Contents

1	Introduction to Room-Temperature Catalysis	1
	Eduardo J. Garcia-Suarez and Anders Riisager	

- 1.1 Introduction *1*
- 1.2 Room-Temperature Homogeneous Catalysts 2
- 1.2.1 Ionic-Liquid-Based Catalytic Systems at Room Temperature 2

|v

- 1.2.2 Transition Metal Homogeneous Catalysts 6
- 1.2.2.1 Group 9-Based Homogeneous Catalysts (Co, Rh, Ir) 6
- 1.2.2.2 Group 10-Based Homogeneous Catalysts (Ni, Pd, Pt) 7
- 1.2.2.3 Group 11-Based Homogeneous Catalysts (Ag, Au) 10
- 1.3 Room-Temperature Heterogeneous Catalysts 10
- 1.3.1 Group 9-Based Heterogeneous Catalysts (Co, Rh, Ir) 11
- 1.3.2 Group 10-Based Heterogeneous Catalysts (Ni, Pd, Pt) 13
- 1.3.3 Group 11-Based Heterogeneous Catalysts (Cu, Pt, Au) 23
- 1.4 Conclusions and Perspectives 29 References 31
- 2 Functionalized Ionic Liquid-based Catalytic Systems with Diversified Performance Enhancements 35

Shiguo Zhang and Yanlong Gu

- 2.1 Introduction 35
- 2.2 Functionalized ILs for Enhancing Catalytic Activity 36
- 2.3 Functionalized ILs for Improving Reaction Selectivity 38
- 2.4 Functionalized ILs for Facilitating Catalyst Recycling and Product Isolation *40*
- 2.5 Functionalized ILs for Making Relay Catalysis 43
- 2.6 Cation and Anion Synergistic Catalysis in Ionic Liquids 45
- 2.7 Functionalized ILs for Aqueous Catalysis 46
- 2.8 Catalysis by Porous Poly-ILs 47
- 2.9 Functionalized IL-Based Carbon Material for Catalysis 49
- 2.10 Summary and Conclusions 54 References 54

vi Contents

3	Heterogeneous Room Temperature
	Catalysis – Nanomaterials 59
	Liyu Chen and Yingwei Li
3.1	Introduction 59
3.2	Solid-Acid-Based Nanomaterials 60
3.3	Grafted-Metal-Ions-Based Nanomaterial 65
3.4	Metal NPs-Based Nanomaterial 67
3.4.1	Metal NPs Stabilized by Ligands 67
3.4.2	Metal NPs@Polymers 68
3.4.3	Metal NPs@Metal Oxides 70
3.4.4	Metal NPs@Carbonaceous Support 72
3.4.5	Metal NPs@Siliceous Base Support 74
3.4.6	Metal NPs@MOF Nanocomposites 77
3.5	Metal Oxide NPs-Based Nanomaterial 82
3.6	Summary and Conclusions 83
	References 84
4	Biocatalysis at Room Temperature 89
	Ivaldo Itabaiana Jr and Rodrigo O. M. A. De Souza
4.1	Introduction 89
4.2	Transaminases 90
4.2.1	General Features 90
4.2.2	Transaminase Applications at Room Temperature 90
4.3	Hydrolases 98
4.3.1	General Features 98
4.3.2	Application of Hydrolases at Room Temperature 100
4.3.2.1	Lipases 100
4.3.2.2	Aldol Additions 101
4.3.2.3	Michael Addition 102
4.3.2.4	Mannich Reaction 102
4.3.2.5	C-Heteroatom and Heteroatom-Heteroatom Bond
	Formations 103
4.3.2.6	Epoxidation 103
4.3.2.7	Synthesis of Heterocycles 104
4.3.2.8	Kinetic Resolutions 105
4.3.3	Cutinases 107
4.4	Laccases 108
4.4.1	General Features 108
4.4.2	Applications of Laccases 110
4.5	Enzymes in Ionic Liquids 115
4.5.1	General Features 115
	References 125
5	Room Temperature Catalysis Enabled by Light 135 Timothy Noël
5.1	Introduction 135
5.2	UV Photochemistry 136
	,

Contents vii

- 5.3 Visible Light Photoredox Catalysis 139
- 5.4 Room Temperature Cross-Coupling Enabled by Light 141
- 5.5 Photochemistry and Microreactor Technology A Perfect Match? 144
- 5.6 The Use of Photochemistry in Material Science 146
- 5.7 Solar Fuels 149
- 5.8 Conclusion 151 References 151

