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Entropy and Renormalization in Chaotic Visibility Graphs

Bartolo Luque, Fernando Jesús Ballesteros, Alberto Robledo, and Lucas Lacasa

In this chapter, we concentrate on a mapping from time series to graphs, the
visibility algorithm introduced by Lacasa et al. [1]. In order to cite some of its
most relevant features, we will stress its intrinsic nonlocality, low computational
cost, straightforward implementation, and quite “simple” way of inheriting the
time series properties in the structure of the associated graphs. These features
will make it easier to find connections between the underlying processes and
the networks obtained from them by a direct analysis of the latter. In particular,
in this chapter, we will focus the implementation of the algorithm of visibility
to three known routes to chaos. We will define a graph entropy and process of
renormalization for visibility graphs that characterize these routes and analyze
the relationship between the flow of renormalization and the extremes of the
entropy function.
Disregarding any underlying process, we can consider a time series just as an

ordered set of values and transform this set into a different mathematical object
with the aids of an abstract mapping [2, 3]. We can then ask which properties of
the original set are conserved, which are transformed and how, what can we say
about one of the mathematical representations just by looking at the other. This
exercise is of mathematical interest by itself. In addition, it turns out that time
series or signals is a universal method of extracting information from dynamical
systems in any field of science. Therefore, the preceding mathematical mapping
gains some unexpected practical interest as it opens the possibility of analyzing a
time series from an alternative point of view. Of course, the relevant information
stored in the original time series should be somehow conserved in the mapping.
The motivation is completed when the new representation belongs to a relatively
mature mathematical field, where information encoded in such a representation
can be effectively disentangled and processed. This is, precisely, the first motiva-
tion to map time series into networks.
This motivation is increased by two interconnected factors: (i) Although a

mature field, time series analysis has some limitations, when it refers to study
the so-called complex signals. Beyond the linear regime, there exists a wide
range of phenomena, which are usually embraced in the field of the so-called
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complex systems. Dynamical phenomena such as chaos, long-range correlated
stochastic processes, intermittency, and multifractality are examples of complex
phenomena, where time series analysis is pushed to its own limits. Nonlinear
time series analysis develops from techniques such as nonlinear correlation
functions, embedding algorithms, multrifractal spectra, and projection theorem
tools that increase in complexity parallel to the complexity of the process/series
under study. New approaches to deal with complexity are not only welcome, but
needed. Approaches dealing with the intrinsic nonlinearity by being intrinsically
nonlinear in turn deal with the possible multiscale character of the underlying
process by being designed to naturally incorporated multiple scales, and such is
the framework of networks, of graph theory. (ii) The technological era brings us
the possibility to digitally analyze myriads of data in a glimpse. Massive data sets
can nowadays be parsed, and with the aid of well-suited algorithms, we can gain
access and filter data from many processes, let it be of physical, technological, or
even social garment.

1.1
Mapping Time Series to Networks

The idea of mapping time series into graphs seems attractive, because it bridges
two prolific fields of modern science as nonlinear signal analysis and complex
networks theory, as much that it has attracted the attention of several research
groups, which have contributed to the topic with different strategies of mapping.
We shall briefly outline some of them.
Zhang and Small [4] developed a method that mapped each cycle of a pseudo-

periodic time series into a node in a graph. The connection between nodes was
established by a distance threshold in the reconstructed phase space when pos-
sible or by the linear correlation coefficient between cycles in the presence of
noise. Noisy periodic time series mapped into random graphs while chaotic time
series did it into scale-free, small-world networks due to the presence of unsta-
ble periodic orbits.This method was subsequently applied to characterize cardiac
dynamics.
Xu, in collaboration with Zhang and Small [5], concentrated in the relative fre-

quencies of appearance of four-node motifs inside a particular graph to classify it
into a particular superfamily of networks, which corresponded to specific under-
lying dynamics of the mapped time series. In this case, the method of mapping
consisted in embedding the time series in an appropriated phase space, where
each point corresponded to a node in the network. A threshold was imposed not
only in the minimum distance between two neighbors to be eligible (temporal
separation should be greater than the mean period of the data), but also to the
maximum number of neighbors a node could have. Different superfamilies were
found for chaotic, hyperchaotic, random, and noisy periodic underlying dynamics
and unique fingerprints were also found for specific dynamical systems within a
family.



