Index

AA. see azelaic acid (AA) acetaldehyde - olefin oxidation - ethylene oxidation 140, 145–148 - kinetics and mechanism 140–145 - Wacker process - process improvements 151–155 - single-stage process 148–149 - two-stage process 149–150 acetophenone (ACP) 18 acetylene-based Reppe process 159, 160 acrolein oxidation 178–180 activated carbons (ACs) 267–275, 283 - dehydrogenation reactions 279 - dehydrogenative coupling reactions 280 - H ₂ O ₂ time 271–272 - and hydrogen peroxide 269 - nitrogen content 272–274	 Pd/SiO₂-Al₂O₃ catalyst 215-216 reaction mechanism 212 alcohol oxidation copper catalysts (see copper-catalyzed aerobic alcohol oxidation) NO_x cocatalysts (see NO_x-catalyzed aerobic alcohol oxidation) alcohol-to-ketone ratio 9 aldehyde oxidation, Taylor flow conditions 410 alkene acetoxylation 117-118 alkoxyl radicals 4 allyl alcohol 118 allylic amines 152 amberlyst-15/NO_x-catalyzed aerobic oxidation 241-243, 247-248 amfepramone 81, 82 amino acid-promoted aerobic C-H olefination 130
oxidative cleavage reactions 275 – 277oxygenation reactions 275	aminomethylphosphonic acid (AMPA) 269–271
oxygen flow 271oxygen pressure 271	anthraquinone oxidation (AO) process 221 – 223
- pore size distribution 271, 272	- autoxidation step 223-225
active pharmaceutical ingredient (API) 304, 306	hydrogenation process 225-226vs. quinone-catalyzed oxidation reactions
adamantane oxidation 257 – 258	229
adamantanols 257	anti-Markovnikov Wacker oxidation 416
adipic acid 258	– aldehyde formation 151–152
aerobic DDQ-catalyzed reactions 229 – 230 aerobic oxidative esterification reaction	- continuous-flow microreactors 416
- Au-NiO _x nanoparticle catalyst $216-217$	 NO_x cocatalysts 131 API. see active pharmaceutical ingredient (API)
- block flow diagram 214	arene olefination 126–128
- Pd-Pb catalyst	artemisinic acid 389, 390
- discovery 210	artemisinin 389–391
– – industrial catalyst 213–214	Ashland Oil, Inc. 124
- intermetallic compounds 210-212- Pb role 213	Aspergillus niger mold oxidation process 351, 362–364

Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, First Edition. Edited by Shannon S. Stahl and Paul L. Alsters.

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.

AstraZeneca process 77, 78 bis(dimethyldialkylammonium)molybdates (all-rac)- α -tocopherol 106 387, 388 Au-NiO_x nanoparticle catalyst 216-217 boceprevir 299, 303 autooxidation reaction 19 BP PTA process. see purified terephthalic acid – chain-propagation 5 (PTA) – cvclohexane 7 1.4-butanediol 161 induction-initiation 4–5 - application 159 1,3-butadiene-based synthesis - initiators 4 - - oxidative acetoxylation 162-164 radical pathway 3 termination reactions 5–6 – oxyhalogenation 162 butane-based process 161 AZD8926 synthesis 77, 78 - 3,4-epoxy-1-butene route 169 azelaic acid (AA) - applications 331, 343 Mitsubishi Chemical's production method 160 biotechnological syntheses 339 – 341 - - first generation process 165-166 oleic acid, synthesis from – second generation process 167–168 – double bond cleavage 336–337 - process improvement 168-169 – ozonolysis 332–336 propylene-based process 161 – three-stage conversion 339 Reppe process 159, 160 – two-stage conversion 337–339 - Rh-Te-C catalyst 168 oleic acid, synthesis from t-butyl hydroperoxide 154 - properties 331 BVMO-mediated enzymatic process. see scale-up process 341–342 Baeyer - Villiger monooxygenase enzymatic process Baeyer-Villiger monooxygenase (BVMO)-mediated enzymatic process Cabot Norit Activated Carbon 270 esomeprazole production 295–298 CAO enzymes. see copper amine oxidase - mechanism 292-293 (CAO) enzymes balanced catalytic surfactants 387-388 carbocatalysis 274, 283 benzene production. see cumene route carbohydrate oxidation synthesis