energy barrier
between the ap and p conformers was calculated to be more than 140 kJmol−1.
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Such a design gives the possibility to isolate not only the ap and p conformers but
also the pair of enantiomers of the p conformation.This feature was exploited fur-
ther to undergo stereospecific reactions, where each enantiomer of the open form
leads to a specific closed-form enantiomer [121] (Figure 1.40). Another example
with a chiral center leads to a 100% diastereoselective process with a 𝜙A→B value
of 85% (Figure 1.41) [122].



Appendix: General Kinetics of a Photochromic Reaction 31

S S

H H UV

Visible

O
tBu

N N
S S

+

H
O

tBu

N N

S S

H
O

tBu

N N

Figure 1.41 Stereospecific photochromism resulting from the control of the conformation of
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1.4
Conclusion

The world of organic photochromism is full of variety and versatility because of
the infinite possibilities of molecular engineering. Different geometrical and elec-
tronic considerations lead to different properties, and much effort has been done
to tune these. In addition to what has been described in this chapter, obtain-
ing molecules active in the solid state is another issue, where the design of the
molecule has some influence, although this property involves the material. Crite-
ria on intramolecular distances [101] or angles [42b] were established, and strate-
gies such as introducing bulky groups [9b] were followed in order to ensure reac-
tivity in the bulk state.

Appendix

General Kinetics of a Photochromic Reaction and Determination of the Conversion
Extent 𝜶B(𝝀irr)

When a homogeneous sample (under constant stirring), containing a given pho-
tochromic species that exists in its two isomeric states A and B, is exposed to light
irradiation (at a wavelength 𝜆irr, see Figure 1.A.1), the composition of the mixture
evolves with the following general differential equation:

dCA(t)
dt

= −
dCB(t)
dt

= 𝜑B→AIabsB (𝜆irr, t) − 𝜑A→BIabsA (𝜆irr, t) + kB→ACB(t) (A1)

with t the time; CA(t) and CB(t), respectively, the concentrations of A and B; 𝜑A→B
and 𝜑B→A the photochromic quantum yields of the A→B and B→A reactions;
kB→A the thermal back-reaction rate from B to A (kinetics is assumed to be of
first order); and IabsA (𝜆irr, t) and IabsB (𝜆irr, t) the intensities of the irradiation light
absorbed by A and B, expressed as follows:

IabsA (𝜆irr, t) = [1 − 10−Abs(𝜆irr ,t)]
Abs(𝜆irr, t)

I0(𝜆irr)𝜀A(𝜆irr)𝓁CA(t) (A2)
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Figure 1.A.1 Definition of the system under
irradiation and its variables.

IabsB (𝜆irr, t) = [1 − 10−Abs(𝜆irr ,t)]
Abs(𝜆irr, t)

I0(𝜆irr)𝜀B(𝜆irr)𝓁CB(t) (A3)

where 𝜀A(𝜆irr) and 𝜀B(𝜆irr) designate themolar absorption coefficients of the A and
B species at the wavelength 𝜆irr, 𝓁 the optical path of the sample, I0(𝜆irr) the irradi-
ation light intensity per volume unit of the sample, and Abs(𝜆irr, t) the absorbance
of the sample, which follows the Beer–Lambert law:

Abs(𝜆irr, t) = 𝜀A(𝜆irr)𝓁CA(t) + 𝜀B(𝜆irr)𝓁CB(t) (A4)

Often, the term photokinetic factor is employed to designate the nonlinear quan-
tity [1 − 10−Abs(𝜆irr ,t)]∕Abs(𝜆irr, t).
In the general situation, in the absence of any approximation, the differential

equation (A1) shows no analytic solution. Indeed, the “photokinetic factor,” and
thus IabsA (𝜆irr, t) and IabsB (𝜆irr, t), vary upon time, as it can be seen from Eqs. (A2)
and (A3).

Irradiation at a Specific Wavelength: Isosbestic Point

When irradiation is performed at the isosbestic point, the molar absorption coef-
ficients of both A and B species are equal to the same value 𝜀, and the absorption
of the sample Abs(𝜆irr, t) holds a constant value during the irradiation process
(Abs(𝜆irr)), as well as the “photokinetic factor.” Then, we can define the constant
K:

K =
I0(𝜆irr)

Ctot
[1 − 10−Abs(𝜆irr)] (A5)

where Ctot = CA(t) + CB(t). As a consequence, the general differential kinetic
equation simplifies on
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dCA(t)
dt

= (K𝜑B→A + kB→A)Ctot − (K(𝜑A→B + 𝜑B→A) + kB→A)CA(t) (A6)

