Contents

Preface	XV	
List of Co	ontributors	XVII

Part I Radical Chain Aerobic Oxidation 1

1	Overview of Radical Chain Oxidation Chemistry 3	
1.1	Introduction 3	
1.2	Chain Initiation 6	
1.3	Chain Propagation 7	
1.4	Formation of Ring-Opened By-Products in the Case of Cyclohexand Oxidation 11	
1.5	Complications in the Case of Olefin Autoxidation 12	
1.6	Summary and Conclusions 13	
	References 14	
2	Noncatalyzed Radical Chain Oxidation: Cumene Hydroperoxide 15	
	Manfred Weber, Jan-Bernd Grosse Daldrup, and Markus Weber	
2.1	Introduction 15	
2.2	Chemistry and Catalysis 15	
2.2.1	Cumene Route to Phenol and Acetone: Chemistry Overview 16	
2.2.2	Thermal Decomposition of Cumene Hydroperoxide 17	
2.2.3	Oxidation of Cumene 19	
2.3	Process Technology 21	
2.3.1	Process Overview 21	
2.3.2	Reactors for the Cumene Oxidation 22	
2.3.3	Reactor Modeling 23	
2.3.4	Process Safety Aspects 26	
2.4	New Developments 27	
2.4.1	Process Intensification by Modification of the Oxidation Reaction 27	
2.4.2	Improvements of Reactor and Process Design 29 References 30	

VI	Contents	
	3	Cyclohexane Oxidation: History of Transition from Catalyzed to Noncatalyzed 33 Johan Thomas Tinge
	3.1	Introduction 33
	3.2	Chemistry and Catalysis 34
	3.3	Process Technology 35
	3.3.1	The Traditional Catalyzed Cyclohexane Oxidation Process 35
	3.3.2	The Noncatalyzed DSM Oxanone® Cyclohexane Oxidation
	0.0.2	Process 37
	3.4	New Developments 38
	5.1	Epilogue 39
		References 39
	4	Chemistry and Mechanism of Oxidation of <i>para</i> -Xylene to Terephthalic
	7	Acid Using Co–Mn–Br Catalyst 41
		Victor A. Adamian and William H. Gong
	4.1	Introduction 41
	4.1	Chemistry and Catalysis 42
	4.2.1	Co–Br Catalysis 43
	4.2.1	·
	4.2.2	Cobalt – Manganese – Bromide Catalysis (MC Oxidation): The Nature of Synergy between Co and Mn 48
	4.2.3	of Synergy between Co and Mn 48 The Role and Nature of Bromine Species in MC Oxidation 50
	4.2.4	Nature of Cobalt(III) and Mn(III) Species 52
	4.2.4	Reactions of Cobalt(II) with Peroxy Radicals and the Effect of Solvent
	4.2.3	on Oxidation Rate 52
	4.2.6	
	4.2.7	Phenomenon of Manganese Precipitation 54 Consolidated View of MC Oxidation Mechanism 54
	4.2.8	Oxidation By-products 56
	4.3	Process Technology 58
	4.3.1	Oxidation 58
	4.3.2	Purification 58
	4.4	New Developments 61
	4.4.1	Homogeneous Bromineless Catalysis 61
	4.4.2	Heterogeneous Bromineless Oxidation Catalysis 62
	4.4.3	Alternative Solvents 62
	4.5	Conclusions 62 References 63
		Neterines 35
		Part II Cu-Catalyzed Aerobic Oxidation 67
	5	Cu-Catalyzed Aerobic Oxidation: Overview and New
		Developments 69
		Damian Hruszkewycz, Scott McCann, and Shannon Stahl
	5.1	Introduction 69
	5.2	Chemistry and Catalysis 70