disaccharides 358–361 benzoquinone 153, 221 - enzymatic catalysis 363-364 benzoylsalicyclic acid 71 metal catalysts 364–366 benzyl acetates 125 monosaccharides 354–357 benzyl alcohol oxidation 241-242 - organic acids, global market of 366 benzylic acetoxylation 125-126, 131 polysaccharides 361–362 2-benzylpyridines oxidations 403-404 carbon nanotubes (CNTs) 28, 29 bicyclic [3.1.0]proline 299, 300 dehydrogenation reactions 279 bimolecular initiation reaction 7,8 - oxygenation reactions 278 binuclear ethylene – palladium complex 139 catalytic aerobic oxidation reactions bio-based feedstock 313, 320, 325-326 - vs. AO process 229 bio-1,4-butanediol production 169 - CAO enzymes 231-234 biocatalysis and fermentation - NO_x cocatalysts 229-230 - AA 339-341 Pd-catalyzed acetoxylation 230-231 bisulfite oxidation 302-303 cellobiose, gold catalyzed oxidation of 359, - BVMOs – esomeprazole production 295–298 chain initiation reactions 6-7 – mechanism 292–293 chain-propagation reactions 5,7-10 CHMO 304, 305 Chan-Lam coupling reactions 77 - CYPs 304, 305 chemical oxidation 364-366 - MAO 298-302 chemoenzymatic oxidation 360-361 CHHP. see cyclohexyl hydroperoxide (CHHP) - SMOs 304, 305 biorefinery concept 349, 350 chloranil 221

2-chloroethanol 147-148 - - simplified mechanism 90 CHMO. see cyclohexanone monooxygenase - - transition state energies 90 (CHMO)-mediated enzymatic process - nitroxyl radicals 87, 88 (-)-cis-rose oxide 391 - scale-up 91-93 β-citronellol 391, 392 - scope 86 Claisen-type rearrangement 100 Zeneca application 93 Co-Br catalyzed oxidation copper-catalyzed aerobic oxidation p-xylene (pX) oxidation $-\alpha$ -amination reactions 80, 81 - - branching sequence 46-47 - DMC formation - - hydrogen abstraction reactions 47, 48 - - chloride-free catalysts 73, 74 - - reactive intermediates 43, 44 - - process technology 75, 76 - - reaction mechanism 72-73 – thermal homolytic cleavage 44–45 Co(III)-catalyzed acetic acid combustion 56, - pharmaceutical applications – AZD8926 synthesis 77, 78 cofactor recycling systems 305 -- DCPA 77,78 colloidal metals, deposition/immobilization of - - imidazo[1,2-*a*]pyridine 80, 81 -1,2,4-triazoles 79 Co/Mn/Br-catalyzed oxidation - phenol synthesis - furanics oxidation process 315-316 - - chemistry and catalysis 70-72 - - gas composition control 322 - - process technology 74-75 - - heterogeneous catalysts 316-318 copper(I)/DBED-catalyzed aerobic alcohol - - homogeneous catalysts 318-320 oxidation 86 – oxygen mass transfer limitations 324 copper(II) salts 69 – reaction pathways 320, 321 coprecipitation 365 – safety operation 324–325 corrosion-resistant reactors 73, 75 - - temperature control 323-324 coupling chemistry 410 - levulinic acid 325, 326 cross-coupling chemistry 410 - lignin 325-326 Cu/ABNO catalyst systems 90 Cu/DBAD-catalyzed aerobic alcohol oxidation continuous-flow microreactors - anti-Markovnikov Wacker oxidation 416 - reaction conditions 89 Glaser – Hay acetylene coupling 411 – 412 Zeneca application 93 indoles, C3-olefination of 412-413 cumene hydroperoxide (CHP) 15, 16 metal-free aerobic oxidations - carbon nanotubes (CNT) 28 – ortho functionalized phenols 410, 411 - thermal decomposition 17-19, 27 – Taylor flow conditions 409, 410 cumene oxidation process 15, 262 - - three phase flow conditions 408, 409 - axial dispersion model 24 - bubble column reactor 22-23 palladium-catalyzed aerobic oxidation 415 photosensitized singlet oxygen oxidation compartment reactor model 25–26 – artemisinin synthesis 405–406 - design improvements 29-30 – ascaridole synthesis 404–405 - film reactor model 24-25 – thiol oxidation 406–407 ideally mixed reactor model 23–24 - transition metal-catalyzed aerobic - modification 27-29 oxidations - oxidation block diagram 22 - - 2-benzylpyridines 403-404 oxidation scheme 19–21 – gold-catalyzed oxidation 400–401 oxidation side reactions 21 - - homogeneous copper-catalyzed oxidation - process overview 16, 21-22 402 - 403- process safety 26-27 copper amine oxidase (CAO) enzymes cumene process 15, 16 cumene route phenol synthesis 15, 16 231 - 234copper-catalyzed aerobic alcohol oxidation cupric chloride 145-147 catalyst types 86 Cu/TEMPO-catalyzed alcohol oxidation 87, - Cu/TEMPO catalyst system 87, 89 – BASF adaptation 91, 92 - BASF adaptation 91, 92 - - DSM 92 - DSM 92

Cu/TEMPO-catalyzed alcohol oxidation	– chloride-free catalysts 73, 74			
(contd.)	– process technology 75, 76			
- simplified mechanism 90	- reaction mechanism 72–73			
- transition state energies 90	2,6-dimethylphenol (DMP)			
cyclohexane autoxidation 3, 7, 8, 11–12	- oxidative coupling of 97–99			
cyclohexane oxidation 11–12, 258	- TMHQ production 108			
 noncatalyzed oxidation process 37–38 	dimethyl phthalate, Pd-catalyzed oxidative			
 patent publications 38 	coupling of 121			
- process improvements 38–39	1,4-dioxaspiro[4,5]decane 176, 177			
- selectivity 34–35	diphenoquinone (DPQ) 98, 100, 108			
- simplified reaction scheme 34	diphenyl carbonate (DPC)			
- traditional catalyzed process 35–37	– polycarbonate production 189–190			
cyclohexanone 175–177, 189	- synthesis (see direct DPC process)			
– general information 33	direct DPC process			
– production routes 33	- bromide role 199–201			
- synthesis (<i>see</i> cyclohexane oxidation)	- catalyst optimization 201–202			
·	- downstream processing and catalyst			
cyclohexanone monooxygenase				
(CHMO)-mediated enzymatic process	recovery 203 - GE 190-192			
- esomeprazole production 296-298				
– evolution challenges and strategies 296	 heterogeneous palladium catalysts 203 – 204 			
– process challenges and strategies 297				
- reaction scheme 296	– patent activity 204			
cyclohexene oxidation 176–178	– phenol oxidative carbonylation			
cyclohexylbenzene oxidation 261	catalysts 193-195			
cyclohexyl hydroperoxide (CHHP) 34, 35, 37	inorganic cocatalysts 196-198			
CYP102A1 305	mechanism 192–193			
cytochrome P450s (CYPs) 304, 305	– multicomponent catalytic packages 199			
	– – organic cocatalysts 196			
d	– water removal 202			
dark singlet oxygenation (DSO)	disaccharides oxidation 358–361			
– advantages 384	DMC. see dimethylcarbonate (DMC)			
– artemisinin synthesis 389	DPC. see diphenyl carbonate (DPC)			
 homogeneous aqueous and alcoholic media 384–385 	e			
– multiphase microemulsions 387–388	Eastman Chemical 1,4-butandiol			
- rose oxide synthesis 391 – 392	manufacturing process 169			
– schematic representation 386	EMEROX [®] azelaic acids 333			
- single-phase microemulsions 385 – 387	Enichem/Versalis process 72, 73, 76			
DCPA. see dicyclopropylamine (DCPA)	enzymatic oxidation 363-364			
deposition-precipitation (DP) procedure	3,4-epoxy-1-butene 169			
365	esomeprazole 295-298			
1,4-diacetoxy-2-butene 162-165, 168	esterification			
dibutyl carbonate 119	– methacrolein 209			
dibutyl oxalate 119	 palladium catalyzed aerobic oxidation 			
2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)	123-124			
221, 229 – 230	ethylene oxidation			
dicyclopropylamine (DCPA) 77, 78	– acetaldehyde synthesis 140, 145–148			
dihydroartemisinic acid (DHAA) 405, 406	– palladium-catalyzed oxidation 173			
1,5-dihydroxynaphtalene, photooxygenation of 383	ExxonMobil 261, 262			
3,3-dimethoxy methyl propionate 178,	f			
180–181, 184, 185, 187	fermentation 363–364			
dimethylbenzylalcohol (DMBA) 17, 19–21	2,5-furandicarboxylic acid (FDCA)			
dimethylcarbonate (DMC) 72–73, 75	- Avantium's YXY process 314			
, , , , , , , , , , , , , , , , , , , ,	I .			

