Contents

List of Contributors XIII Preface XVII

1 Introduction 1

Wei Zhang and Shu-Li You

- 1.1 Why Asymmetric Dearomatization Reactions? 1
- 1.2 Discovery of Aromatic Compounds and Dearomatization Reactions *1*

v

- 1.3 Development of Dearomatization Reactions 3
- 1.4Asymmetric Dearomatization Reactions7
 - References 8

2 Asymmetric Dearomatization with Chiral Auxiliaries and Reagents 9

E. Peter Kündig

- 2.1 Introduction 9
- 2.2 Chiral σ-Bound Auxiliaries 9
- 2.2.1 Oxazolines 9
- 2.2.2 Imines, Oxazolidines, and Hydrazones 15
- 2.2.3 Chiral Ethers and Amines 16
- 2.3 Diastereospecific Anionic Cyclizations 20
- 2.4 Use of Chiral Reagents 21
- 2.4.1 Chiral Bases in Dearomatizing Cyclizations 21
- 2.4.2 Chiral Nucleophiles 23
- 2.4.3 Chiral Ligands in Enantioselective Nucleophilic Additions 23
- 2.5 Chiral π -Complexes 26
- 2.5.1 Planar Chiral η^6 -Arene Complexes 26
- 2.5.2 η^6 -Arene Complexes with a Chiral Ligand 28
- 2.5.3 Complexes with Stereogenic Metal Centers 29
- 2.6 Conclusion 30
 - References 30

VI Contents

3	Organocatalytic Asymmetric Transfer Hydrogenation of
	Gaëlle Mingat and Magnus Rueping
3.1	Introduction 33
3.1	Organocatalytic Asymmetric Transfer Hydrogenation of
3.2	Heteroaromatics 34
3.2.1	Quinolines 34
3.2.1.1	Proof-of-Concept 34
3.2.1.2	2-Substituted Quinolines 35
3.2.1.3	4-Substituted Quinolines 40
3.2.1.4	3-Substituted Quinolines 41
3.2.1.5	2,3-Disubstituted Quinolines 42
3.2.1.6	Spiro-Tetrahydroquinolines 45
3.2.2	Benzoxazines, Benzothiazines, and Benzoxazinones 47
3.2.3	Benzodiazepines and Benzodiazepinones 49
3.2.4	Pyridines 51
3.2.5	3H-Indoles 51
3.2.6	Quinoxalines and Quinoxalinones 52
3.3	Organocatalytic Asymmetric Transfer Hydrogenation in Aqueous
	Solution 53
3.4	Cascade Reactions 54
3.4.1	Introduction 54
3.4.2	<i>In situ</i> Generation of the Heteroarene 54
3.4.3	Dearomatization of Pyridine/Asymmetric <i>aza</i> -Friedel-Crafts
	Alkylation Cascade 56
3.4.4	Combining Photochemistry and Brønsted Acid Catalysis 57
3.4.4.1	Quinolines 57
3.4.4.2	Pyrylium ions 58
3.5	Cooperative and Relay Catalysis: Combining Brønsted Acid- and
	Metal-Catalysis 59
3.5.1	Introduction 59
3.5.2	Improvements in Transfer Hydrogenation 60
3.5.2.1	Regenerable Hydrogen Sources 60
3.5.2.2	Asymmetric Relay Catalysis (ARC) 62
3.5.3	Cooperative Metal – Brønsted Acid Catalysis 63
3.6	Summary and Conclusion 65
	References 66
4	Transition-Metal-Catalyzed Asymmetric Hydrogenation of
•	Aromatics 69
	Rvoichi Kuwano
41	Introduction 69
ч.1 Л.Э	Catalytic Asymmetric Hydrogenation of Eive Membered
ч.2	Hataroproper 71
121	Catalytic Asymmetric Hydrogenation of Azalas and Indolog 71
4.2.1	Catalytic Asymmetric Hydrogenation of Azoles and Indoles /1