1.1 Mapping Time Series to Networks 3

Donner et al. [6–8] presented a technique, which was based on the proper-
ties of recurrence in the phase space of a dynamical system. More precisely, the
recurrence matrix obtained by imposing a threshold in the minimum distance
between two points in the phase space was interpreted as the adjacency matrix
of an undirected, unweighted graph (as in Ref. [5]). Properties of such graphs at
three different scales (local, intermediated, and global) were presented and stud-
ied on several paradigmatic systems (Hénon map, Rossler system, Lorenz system,
and Bernoulli map). The variation of some of the properties of the graphs with
the distance threshold was analyzed, the use of specific measures, such as the
local clustering coefficient, was proposed as a way to detect dynamically invari-
ant objects (saddle points or unstable periodic orbits), and studying the graph
properties dependent on the embedding dimension was suggested as a means to
distinguish between chaotic and stochastic systems.
TheAmaral Lab [9] contributed with an idea along the lines of Shirazi et al. [10],

Strozzi et al. [11], and Haraguchi et al. [12] of a surjective mapping, which admits
an inverse operation. This approach opens the reciprocal possibility of benefit-
ing from time series analysis to study the structure and properties of networks.
Time series are treated as Markov processes, and values are grouped in quantiles,
which will correspond to nodes in the associated graph. Weighted and directed
connections are established between nodes as a function of the probability of
transition between quantiles. An inverse operation can be defined without an
a priori knowledge of the correspondence between nodes and quantiles just by
imposing a continuity condition in the time series by means of a cost function
defined on the weighted adjacency matrix of the graph. A random walk is per-
formed on the network and a time series with properties equivalent to the original
one is recovered. This method was applied to a battery of cases, which included
a periodic-to-random family of processes parameterized by a probability of tran-
sition, a pair of chaotic systems (Lorentz and Rossler attractors), and two human
heart rate time series. Reciprocally, the inverse map was applied to the metabolic
network of Arabidopsis thaliana and to the ’97 year Internet Network.
In the same vein of an inverse transformation, Shimada et al. [13] proposed a

framework to transform a complex network to a time series, realized by a mul-
tidimensional scaling. Applying the transformation method to a model proposed
by Watts and Strogatz [14], they show that ring lattices are transformed to peri-
odic time series, small-world networks to noisy periodic time series, and random
networks to random time series. They also show that these relationships are ana-
lytically held by using the circulant matrix theory and the perturbation theory of
linear operators. They generalize the results to several high-dimensional lattices.
Gao and Jin proposed in Ref. [15] a method for constructing complex networks

from a time series with each vector point of the reconstructed phase space repre-
sented by a single node and edge determined by the phase space distance.Through
investigating an extensive range of network topology statistics, they find that the
constructed network inherits the main properties of the time series in its struc-
ture. Specifically, periodic series and noisy series convert into regular networks
and random networks, respectively, and networks generated from chaotic series
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typically exhibit small-world and scale-free features. Furthermore, they associate
different aspects of the dynamics of the time series with the topological indices of
the network and demonstrate how such statistics can be used to distinguish dif-
ferent dynamical regimes.Through analyzing the chaotic time series corrupted by
measurement noise, they also indicate the antinoise ability of the method.
Sinatra et al. [16] introduced a method to convert an ensemble of sequences

of symbols into a weighted directed network, whose nodes are motifs, while
the directed links and their weights are defined from statistically significant
co-occurrences of two motifs in the same sequence. The analysis of communities
of networks of motifs is shown to be able to correlate sequences with functions
in the human proteome database, to detect hot topics from online social dialogs
and characterize trajectories of dynamical systems.
Sun et al. [17] have also proposed a novel method to transform a time series

into a weighted and directed network. For a given time series, they first generate
a set of segments via a sliding window, and then use a doubly symbolic scheme
to characterize every windowed segment by combining absolute amplitude infor-
mation with an ordinal pattern characterization. On the basis of this construc-
tion, a network can be directly constructed from the given time series: segments
corresponding to different symbol-pairs are mapped to network nodes and the
temporal succession between nodes is represented by directed links. With this
conversion, dynamics underlying the time series has been encoded into the net-
work structure. They illustrate the potential of their networks with a well-studied
dynamical model as a benchmark example. Results show that network measures
for characterizing global properties can detect the dynamical transitions in the
underlying system.Moreover, they used a randomwalk algorithm to sample loops
in networks, and found that a time series with different dynamics exhibits distinct
cycle structure. That is, the relative prevalence of loops with different lengths can
be used to identify the underlying dynamics.
In the following, we will first present two versions of the visibility algorithm,

our own alternative to these methods of mapping, along with its most notable
properties that, in many cases, can be derived analytically. On the basis of these
latter properties, several applications are addressed.