 furanics oxidation process gas composition control heterogeneous catalysts 315-316 322 316-318 	Hock-process. <i>see</i> cumene oxidation process homogeneous bromineless catalysis 61–62 homogeneous copper-catalyzed aerobic			
– – homogeneous catalysts 318–320	oxidation 402-403			
 – oxygen mass transfer limitations 324 	horseradish peroxidase-Amplex Red			
– – reaction pathways 320, 321	spectrophotometric assay 301			
– safety operation 324–325	HPPO process. see hydrogen peroxide			
– – temperature control 323–324	propylene oxide (HPPO) process			
	Hu's NaNO ₂ /Br ₂ /TEMPO-catalyzed aerobic			
g	alcohol oxidation 245, 246			
galactose oxidase 89	Hydranone [®] technology 39			
galactose-6-oxidase enzyme 362	hydrocarbon autoxidation			
gas-liquid continuous-flow reactor 404	− chain initiation reactions 6−7			
Glaser – Hay acetylene coupling 411 – 412	− chain-propagation reactions 5, 7 − 10			
glucose oxidation	- epoxide selectivity 12-13			
– chemical intermediates 349	- mechanistic difficulties 13			
 derived products 349, 350, 354 	ring-opened by-products 11–12			
 enzymatic process vs. chemical process 	hydrogen abstraction reactions 5, 10			
362-366	hydrogen peroxide based propylene oxide			
 gold catalytic reaction 355, 356 	(HPPO) process 222-223			
– kinetic investigation 353	hydrogen peroxide synthesis			
– molecular mechanism 352	 AO process (see anthraquinone oxidation 			
 mono-and bimetallic catalysts 357 	(AO) process)			
– stoichiometry 352	- process technology 227-229			
glyphosate production	 simplified process flow diagram 227 			
– DEA – IDA route 267, 268	hydrolysis/hydrogenation 165, 314,			
– glycine route 267, 268	359, 365			
– HCN–IDA route 267, 268	– acrolein synthesis 178–180			
– macro kinetic model 270	– 1,4-butanediol synthesis 162, 166			
– reaction scheme 267, 268	– phenol synthesis 75, 123, 124			
gold catalytic oxidation 364–366	hydroperoxides			
graphene oxide (GeO) catalyst 275, 278–280	 alkylaromatics, selective oxidation of 260–262 			
graphite oxide (GiO) catalyst 275,	- co-propagation 8-10			
279, 280	hydroquinones 221			
graphitic carbon nitride (g-CN) catalyst 274, 275	5-(hydroxymethyl)furfural (HMF) 314–318, 320, 324, 325			
 dehydrogenation reactions 281–282 				
 dehydrogenative coupling 	i			
reactions 282	ICC. see inorganic cocatalysts (ICC)			
 oxidative cleavage reactions 281 	imidazo[1,2-a]pyridine 80, 81			
oxygenation reactions 280–281	impregnation method 365			
ground-state molecular oxygen (${}^{3}O_{2}$) 373,	industrialized singlet oxygenation			
374	- artemisinin 389-391			
guaiacol process 91	– ascaridole 388			
	- rose oxide synthesis 391 - 392			
h	industrial oxidative acetoxylation catalyst			
heterogeneous bromineless oxidation catalysis	163-164			
62	inorganic cocatalysts (ICC) 196-198			
$heterogenized\ PdSO_4\text{-}VOSO_4\text{-}H_2SO_4\text{-}on\text{-}coal$	Ishii's catalyst 263			
catalyst 153				
heteropolyacids 152	j			
high-throughput (HTP) identification strategy 301	Jablonski diagram 375 juglone 383			

k	methyl methacrylate (MMA) 209		
Kagan catalytic oxidation method 294-295	α-methylstyrene (AMS) 22		
KA oil 33, 36, 37	methyl-substituted phenol oxidations		
Kharasch's ethylene – Pd complex 143	106-109		
, .	Minisci's		
1	Mn(NO ₃) ₂ /Co(NO ₃) ₂ /TEMPO-catalyzed		
lead-based DPC catalysts 197, 201	aerobic alcohol oxidation 244–246		
levulinic acid (LA) 314, 325, 326	Mitsubishi Chemical's 1,4-butanediol		
ligand-modulated aerobic oxidation catalysis	manufacturing process 160		
128-130	– block flow diagram 166		
lignin oxidation 325–326	- first generation process		