Then, the time evolution of the molar fractions xA(t) and xB(t) of, respectively, A
and B takes the expression of an exponential function:

xA(t) =

(
x0A −

K𝜑B→A + kB→A

K
(
𝜑A→B + 𝜑B→A

)
+ kB→A

)

× exp[−(K(𝜑A→B + 𝜑B→A) + kB→A)t]

+
K𝜑B→A + kB→A

K(𝜑A→B + 𝜑B→A) + kB→A
(A7)

xB(t) = −

(
K𝜑A→B

K
(
𝜑A→B + 𝜑B→A

)
+ kB→A

− x0B

)

× exp[−(K(𝜑A→B + 𝜑B→A) + kB→A)t]

+
K𝜑A→B

K(𝜑A→B + 𝜑B→A) + kB→A
(A8)

where x0A and x0B represent the initial molar fraction of, respectively, A and B.
Then, the conversion extent 𝛼B(𝜆irr) at the PSS, corresponding to themolar frac-

tion of B isomer in the sample after an infinite time of irradiation, can be easily
expressed:

𝛼B(𝜆irr) =
K𝜑A→B

K(𝜑A→B + 𝜑B→A) + kB→A
(A9)

Coming back to the general case (irradiation at any wavelength), the pho-
tochromic kinetics does not follow an exponential behavior. In the following, we
focus on the conversion extent of the B isomer at the PSS (𝛼B(𝜆irr)) and consider
the case of P-type and T-type photochromic systems.
This situation is obtained either by extrapolating the expression of xB(t) to infi-

nite time (as it was done with Eq. (A8) to obtain Eq. (A9) in the case of the irradi-
ation at the isosbestic point) or by writing that dCA(t)

dt
= 0 in Eq. (A1).

Case A: When the Thermal Back-Reaction is Negligible Compared to the Photochemical
Reaction (Typically P-type)

In this situation, kB→ACB ≪ 𝜑B→AIabsB and the last term of the general kinetic
equation is suppressed. In the following, the PSS is simply characterized by

𝛼B(𝜆irr) =
𝜀A(𝜆irr)𝜑A→B

𝜀A(𝜆irr)𝜑A→B + 𝜀B(𝜆irr)𝜑B→A
(A10)

It is worth noticing that the composition at PSS does not depend on the irradiation
conditions. Only the kinetics to reach PSS does.



34 1 Introduction: Organic Photochromic Molecules

Table 1.A.1 Values of 𝛼B(𝜆irr) as a function of the thermal back-reaction rate kB→A.

kB→A (s−1) 10 1 0.1
𝛼B(𝜆irr) 0.01 0.10 0.54

Case B: When the Thermal Back-Reaction is More Efficient than the Photochemical
B→A Reaction (Typically T ype)

In this situation, kB→ACB ≫ 𝜑B→AIabsB and the first term of Eq. (A1) is suppressed.
In order to have a simple analytic resolution of the equation, we need to consider
the case where the absorption of the sample at the irradiation wavelength is low
enough (Abs(𝜆irr) ≪ 1) to allow the linearization of the differential equation with
([1 − 10−Abs(𝜆irr)] = ln 10 × Abs(𝜆irr)). In this case, Eq. (A1) becomes

dCA(t)
dt

= − ln 10 × I0(𝜆irr)𝓁𝜀A(𝜆irr)𝜑A→BCA(t) + kB→ACB(t) (A11)

and the conversion extent at the PSS 𝛼B(𝜆irr) is dependent on the irradiation inten-
sity I0(𝜆irr):

𝛼B(𝜆irr) =
1

1 + kB→A
ln 10×I0(𝜆irr)𝓁𝜀A(𝜆irr)𝜑A→B

(A12)

FromEq. (A12), we can deduce that the limit of 𝛼B(𝜆irr) approaches 0 when kB→A
is very high.
Let us assume

• a sample of 1ml, 𝓁 = 1 cm,
• containing the isomer A, which has the following characteristics:
𝜀A(𝜆irr) = 10000 mol−1 l cm−1 and 𝜑A→B = 0.5,

• under an irradiation of 3mW at 𝜆irr = 400 nm, which corresponds to an inten-
sity per unit volume of I0(𝜆irr) = 10−5 mol l−1 s−1.

Table 1.A.1 shows that, under the above-mentioned conditions, if the thermal
reaction rate is close to 1 s−1, the conversion extent is 10%, whereas if it is 10 times
faster, only 1% of A is transformed to B. This explains why a fast thermal back-
reaction can be an obstacle to visualize photochromism.
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