Contents VII

4011	
4.2.1.1	Rhodium-Catalyzed Asymmetric Hydrogenation of Indoles //
4.2.1.2	Ruthenium-Catalyzed Asymmetric Hydrogenation of Azoles 73
4.2.1.3	Palladium-Catalyzed Asymmetric Hydrogenation of Azoles 75
4.2.1.4	Iridium-Catalyzed Asymmetric Hydrogenation of Indoles 77
4.2.2	Catalytic Asymmetric Hydrogenation of Oxygen-Containing
	Heteroarenes 77
4.2.3	Catalytic Asymmetric Hydrogenation of Sulfur-Containing
	Heteroarenes 79
4.3	Catalytic Asymmetric Hydrogenation of Six-Membered
	Heteroarenes 79
4.3.1	Catalytic Asymmetric Hydrogenation of Azines 80
4.3.1.1	Iridium-Catalyzed Asymmetric Hydrogenation of Pyridines 80
4.3.1.2	Iridium-Catalyzed Asymmetric Hydrogenation of Pyrimidines 81
4.3.2	Catalytic Asymmetric Hydrogenation of Benzo-Fused Azines 82
4.3.2.1	Iridium-Catalyzed Asymmetric Hydrogenation of Quinolines 82
4.3.2.2	Ruthenium-Catalyzed Asymmetric Hydrogenation of
	Quinolines 85
4.3.2.3	Iridium-Catalyzed Asymmetric Hydrogenation of Isoquinolines 87
4.3.2.4	Iridium-Catalyzed Asymmetric Hydrogenation of Quinoxalines 89
4.3.2.5	Ruthenium-Catalyzed Asymmetric Hydrogenation of
	Quinoxalines 90
4.3.2.6	Iron-Catalyzed Asymmetric Hydrogenation of Quinoxalines 92
4.3.2.7	Catalytic Asymmetric Hydrogenation of Miscellaneous
	Six-Membered Heteroarenes 92
4.3.3	Catalytic Asymmetric Reduction of Quinolines with Reducing
	Agents Other Than H_2 94
4.4	Catalytic Asymmetric Hydrogenation of Carbocyclic Arenes 95
4.4.1	Ruthenium-Catalyzed Asymmetric Hydrogenation of Carbocycles in
	Benzo-Fused Heteroarenes 96
4.4.2	Ruthenium-Catalyzed Asymmetric Hydrogenation of
	Naphthalenes 97
4.5	Summary and Conclusion 97
	References 98
-	Stonwise Asymptotic Descenatization of Phonels 102
5	Oing Gu
F 1	Ung Gu
5.1 5.2	Introduction 103
5.2 5.2.1	Agreement is [4+2] Dearting 102
5.2.1 5.2.2	Asymmetric [4+2] Reaction 105
5.2.2	Asymmetric fleck keaction 106
5.2.3	Asymmetric (Hetero) Michael Keaction 108
5.2.4	Asymmetric Stetter Reaction 119
5.2.5	Asymmetric Kauhut – Currier Reaction 120
5.2.6	Asymmetric 1,6-Dienyne Cyclized Reaction 122

VIII Contents

5.3	Conclusion and Perspective 126
	References 127
6	Asymmetric Oxidative Dearomatization Reaction <i>129</i> <i>Muhammet Uyanik and Kazuaki Ishihara</i>
6.1	Introduction 129
6.2	Diastereoselective Oxidative Dearomatization using Chiral
6.3	Enantioselective Oxidative Dearomatization using Chiral Reagents or Catalysts 132
6.3.1	Chiral Transition Metal Complexes 132
6.3.2	Chiral Hypervalent Iodines(III, V) and Hypoiodites(I) 139
6.4	Conclusions and Perspectives 148
	References 149
7	Asymmetric Dearomatization via Cycloaddition Reaction 153
71	Introduction 153
7.1	$[2 \pm 1]$ Cycloaddition 153
7.2	Asymmetric Büchner Reaction 153
722	Cyclopropanation of Heterocyclic Compounds 155
7.3	[3+2] Cycloaddition 156
7.4	[3+3] Cycloaddition 161
7.5	[4+2] Cycloaddition 163
7.6	[4+3] Cycloaddition 170
7.7	Conclusion 173
	References 173
8	Organocatalytic Asymmetric Dearomatization Reactions 175
0.1	Susana S. Lopez, Sri K. Nimmagaaaa, ana Jon C. Antilia
8.1	Introduction 175
8.2	Diels-Alder 1/5
8.3	Oxidative Dearomatization 1/9
8.4	Cascade Reactions 186
8.5	Stepwise 193
8.6	Nucleophilic Dearomatization 200
8.7	References 205
9	Dearomatization via Transition-Metal-Catalyzed Allylic Substitution
	Reactions 207
0.1	Ietsuniro Nemoto and Yasumasa Hamada
9.1	Introduction 207
9.2	Catalyzed Allylic Substitution Reactions 208