limiting oxygen concentrations (LOCs) 27,	- hydrogenation step 165–166		
93, 322	- hydrolysis step 166		
linear aliphatic diols 159	- oxidative acetoxylation step 165		
liquid phase Cu-catalyzed aerobic oxidation	- process flow diagram 167		
reactions 70	- second generation process 167–168		
liquid phase Pd-catalyzed process 119	Mizoroki – Heck reactions 126, 128		
luminous singlet oxygenation 383–384	MJOD millireactor system. see multijet		
m	oscillating disk (MJOD) millireactor system		
m MAO cotalyzad axidation can managemina	molybdate-catalyzed H ₂ O ₂ disproportionation 379 – 380, 384, 385, 392		
MAO-catalyzed oxidation. see monoamine			
oxidase (MAO)-catalyzed oxidation	monoamine oxidase (MAO)-catalyzed		
MC-catalyzed oxidation	oxidation 298–302		
- bromine species 50–52	monosaccharides oxidation		
- by-products 56–58	- chemical intermediates 349		
- Co(III) species cycle 52	- derived products 349, 350, 354		
- H ₂ O concentration effects 52-54	– enzymatic process <i>vs.</i> chemical process		
- hydrocarbon oxidation 54–55	362–366		
- manganese precipitation 54	– gold catalytic reaction 355, 356		
- Mn(III) species cycle 52	- kinetic investigation 353		
- oxidation process 58	- molecular mechanism 352		
– purification process 58–61	– mono-and bimetallic catalysts 357		
mesoporous graphitic carbon nitride	- stoichiometry 352		
(mpg-CN). see graphitic carbon nitride	Monsanto's Roundup process 267, 269, 270		
metal catalytic oxidation 364–366	multicomponent catalytic packages 199		
metal-free aerobic oxidations, continuous-flow	multijet oscillating disk (MJOD) millireactor		
microreactors	system 260		
- <i>ortho</i> functionalized phenols 410, 411			
– Taylor flow conditions 409, 410	n		
– three phase flow conditions 408, 409	Nagasawa's 1,2,4-triazole synthesis 79		
methacrolein 209	nanoshell carbon (NSC) catalyst 274, 279		
methane oxidation 132	NaOCl 85		
methanol, Cu-catalyzed oxidative	N-hydroxyphthalimide (NHPI)-catalyzed		
carbonylation of 72-74	oxidations		
• • •	– adamantane 257–258		
320, 322 – 324	 adsorption/desorption cycles 262, 263 		
methyl acrylate oxidation	– alkylaromatics 260–262		
 adhesive industry application 180 	- catalytic cycle 254, 255		
– inside reaction temperatures 181	– cyclohexane 258		
- large-scale oxidation 184	– enthalpic effect 256		
- reaction simulation studies 184-186	– entropic effect 257		
- small-scale reaction optimization 181–184	- lipophilic catalyst 262-263		
methylene blue 376	- olefin epoxidation 259–260		
methylene diphenyl diisocyanate 120, 121	– PINO self-decomposition 254		
	•		

- polar effect 256-257 palladium catalyzed aerobic oxidation nitrite-modulated Wacker process 131 118 - 121oxidative esterification 209 nitrogen oxide (NO_x) cocatalysts 130-132 nitroxyl/NO_x-catalyzed aerobic alcohol oxidative Heck reaction 126-128 oxoammonium-catalyzed alcohol oxidation oxidation 248 ABNO and keto-ABNO 247 - catalytic cycles 244, 245 ozonolysis 332-336, 343 - 5-F-AZADO 247 - Hu's oxidation scheme 245, 246 Minisci's oxidation scheme 244–246 palladium-catalyzed aerobic oxidation - alkene acetoxylation 117-118 - N-oxoammonium salt 243-244 - arene olefination 126-128 structures 242, 243 - benzylic acetoxylation 125-126, 131 nonbarbotage method 29 - continuous-flow microreactors 415 noncatalyzed DSM Oxanone® cyclohexane - esterification 123-124 oxidation process 37-38 - industrial applications 115, 116 Norit SXRO activated carbon catalysts - ligand-modulated catalysis 128-130 271 - 273- methane oxidation 132 Noryl® resins 98, 104 - NO_x cocatalysts 130-132 NO_x-catalyzed aerobic alcohol