5.2.1	Cu-Catalyzed Oxydecarboxylative Phenol Synthesis 70		
5.2.2	Cu-Catalyzed Oxidative Carbonylation of Methanol for the Synthesis		
	of Dimethyl Carbonate 72		
5.3	Process Technology 74		
5.3.1	Cu-Catalyzed Oxydecarboxylative Phenol Synthesis 74		
5.3.2	Cu-Catalyzed Oxidative Carbonylation of Methanol for the Synthesis		
	of Dimethyl Carbonate 75		
5.4	New Developments: Pharmaceutical Applications of Cu-Catalyzed		
	Aerobic Oxidation Reactions 76		
	References 82		
6	Copper-Catalyzed Aerobic Alcohol Oxidation 85		
	Janelle E. Steves and Shannon S. Stahl		
6.1	Introduction 85		
6.2	Chemistry and Catalysis 86		
6.3	Prospects for Scale-Up 91		
6.4	Conclusions 93		
	References 94		
7	Phenol Oxidations 97		
7.1	Polyphenylene Oxides by Oxidative Polymerization of Phenols 97		
	Patrick Gamez		
7.1.1	Introduction 97		
7.1.2	Chemistry and Catalysis 99		
7.1.3	Process Technology 102		
7.1.4	New Developments 104		
7.2	2,3,5-Trimethylhydroquinone as a Vitamin E Intermediate via		
	Oxidation of Methyl-Substituted Phenols 106		
	Jan Schütz and Thomas Netscher		
	References 109		
	Part III Pd-Catalyzed Aerobic Oxidation 113		
8	Pd-Catalyzed Aerobic Oxidation Reactions: Industrial Applications		
	and New Developments 115		
	Dian Wang, Jonathan N. Jaworski, and Shannon S. Stahl		
8.1	Introduction 115		
8.2	Chemistry and Catalysis: Industrial Applications 117		
8.2.1	Acetoxylation of Alkenes to Vinyl or Allyl Acetates 117		
8.2.2	Oxidative Carbonylation of Alcohols to Carbonates, Oxalates,		
	and Carbamates 118		
8.2.3	Oxidative Coupling of Arenes to Biaryl Compounds 121		
8.3	Chemistry and Catalysis: Applications of Potential Industrial		
	Interest 122		
8.3.1	Oxidation of Alcohols to Aldehydes 122		

VIII	Contents	
	8.3.2	Oxidation of Arenes to Phenols and Phenyl Esters 123
	8.3.3	Benzylic Acetoxylation 125
	8.3.4	Arene Olefination (Oxidative Heck Reaction) 126
	8.4	Chemistry and Catalysis: New Developments and
		Opportunities 128
	8.4.1	Ligand-Modulated Aerobic Oxidation Catalysis 128
	8.4.2	Use of NO_x as Cocatalyst 130
	8.4.3	Methane Oxidation 132
	8.5	Conclusion 133
		References 133
	9	Acetaldehyde from Ethylene and Related Wacker-Type Reactions 139 Reinhard Jira
	9.1	Introduction 139
	9.2	Chemistry and Catalysis 140
	9.2.1	Oxidation of Olefinic Compounds to Carbonyl Compounds 140
	9.2.2	Kinetics and Mechanism 140
	9.2.3	Catalytic Oxidation of Ethylene 145
	9.2.3.1	Oxidation of Ethylene to Acetaldehyde in the Presence of
		CuCl ₂ 145
	9.2.3.2	Oxidation of Ethylene to 2-Chloroethanol 147
	9.3	Process Technology (Wacker Process) 148
	9.3.1	Single-Stage Acetaldehyde Process from Ethylene 148
	9.3.2	Two-Stage Acetaldehyde Process from Ethylene 149
	9.4	Other Developments 151
		References 155
		Further Reading 158
	10	1,4-Butanediol from 1,3-Butadiene 159
		Yusuke Izawa and Toshiharu Yokoyama
	10.1	Introduction 159
	10.2	Chemistry and Catalysis 160
	10.2.1	Short Overview of Non-butadiene-Based Routes to
		1,4-Butanediol 160
	10.2.1.1	Acetylene-Based Reppe Process 160
	10.2.1.2	Butane-Based Process; Selective Oxidation of Butane to Maleic
		Anhydride 161
	10.2.1.3	Propylene-Based Process: Hydroformylation of Allyl Alcohol 161
	10.2.2	Butadiene-Based Routes to 1,4-Butanediol 162
	10.2.2.1	Oxyhalogenation of 1,3-Butadiene 162
	10.2.2.2	Oxidative Acetoxylation of 1,3-Butadiene 162
	10.3	Process Technology 164
	10.3.1	Mitsubishi Chemical's 1,4-Butanediol Manufacturing Process:
		First-Generation Process 165
	10.3.1.1	Oxidative Acetoxylation Step 165