6 Mechanochemically Enhanced Organic Transformations 155 Davin Tan and Tomislav Friščić

- 6.1 Introduction 155
- 6.2 Mechanochemical Techniques and Mechanisms: Neat versus Liquid-Assisted Grinding (LAG) *156*
- 6.3 Oxidation and Reduction Using Mechanochemistry *160*
- 6.3.1 Direct Oxidation of Organic Substrates Using Oxone *160*
- 6.3.2 Mechanochemical Halogenations Aided by Oxone *162*
- 6.3.3 Reduction Reactions by Mechanochemistry 163
- 6.4 Electrocyclic Reactions: Equilibrium and Templating in Mechanochemistry *165*
- 6.4.1 The Diels–Alder Reaction: Mechanochemical Equilibrium in Reversible C—C Bond Formation *165*
- 6.4.2 Photochemical [2+2] Cycloaddition during Grinding: Supramolecular Catalysis and Structure Templating *167*
- 6.5 Recent Advances in Metal-Catalyzed Mechanochemical Reactions *168*
- 6.5.1 Copper-Catalyzed [2+3] Cycloaddition (Huisgen Coupling) 168
- 6.5.2 Olefin Metathesis by Ball Milling 169
- 6.5.3 Mechanochemical C—H Bond Activation 170
- 6.5.4 Cyclopropanation of Alkenes Using Silver Foil as a Catalyst Source *171*
- 6.6 New Frontiers in Organic Synthesis Enabled by Mechanochemistry *171*
- 6.6.1 Synthesis of Active Pharmaceutical Ingredients (APIs) 172
- 6.6.2 Reactivity Enabled or Facilitated by Mechanochemistry 173
- 6.6.3 Trapping Unstable Reaction Intermediates 175
- 6.7 Conclusion and Outlook 176 Acknowledgments 176
 - References 176
- 7 Palladium-Catalyzed Cross-Coupling in Continuous Flow at Room and Mild Temperature 183 Christophe Len
- 7.1 Introduction 183
- 7.2 Suzuki Cross-Coupling in Continuous Flow 184
- 7.3 Heck Cross-Coupling in Continuous Flow 192
- 7.4 Murahashi Cross-Coupling in Continuous Flow 199

- viii Contents
 - 7.5 Concluding Remarks 202 References 202

Catalysis for Environmental Applications 207
Changseok Han, Endalkachew Sahle-Demessie, Afzal Shah, Saima Nawaz,
Latif-ur-Rahman, Niall B. McGuinness, Suresh C. Pillai, Hyeok Choi, Dionysios
D. Dionysiou, and Mallikarjuna N. Nadagouda

- 8.1 Introduction 207
- 8.2 Ferrate (FeO₄^{2–}) for Water Treatment 208
- 8.3 Magnetically Separable Ferrite for Water Treatment 209
- 8.3.1 Magnetic Nanoparticles 209
- 8.3.2 Magnetic Recovery of Materials Used for Water Treatment 211
- 8.3.3 Ferrite Photocatalyst for Water Treatment 212
- 8.4 UV, Solar, and Visible Light-Activated TiO₂ Photocatalysts for Environmental Application *212*
- 8.5 Catalysis for Remediation of Contaminated Groundwater and Soils *215*
- 8.5.1 Catalytic Oxidative Pathways 215
- 8.5.2 Catalytic Reductive Pathways 217
- 8.5.3 Prospects and Limitations 218
- 8.6 Novel Catalysis for Environmental Applications 218
- 8.6.1 Graphene and Graphene Composites 219
- 8.6.2 Perovskites and Perovskites Composites 221
- 8.6.3 Graphitic Carbon Nitride (g-C₃N₄) and g-C₃N₄ Composites 222
- 8.7 Summary and Conclusions 223 Acknowledgments 224
 - Disclaimer 224
 - References 224
- 9 Future Development in Room-Temperature Catalysis and Challenges in the Twenty-first Century 231 Fannie P. Y. Lau, R. Luque, and Frank L. Y. Lam

Case Study 1: Magnetic Pd Catalysts for Benzyl Alcohol Oxidation to Benzaldehyde 237

Yingying Li, Frank L.-Y. Lam, and Xijun Hu

- 1.1 Introduction 237
- 1.2 Pd/MagSBA Magnetic Catalyst for Selective Benzyl Alcohol Oxidation to Benzaldehyde 239
- 1.2.1 Results and Discussion 239
- 1.2.1.1 Characterization 239
- 1.2.1.2 Effect of Reaction Temperature 240
- 1.2.1.3 Effect of Pd Loading 241
- 1.2.1.4 Recycling Test 246
- 1.3 Summary and Conclusions 246 References 247

Contents ix

Case Study 2: Development of Hydrothermally Stable Functional Materials for Sustainable Conversion of Biomass to Furan Compounds 251 Amrita Chatterjee, Xijun Hu, and Frank L.-Y. Lam 2.1 Introduction 251 2.2 Metal–Organic-Framework as a Potential Catalyst for Biomass Valorization 254 2.3 Xylose Dehydration to Furfural Using Metal–Organic-Framework, MIL-101(Cr) 255 Xylose Dehydration Catalyzed by Organosilane Coated 2.3.1MIL-101(Cr) 255 2.3.2 Xylose to Furfural Transformation Catalyzed by Fly-Ash and MIL-101(Cr) Composite 258 Xylose to Furfural Transformation Catalyzed by Tin Phosphate and 2.3.3 MIL-101(Cr) Composite 262 2.3.4 Role of Acid Sites, Textural Properties and Hydrothermal Stability of Catalyst in Xylose Dehydration Reaction 264 2.4 Conclusion 267 References 268

Index 273