oxidation - oxidative carbonylation 118-121 - amberlyst resin 241-243, 247-248 - oxidative coupling 121-122 - applications 249 - pyridine-based ligands 129 - Lewis acid-coordinated LCoNO2 complex palladium-catalyzed oxidation - acrolein 178-180 - nitroxyl radicals 248 - cyclohexene 174-176 - - ABNO and keto-ABNO 247 - methyl acrylate oxidation - - catalytic cycles 244, 245 - - adhesive industry application 180 -- 5-F-AZADO 247 – inside reaction temperatures 181 – Hu's oxidation scheme 245, 246 - - large-scale oxidation 184 - - Minisci's oxidation scheme 244-246 - - reaction simulation studies 184-186 - - N-oxoammonium salt 243-244 - - small-scale reaction optimization - - structures 242, 243 181 - 184- scale-up 247-249 - olefins 176-178 TEMPO catalysts 244, 245, 248 palladium(II)-ethylene oxidation 175 N-phenyl carbamates 120 parabolic trough-facility for organic N-(phosphonomethyl)iminodiacetic acid photochemistry (PROPHIS) reactor 383 (PMIDA) 267-271 Pd black formation 174-176 Pd-catalyzed allylic acetoxylation reaction o OA. see oleic acid (OA) Pd/Cu/Fe-catalyzed oxidation OCC. see organic cocatalysts (OCC) - cyclohexene 175-176 olefin autoxidation 12-13 - methylacrylate 180 olefinic oxidation 140, 141 - olefins 176-178 oleic acid (OA) 332, 336 Pd-Pb catalyst double bond cleavage 336–337 - discovery 210 - ozonolysis 332-336 - industrial catalyst 213-214 - three-stage conversion 339 - intermetallic compounds 210-212 - two-stage conversion 337-339 - Pb role 213 omeprazole 293, 294 Pd₃Pb₁ catalyst 211 organic cocatalysts (OCC) 196 Pd-Pb-Ti-NaOH-NaBr-TG catalytic oxidative acetoxylation, process flow diagram package 202, 203 of 167 Pd/SiO₂-Al₂O₃ catalyst 215-216 oxidative carbonylation PEF. see polyethylene furandicarboxylate (PEF) - DPC (see direct DPC process) peroxyl radicals 6, 8

phase-transfer catalysis (PTC) 300	- bromineless catalysis 61-62
phenol 124	- Co-Br catalysis
 Cu-catalyzed aerobic oxidation synthesis 	branching sequence 46-47
chemistry and catalysis 70–72	 – hydrogen abstraction reactions 47, 48
process technology 74-75	- reactive intermediates 43, 44
methyl-substituted phenol oxidations	- thermal homolytic cleavage 44–45
106–109	•
	- MC catalysis
- oxidative carbonylation, direct DPC process	bromine species 50-52
catalysts 193–195	by-products 56-58
– – inorganic cocatalysts 196–198	– Co(III) species cycle 52
mechanism 192-193	− − H₂O concentration effects 52−54
 – multicomponent catalytic 	– hydrocarbon oxidation 54–55
packages 199	 – manganese precipitation 54
– organic cocatalysts 196	– Mn(III) species cycle 52
 polyphenylene oxides 	– – oxidation process 58
 – chemistry and catalysis 99–102 	– – purification process 58–61
– process improvements 104–105	- synergistic effect 48-50
process technology 102-104	<i>p</i> -xylene (pX) oxidation
synthesis route 97-98	- Co-Br catalysis
phenylacetaldehydes 416	- branching sequence 46-47
photochemical singlet oxygenation. see singlet	
oxygenation	- hydrogen abstraction reactions 47, 48
phthalimide <i>N</i> -oxyl (PINO) 253, 254	reactive intermediates 43, 44
	thermal homolytic cleavage 44-45
α-pinene, photooxidation of 384	- intermediates 43
pinocarvone 384	 MC catalysis (see MC-catalyzed oxidation)
Plavix 81, 82	
polybutylene terephthalate (PBT) 159	q
polycarbonate plastic 189–190	quinone-catalyzed aerobic oxidation reactions
poly-2,6-dimethyl-1,4-phenylene ether	229
(PPO resin)	quinone-ketal rearrangement 100-101
- CuCl/pyridine catalytic system 101	quinones
- Cu/DTBEDA catalytic system 101–102	 catalytic aerobic oxidation reactions
– greener solvents 105	– - νs. AO process 229