10.3.1.2 10.3.1.3 10.3.2	Hydrogenation Step 165 Hydrolysis Step 166 Mitsubishi Chemical's 1,4-Butanediol Manufacturing Process: Second-Generation Process 167
10.4	New Developments 168
10.4.1	Improvement of the Current Process 168
10.4.2	Development of Alternative Processes 169
10.5	Summary and Conclusions 169 References 170
11	Mitsubishi Chemicals Liquid Phase Palladium-Catalyzed Oxidation Technology: Oxidation of Cyclohexene, Acrolein, and Methyl Acrylate
	to Useful Industrial Chemicals 173 Yoshiyuki Tanaka, Jun P. Takahara, Tohru Setoyama, and Hans E. B. Lempers
11.1	Introduction 173
11.2	Chemistry and Catalysis 174
11.2.1	Aerobic Palladium-Catalyzed Oxidation of Cyclohexene to 1,4-Dioxospiro-[4,5]-decane 174
11.2.1.1	Optimization of the Reaction Conditions 174
11.2.2	Aerobic Palladium-Catalyzed Oxidation of Other Types of Olefins 176
11.2.3	Aerobic Palladium-Catalyzed Oxidation of Acrolein to Malonaldehyde Bis-(1,3-dioxan-2-yl)-acetal Followed by Hydrolysis/Hydrogenation to 1,3-Propanediol <i>178</i>
11.3	Prospects for Scale-Up 180
11.3.1	Aerobic Palladium-Catalyzed Oxidation of Methyl Acrylate (MA) to 3,3-Dimethoxy Methyl Propionate: Process Optimization and Scale-Up 180
11.3.2	Small-Scale Reaction Optimization 181
11.3.3	Large-Scale Methyl Acrylate Oxidation Reaction and Work-Up 184
11.3.4	Reaction Simulation Studies as Aid for Further Scale-Up 184
11.4	Conclusion 187 References 187
12	Oxidative Carbonylation: Diphenyl Carbonate 189
10.1	Grigorii L. Soloveichik
12.1	Introduction 189
12.1.1	Diphenyl Carbonate in the Manufacturing of Polycarbonates 189
12.1.2	History of Direct Diphenyl Carbonate Process at GE 190 Chemistry and Catalysis 192
12.2 12.2.1	
12.2.1	Mechanism of Oxidative Carbonylation of Phenol 192 Catalysts for Oxidative Carbonylation of Phenol 193
12.2.2	Cocatalysts for Oxidative Carbonylation of Phenol 196
12.2.3	Organic Cocatalysts 196
12.2.3.1	Inorganic Cocatalysts 196
14.4.0.4	morganic Cocatalysts 170

х	Contents	
	12.2.4 12.2.5 12.3 12.3.1 12.3.2 12.3.3 12.4	Multicomponent Catalytic Packages 199 Role of Bromide in Direct Synthesis of Diphenyl Carbonate 199 Prospects for Scale-Up 201 Catalyst Optimization 201 Water Removal in Direct Diphenyl Carbonate Process 202 Downstream Processing and Catalyst Recovery 203 Conclusions and Outlook 203 Acknowledgments 204 References 205
	13	Aerobic Oxidative Esterification of Aldehydes with Alcohols: The Evolution from Pd-Pb Intermetallic Catalysts to Au-NiO _x Nanoparticle Catalysts for the Production of Methyl Methacrylate 209 Ken Suzuki and Setsuo Yamamatsu
	13.1	Introduction 209
	13.2	Chemistry and Catalysis 210
	13.2.1	Discovery of the Pd–Pb Catalyst 210
	13.2.2	Pd-Pb Intermetallic Compounds 210
	13.2.3	Mechanism 212
	13.2.4	The Role of Pb in the Pd – Pb Catalyst 213
	13.2.5	Industrial Catalyst 213
	13.3	Process Technology 214
	13.4	New Developments 215
	13.5	Conclusion and Outlook 217
		References 218
		Part IV Organocatalytic Aerobic Oxidation 219
	14	Quinones in Hydrogen Peroxide Synthesis and Catalytic Aerobic Oxidation Reactions 221 Alison E. Wendlandt and Shannon S. Stahl
	14.1	Introduction 221
	14.2	Chemistry and Catalysis: Anthraquinone Oxidation (AO) Process 223
	14.2.1	Autoxidation Process (Hydroquinone to Quinone) 223
	14.2.2	Hydrogenation Process (Quinone to Hydroquinone) 225
	14.3	Process Technology 227
	14.4	Future Developments: Selective Aerobic Oxidation Reactions Catalyzed by Quinones 229
	14.4.1	Aerobic DDQ-Catalyzed Reactions Using NO_x Cocatalysts 229
	14.4.2	Aerobic Quinone-Catalyzed Reactions Using Other
	± 1. 1.4	Cocatalysts 230
	14.4.3	CAO Mimics and Selective Oxidation of Amines 231
		References 234

