Inhaltsverzeichnis

	Vorwort IX
	Einleitung XI
1 1.1 1.2	Experimentelle Daten 1 Was beobachtet man bei Versuchen zur UV/VIS-Spektroskopie? 1 Zusammenfassung 8
	Teil I Zustände 9
2	Der Zustandsraum 11
2.1	Materiewellen und Wellenfunktionen 11
2.1.1	Quantelung 11
2.1.2	Die elektronische Ψ -Funktion 13
2.2	Zustände 20
2.2.1	Die Lösungen der Schrödinger-Gleichung 20
2.2.2	Der vollständige Zustandsraum 22
2.2.3	Der unvollständige Zustandsraum 26
2.2.4	Die Energie im Zustandsraum 28
2.2.5	Der Elektronenspin 30
2.3	Beschreibung von Molekülzuständen durch Wellenfunktionen 34
2.3.1	Elektronen und Kerne: Molekülschwingungen und die
	Born-Oppenheimer-Näherung 34
2.3.2	Ermittlung der ψ -Funktionen von Elektronenzuständen 40
2.3.3	Kann man die Orbitalenergien messen? 59
2.4	Symmetrie 61
2.4.1	Butadien und die Charakterentafeln mit irreduziblen
	Darstellungen 65
2.4.2	Benzol und die mehrdimensionalen Darstellungen 70
2.4.3	Formaldehyd, σ -, n - und π -Elektronen 75
2.5	Zusammenfassung 77

Teil II Absorption – Erzeugung von angeregten Zuständen 79

3	Anregung von "reinen" Zustanden 81
3.1	Die zeitabhängige Störungstheorie 81
3.2	Der Störoperator \hat{H}' des Strahlungsfeldes 84
3.3	Die Störung eines molekularen Systems durch ein elektromagnetisches
	Wechselfeld 86
3.3.1	Die Dipolnäherung 87
3.3.2	Höhere Multipolnäherungen 89
3.3.3	Auswahlregeln 90
3.4	Vibronische Zustände, Franck-Condon-Prinzip 93
3.5	Verbindung zur praktischen Spektroskopie 99
3.5.1	Absorptionsspektrum und Übergangsdipolmoment 100
3.5.2	Absorptionsspektrum und Dipollänge 102
3.5.3	Absorptionsspektrum und Oszillatorenstärke 103
3.5.4	Beispiel trans-Azobenzol 106
3.6	Optische Aktivität 107
3.6.1	Phänomen 107
3.6.2	Der Störoperator für die optische Aktivität 109
3.6.3	Die Absorption von unpolarisiertem Licht durch eine enantiomere
	Form chiraler Moleküle 110
3.6.4	Die Absorption von zirkularpolarisiertem Licht durch eine
	enantiomere Form chiraler Moleküle 112
3.7	Zusammenfassung 117
4	Mischung von Zuständen durch Störpotenziale 119
4.1	Zeitunabhängige Störungstheorie 119
4.2	Schwingungsinduzierte Übergänge 123
4.3	Singulett-Triplett-Übergänge 130
4.3.1	Mischung von Singulett- und Triplettzuständen 132
4.3.2	Der Spin-Bahn-Wechselwirkungsoperator 134
4.3.3	Ein Beispiel 139
4.4	Molekülaggregate 141
4.4.1	Der Grundzustand eines Dimeren 141
4.4.2	Anregungszustände 142
4.4.3	Auswahlregeln 145
4.4.4	Höhere Aggregate 148
4.5	Induzierte Optische Aktivität 150
4.5.1	Asymmetrische Störung durch Punktladungen 150
4.5.2	Asymmetrische Störung durch isotrop polarisierbare Gruppen 155
4.5.3	Störung durch anisotrop polarisierbare Gruppen 160
4.5.4	Sektorenregeln 164
4.6	Zusammenfassung 168

$\begin{tabular}{ll} \textbf{Teil III} & \textbf{Deaktivierung angeregter Zustände} & 171 \end{tabular}$

5	Der angeregte Zustand 173
5.1	Eigenzustände und Nichteigenzustände 173
5.2	Deaktivierungsprozesse 176
5.3	Zusammenfassung 179
6	Deaktivierung durch Strahlung 181
6.1	Der Anregungszustand 181
6.2	Stimulierte Emission 182
6.3	Spontane Emission 184
6.3.1	Die Einstein-Koeffizienten 184
6.3.2	Die Lebensdauer 186
6.4	Verbindung zur praktischen Spektroskopie 187
6.4.1	Bestimmung der Quantenausbeute mithilfe von
	Absorptionsdaten 187
6.4.2	Bestimmung der Quantenausbeute mithilfe von Standardproben 190
6.5	Lichtverstärkung 190
6.6	Zusammenfassung 192
7	Strahlungslose Deaktivierung 195
7.1	Internal Conversion 197
7.1.1	Präparation des Ausgangszustands und seine Deaktivierung 197
7.1.2	Der "Mechanismus" der strahlungslosen Deaktivierung 202
7.1.3	Modellvorstellungen der strahlungslosen Deaktivierung,
	Kopplung der vibronischen Zustände 213
7.1.4	Resümee 230
7.2	Intersystem Crossing 231
7.3	Energieübertragung 232
7.3.1	Singulett-Singulett-Energieübertragung:
	Der Förster-Mechanismus 237
7.3.2	Triplett-Triplett-Energieübertragung: Der Dexter Mechanismus 246
7.3.3	Resümee 249
7.4	Elektronenübertragung 250
7.4.1	Die klassische und halbklassische Theorien der
	Elektronenübertragung 253
7.4.2	Die quantenmechanische Behandlung der
	Elektronentransferreaktion 275
7.4.3	Resümee 302
7.5	Zusammenfassung 303

Anhang A Die zeitliche Entwicklung eines präparierten Zustands unter einer Störung 307

Anhang B Berechnungen 311

- Umrechnung der Formel $\langle \psi_m | \frac{\partial}{\partial x} | \psi_n \rangle = -\frac{m}{\hbar^2} (E_m E_n) \langle \psi_m | x | \psi_n \rangle$ 311 Berechnung der Absorptionswahrscheinlichkeit 312 B.1
- B.2

Anhang C Übergänge eines Systems von einer auf die andere Potenzialfläche 315

Anhang D Ableitung der Schwingungsfunktion $\chi_n(\xi)$ nach der Koordinate 319

Anhang E Skizze der Entwicklung der Formel von Levich und Dogonadze 321

Anhang F Fermi's Golden Rule 325

Literaturverzeichnis 329

Stichwortverzeichnis 331