– physical properties 99	CAO enzymes 231-234
- process technology 102–104	- NO _x cocatalysts 229–230
- production 97–98	- Pd-catalyzed acetoxylation 230-231
	 hydrogen peroxide synthesis
- quinone-ketal rearrangement 100–101	
- reaction pathways 99–100	- AO process (<i>see</i> anthraquinone oxidation
- resonance structures 98	(AO) process)
- TMEDA/Cu catalytic system 101	process technology 227-229
polyethylene furandicarboxylate (PEF) 314, 315	– – simplified process flow diagram 227
polymer-immobilized ligands 73	r
- ·	renewable feedstock oxidation. see
polyoxometalates (POMs) 342, 343	
polypyrrole 155	carbohydrate oxidation
polysaccharides oxidation 361–362	Reppe process 159
POMs. see polyoxometalates (POMs)	Riedl – Pfleiderer process 222
pravastatin 304, 305	ring-opened by-products 11-12
1,3-propanediol 178–180, 187	rose oxide synthesis 391 – 392
propene production. see cumene route	
synthesis	S
PTA. see purified terephthalic acid (PTA)	self-accelerating-decomposition temperature
p-toluic acid 48	(SADT) 23, 27, 30
purified terephthalic acid (PTA) 41	single-stage Wacker process 148–149
1 ,	5 5 1

singlet oxygen	trans-2,3-dideuterio-β-propiolactone 144
- application 371	transition metal-catalyzed aerobic oxidations,
- chemical sources of, H ₂ O ₂	in microreactors
disproportionation 376-379	- 2-benzylpyridines 403-404
– DSO	- gold-catalyzed oxidation 400-401
– advantages 384	 homogeneous copper-catalyzed oxidation
– artemisinin synthesis 389	402-403
 – homogeneous aqueous and alcoholic 	1,2,4-triazoles 79
media 384–385	tricarboxylated sucrose 359
– – multiphase microemulsions 387–388	2,3,5-trimethylhydroquinone (TMHQ) 106,
– rose oxide synthesis 391–392	108, 109
– schematic representation 386	two-stage oleic acid conversion 337-339
– – single phase microemulsions 385–387	two-stage Wacker process 149-150
 νs. ground-state molecular oxygen 	type I photooxidation 375
373-375	type II photooxidation 375
$- H_2O_2/MoO_4^{2-}$ catalytic system 379 – 380	
 industrialized oxygenation 	u
– artemisinin 389–391	Ube liquid phase process 119
– – ascaridole 388	unimolecular RO - OH dissociation process 8
– rose oxide synthesis 391–392	unsaturated hydrocarbon autoxidation
- luminous oxygenation 383-384	12-13
- molecular targets 380-382	Upilex production 121
 photosensitized generation 375–376 	
– ROS 371, 372	V
SMOs. see styrene monoxygenases (SMOs)	vanillin 91
sodium gluconate 363	vegetable oil-based feedstocks. see oleic acid
solvent-cage efficiency 9	(OA)
styrene monoxygenases (SMOs) 304, 305	vinyl acetate synthesis 117
succinic acid (SA) 314, 325, 326	visible-light photocatalytic aerobic oxidation
sucralose 351	407
sucrose oxidation 358-359	vitamin A 92
sugar oxidation 360-361	vitamin E 69, 106–109
supercritical carbon dioxide (scCO ₂) 105	
	W
t	Wacker-Hoechst process 16
TEMPO/NO _x -catalyzed aerobic alcohol	Wacker oxidation 175, 176, 182
oxidation 244, 245, 248	Wacker process 131
Tenax [®] 105	- anti-Markovnikov reaction 152
termination reactions 5–6	– process improvements 151–155
tertiary alkylperoxyl radicals 5-6	- single-stage process 148-149
3,4,3,4'-tetramethyl biphenyltetracarboxylate	- two-stage process 149-150
121	Wigner's rule 374, 375
tetraphenylporphyrin 376	Winsor III system 388
three-stage oleic acid conversion 339	
through-wall singlet oxygen oxidation 405	X _{TM}
TMHQ. see 2,3,5-trimethylhydroquinone	XCube flow reactor 402
(TMHQ)	
toluene acetoxylation 126	Z
traditional catalyzed cyclohexane oxidation	Zeise's salt 139, 143
process 35-37	Zeneca Pharmaceuticals 93
trans-cis isomerization reaction 142	zolimidine 80, 81