15	NO _x Cocatalysts for Aerobic Oxidation Reactions: Application		
	to Alcohol Oxidation 239		
	Susan L. Zultanski and Shannon S. Stahl		
15.1	Introduction 239		
15.2	Chemistry and Catalysis 241		
15.2.1	Aerobic Alcohol Oxidation with NO_x in the Absence of Other Redox		
	Cocatalysts 241		
15.2.2	Aerobic Alcohol Oxidation with NO _x and Organic Nitroxyl		
	Cocatalysts 242		
15.3	Prospects for Scale-Up 247		
15.4	Conclusions 249		
	References 249		
16	N-Hydroxyphthalimide (NHPI)-Organocatalyzed Aerobic Oxidations:		
	Advantages, Limits, and Industrial Perspectives 253		
	Lucio Melone and Carlo Punta		
16.1	Introduction 253		
16.2	Chemistry and Catalysis 254		
16.2.1	Enthalpic Effect 256		
16.2.2	Polar Effect 256		
16.2.3	Entropic Effect 257		
16.3	Process Technology 257		
16.3.1	Oxidation of Adamantane to Adamantanols 257		
16.3.2	Oxidation of Cyclohexane to Adipic Acid 258		
16.3.3	Epoxidation of Olefins 259		
16.3.4	Oxidation of Alkylaromatics to Corresponding		
	Hydroperoxides 260		
16.4	New Developments 262		
	Acknowledgments 264		
	References 264		
17	Carbon Materials as Nonmetal Catalysts for Aerobic Oxidations: The		
17	Industrial Glyphosate Process and New Developments 267		
17.1	Introduction 267		
1/.1	Mark Kuil and Annemarie E. W. Beers		
17.2			
17.2	Chemistry and Catalysis 268 Mark Kuil and Annemarie E. W. Beers		
17 2			
17.3	Process Technology 270		
17 2 1	Mark Kuil and Annemarie E. W. Beers		
17.3.1	Oxygen Pressure 271		
17.3.2	Oxygen Flow 271		
17.3.3	Activated Carbon Pore Size Distribution 271		
17.3.4	Activated Carbon H ₂ O ₂ Time 271		
17.3.5	Activated Carbon Nitrogen Content 272		

XII	Contents	
	17.4	New Developments 274
		Paul L. Alsters
	17.4.1	Aerobic Carbon Material Catalysis 275
	17.4.1.1	Oxygenations and Oxidative Cleavage Reactions 275
	17.4.1.2	Dehydrogenations and Dehydrogenative Coupling Reactions 279
	17.4.2	Aerobic Graphitic Carbon Nitride Catalysis 280
	17.4.2.1	Oxygenations and Oxidative Cleavage Reactions 280
	17.4.2.2	Dehydrogenations and Dehydrogenative Coupling Reactions 281
	17.5	Concluding Remarks 283 References 283
		Part V Biocatalytic Aerobic Oxidation 289
	18 Enzyme Catalysis: Exploiting Biocatalysis and Aerobic Oxidations for	
		High-Volume and High-Value Pharmaceutical Syntheses 291
		Robert L. Osborne and Erika M. Milczek
	18.1	Introduction 291
	18.2	Chemistry and Catalysis 293
	18.2.1	Directed Evolution of BVMOs for the Manufacturing of
		Esomeprazole 295
	18.2.2	Directed Evolution and Incorporation of a Monoamine Oxidase for
		the Manufacturing of Boceprevir 298
	18.3	Process Technology 302
	18.4	New Developments 304
		References 306
		Part VI Oxidative Conversion of Renewable Feedstocks 311
	19	From Terephthalic Acid to 2,5-Furandicarboxylic Acid: An Industrial
		Perspective 313
		Jan C. van der Waal, Etienne Mazoyer, Hendrikus J. Baars,
	10.1	and Gert-Jan M. Gruter
	19.1	Introduction 313
	19.1.1	The Avantium YXY Technology to Produce PEF, a Novel Renewable
	10.2	Polymer 314 Chemistry and Catalysis 314
	19.2	Production of 2,5-Furandicarboxylic Acid Using Heterogeneous
	19.2.1	Catalysts 316
	19.2.2	Production of 2,5-Furandicarboxylic Acid Using Homogeneous
	17.2.2	Catalysts 318
	19.3	Process Technology 320
	19.3.1	Process Economics and Engineering Challenges 320
	19.3.1.1	Gas Composition Control 322
	19.3.1.2	Temperature Control 323
	19.3.1.3	Oxygen Mass Transfer Limitations 324