Contents IX

9.3	Dearomatization of Phenols via Transition-Metal-Catalyzed Allylic Substitution Reactions 216
9.4	Dearomatization of Phenols and Indoles via Activation of Propargyl Carbonates with Pd Catalyst 221
9.5	Conclusion 226 References 226
	References 220
10	Dearomatization via Transition-Metal-Catalyzed Cross-Coupling Reactions 229 Robin B. Bedford
10.1	Introduction: From Cross-Coupling to Catalytic Dearomatization 229
10.2	Dearomatization of Phenolic Substrates 231
10.3	Dearomatization of Nitrogen-Containing Substrates 240
10.4	Conclusion and Outlook 244
	References 245
11	Dearomatization Reactions of Electron-Deficient Aromatic Rings 247
	Chihiro Tsukano and Yoshiji Takemoto
11.1	Introduction 247
11.2	Dearomatization of Activated Pyridines and Other
	Electron-Deficient Heterocycles 248
11.2.1	Dearomatization via Alkyl Pyridinium Salts 248
11.2.1.1	Reduction with Borohydrides 248
11.2.1.2	Reduction with $Na_2S_2O_4$ 249
11.2.1.3	Reduction with Other Reducing Agents 250
11.2.1.4	Nucleophilic Addition of Grignard Reagents 251
11.2.1.5	Nucleophilic Addition of Cyanide 252
11.2.1.6	Addition of Other Carbon Nucleophiles 252
11.2.2	Dearomatization via Alkoxycarbonylpyridinium
11221	Reduction with Hydride Nucleophiles 254
11.2.2.1	Addition of Metal Nucleonhiles Including Grignard
11.2.2.2	Reagents 255
11 2 2 3	Addition of Englates and Related Carbon Nucleonhiles 261
11.2.2.4	Nucleophilic Addition of Cyanide 264
11.2.2.5	Addition of Other Nucleophiles 265
11.2.3	Dearomatization via Acyl Pyridinium Salts 266
11.2.31	Reduction with Hydride Reducing Agents 266
11.2.3.2	Addition of Metal Nucleophiles Including Grignard Reagents 269
11.2.3.3	Addition of Enolates and Related Carbon Nucleophiles 270
11.2.4	Dearomatization through Other Pyridinium Cations 270
11.3	Summary and Conclusion 274
- 1.0	References 274

X Contents

12	Asymmetric Dearomatization Under Enzymatic Conditions 279
	Simon E. Lewis
12.1	Introduction 279
12.2	Dearomatizing Arene <i>cis</i> -Dihydroxylation 280
12.2.1	Early Development 280
12.2.2	Types of Arene Dioxygenase 281
12.2.3	Substrate Scope and Regioselectivity 283
12.2.3.1	Monocyclic Substituted Benzene Substrates (Excluding Biaryls) 299
12.2.3.2	Biaryl Substrates 299
12.2.3.3	Naphthalene Substrates 299
12.2.3.4	Benzoic Acid Substrates 299
12.2.3.5	Heterocyclic Substrates (Mono- and Bicyclic) 300
12.2.3.6	Bicyclic Carbocyclic Substrates (Other than Naphthalenes) 300
12.2.3.7	Tricyclic Substrates (Carbo- and Heterocyclic) 300
12.2.4	Availability of Arene <i>cis</i> -Diols 300
12.2.5	Uses in Synthesis 302
12.2.5.1	Total Synthesis 302
12.2.5.2	Pharmaceuticals and Agrochemicals 315
12.2.5.3	Polymers 317
12.2.5.4	Flavors and Fragrances 320
12.2.5.5	Dyes 321
12.2.5.6	Ligands and MOFs 321
12.2.6	Increasing the Substrate Scope 324
12.2.7	Accessing Both Enantiomeric Series 326
12.2.8	Improvements to the Production Process 328
12.3	Dearomatizing Arene Epoxidation 328
12.4	Dearomatizing Arene Reduction 330
12.5	Summary and Conclusion 330
	List of Abbreviations 331
	References 332
13	Total Synthesis of Complex Natural Products via
	Dearomatization 347
	Weiqing Xie and Dawei Ma
13.1	Introduction 347
13.2	Natural Products Synthesis via Oxidative Dearomatization 348
13.2.1	Enzymatic Dihydroxylative Dearomatization of Arene 348
13.2.2	Oxidative Dearomatization of Phenol 349
13.2.3	Oxidative Cycloisomerization Reaction of Phenol 355
13.2.4	Oxidative Dearomatization of Indole in Synthesis of Natural
	Products 357
13.3	Dearomatization via Cycloaddition in Synthesis of Natural
	Products 360
13.4	Dearomatization via Nucleophilic Addition in Synthesis of Natural
	Products 367

- 13.5 Reductive Dearomatization in Synthesis of Natural Products 367
- 13.6 Dearomatization via Electrophilic Addition in Synthesis of Natural Products 369
- 13.7 Dearomatization via Intramolecular Arylation in Natural Products Synthesis *371*
- 13.8 Summary and Perspective 373 References 374

14 Miscellaneous Asymmetric Dearomatization Reactions 379

- Wei Zhang and Shu-Li You
- 14.1 Introduction 379
- 14.2 Miscellaneous Asymmetric Dearomatization Reactions 379
- 14.3 Conclusions and Perspectives 388 References 388

Index 391