19.3.1.4	Overall Safety Operation 324		
19.4	New Developments 325		
19.4.1	Outlook for Co/Mn/Br in the Air Oxidation of Biomass-Derived Molecules 325		
19.5	Conclusion 327		
	List of Abbreviations 327		
	References 327		
20	Azelaic Acid from Vegetable Feedstock via Oxidative Cleavage with		
	Ozone or Oxygen 331		
	Angela Köckritz		
20.1	Introduction 331		
20.1.1	Current Technical Process: Ozonolysis 332		
20.1.1.1	Analytical Investigations of the Mechanism of Ozonolysis 336		
20.2	Chemistry and Catalysis 336		
20.2.1	Direct Aerobic Cleavage of the Double Bond of Oleic Acid or Methyl Oleate 336		
20.2.2	Aerobic Oxidation Step within a Two-Stage Conversion of Oleic Acid or Methyl Oleate 337		
20.2.3	Aerobic Oxidation Step within a Three-Stage Conversion of Oleic		
	Acid or Methyl Oleate 339		
20.2.4	Biocatalysis 339		
20.3	Prospects for Scale-Up 341		
20.4	Concluding Remarks and Perspectives 342		
20.4.1	New Promising Developments 342		
20.4.2	Summary 343		
	References 344		
21	Oxidative Conversion of Renewable Feedstock: Carbohydrate		
	Oxidation 349		
	Cristina Della Pina, Ermelinda Falletta, and Michele Rossi		
21.1	Introduction 349		
21.2	Chemistry and Catalysis 351		
21.2.1	Oxidation of Monosaccharides 354		
21.2.2	Oxidation of Disaccharides 358		
21.2.3	Polysaccharide Oxidation 361		
21.3	Prospects for Scale-Up 362		
21.3.1	Enzymatic Process <i>versus</i> Chemical Process: Glucose Oxidation as a		
	Model Reaction 362		
21.3.2	Enzymatic Oxidation: Industrial Process and Prospects 363		
21.3.3	Chemical Oxidation: Industrial Process and Prospects 364		
21.3.3.1	Metal Catalysts: Concepts Guiding Choice and Design 364		
21.4	Concluding Remarks and Perspectives 366		
	References 367		

XIV	Contents
-----	----------

	Part VII Aerobic Oxidation with Singlet Oxygen 369	
22	Industrial Prospects for the Chemical and Photochemical Singlet Oxygenation of Organic Compounds 371	
	Véronique Nardello-Rataj, Paul L. Alsters, and Jean-Marie Aubry	
22.1	Introduction 371	
22.2	Chemistry and Catalysis 373	
22.2.1	Comparison of Singlet and Triplet Oxygen 373	
22.2.2	Photochemical Generation of ¹ O ₂ 375	
22.2.3	Chemicals Sources of $^{1}O_{2}$ Based on the Catalytic Disproportionation of $H_{2}O_{2}$ 376	
22.2.4	Optimal Generation of $^1{\rm O}_2$ Through the Catalytic System ${\rm H_2O_2/MoO_4}^{2-}$ 379	
22.2.5	Potential Molecular Targets for Singlet Oxygenation 380	
22.3	Prospects for Scale-Up 383	
22.3.1	Respective Advantages and Disadvantages of "Dark" and "Luminous' Singlet Oxygenation 383	
22.3.2	Choice of the Medium for Dark Singlet Oxygenation 384	
22.3.2.1	Homogeneous Aqueous and Alcoholic Media 384	
22.3.2.2	Single-Phase Microemulsions 385	
22.3.2.3	Multiphase Microemulsions with Balanced Catalytic Surfactants 387	
22.3.3	Examples of Industrialized Singlet Oxygenation 388	
22.3.3.1	Synthesis of Artemisinin 389	
22.3.3.2	Synthesis of Rose Oxide 391	
22.4	Conclusion 392	
	Acknowledgments 392	
	References 393	
	Part VIII Reactor Concepts for Liquid Phase Aerobic Oxidation 393	
23	Reactor Concepts for Aerobic Liquid Phase Oxidation: Microreactors	
	and Tube Reactors 399	
	Hannes P. L. Gemoets, Volker Hessel, and Timothy Noël	
23.1	Introduction 399	
23.2	Chemistry and Catalysis 400	
23.2.1	Transition Metal-Catalyzed Aerobic Oxidations in Continuous Flow 400	
23.2.2	Photosensitized Singlet Oxygen Oxidations in Continuous Flow 404	
23.2.3	Metal-Free Aerobic Oxidations in Continuous Flow 408	
23.2.4	Aerobic Coupling Chemistry in Continuous Flow 410	
23.3	Prospects for Scale-Up 413	
23.4	Conclusions 417	
	References 417	