1.1.1
Natural and Horizontal Visibility Algorithms

Let {x(ti)}i=1,…,N be a time series of N data. The natural visibility algorithm [1]
assigns each datumof the series to a node in the natural visibility graph (NVg). Two
nodes i and j in the graph are connected if one can draw a straight line in the time
series joining x(ti) and x(tj) that does not intersect any intermediate data height
x(tk) (see Figure 1.1 for a graphical illustration). Hence, i and j are two connected
nodes if the following geometrical criterion is fulfilled within the time series:

x(tk) < x(ti) + (x(tj) − x(ti))
tk − ti

tj − tk
. (1.1)
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Figure 1.1 Illustrative example of the natu-
ral visibility algorithm. In the upper part, we
plot a periodic time series and in the bot-
tom part, we represent the graph generated
through the natural visibility algorithm. Each
datum in the series corresponds to a node
in the graph, such that two nodes are con-
nected if their corresponding data heights
fulfill the visibility criterion of equation 1.1.

Note that the degree distribution of the visi-
bility graph is composed by a finite number
of peaks, much in the vein of the discrete
Fourier transform (DFT) of a periodic signal.
We can thus interpret the visibility algorithm
as a geometric transform. (Luque et al. [18].
Reproduced with permission of American
Physical Society.)

It can be easily checked that by means of the present algorithm, the associated
graph extracted from a time series is always:

(i) Connected: each node sees at least its nearest neighbors (left- and right-
hand sides).

(ii) Undirected: the way the algorithm is built up, there is no direction defined
in the links.

(iii) Invariant under affine transformations of the series data: the visibility cri-
terion is invariant under (unsigned) linear rescaling of both horizontal and
vertical axis, as well as under horizontal and vertical translations.

(iv) “Lossy”: some information regarding the time series is inevitably lost in the
mapping from the fact that the network structure is completely determined
in the adjacency matrix. For instance, two periodic series with the same
period as T1 = … , 3, 1, 3, 1,… and T2 = … , 3, 2, 3, 2,… would have the
same visibility graph, albeit being quantitatively different.

One straightforward question is: what does the visibility algorithm stand for? In
order to deepen the geometric interpretation of the visibility graph, let us focus
on a periodic series. It is straightforward that its visibility graph is a concate-
nation of a motif: a repetition of a pattern (see Figure 1.1). Now, which is the
degree distribution p(k) of this visibility graph? Since the graph is just a motif’s
repetition, the degree distribution will be formed by a finite number of nonnull
values, this number being related to the period of the associated periodic series.
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This behavior reminds us the DFT, in which periodic series is formed by a finite
number of peaks (vibration modes) related to the series period. Using this anal-
ogy, we can understand the visibility algorithm as a geometric transform.Whereas
a DFT decomposes a signal in a sum of (eventually infinite) modes, the visibil-
ity algorithm decomposes a signal in a concatenation of graph’s motifs, and the
degree distribution simply makes a histogram of such “geometric modes.” While
the time series is defined in the time domain and the DFT is defined on the fre-
quency domain, the visibility graph is then defined on the “visibility domain.” In
fact this analogy is, so far, a simple metaphor to help our intuition, this transform
is not a reversible one for instance.
An alternative criterion for the construction of the visibility graph is defined

as follows: let {x(ti)}i=1,…,N be a time series of N data. The so-called horizontal
visibility algorithm [18] assigns each datumof the series to a node in the horizontal
visibility graph (HVg). Twonodes i and j in the graph are connected if one can draw
a horizontal line in the time series joining x(ti) and x(tj) that does not intersect any
intermediate data height (see Figure 1.2 for a graphical illustration). Hence, i and
j are two connected nodes if the following geometrical criterion is fulfilled within
the time series:

x(ti), x(tj) > x(tn) for all n such that i < n < j. (1.2)

This algorithm is a simplification of the Natural Visibility algorithm (NVa). In
fact, the HVg is always a subgraph of its associated NVg for the same time series
(see Figure 1.2). Besides, the HVg graph will also be (i) connected, (ii) undirected,
(iii) invariant under affine transformations of the series, and (iv) “lossy.” Some con-
crete properties of these graphs can be found inRefs [18–21].HVgmethod is quite
more tractable analytically than NVg. Hence, for example, if {xi} is a bi-infinite
sequence of independent and identically distributed random variables extracted
from a continuous probability density f (x), then its associated HVg has degree
distribution:

p(k) = 1
3

(2
3

)k−2
, k = 2, 3, 4,… . (1.3)

A lengthy constructive proof can be found in Ref. [18] and alternative, shorter
proofs can be found in Ref. [22]. The mean degree k of the HVg associated to an
uncorrelated random process is then:

k =
∑

𝑘𝑝(k) =
∞∑

k=2

k
3

(2
3

)k−2
= 4. (1.4)

In fact, the mean degree of an HVg associated to an infinite periodic series of
period T (with no repeated values within a period) is

k(T) = 4
(
1 − 1

2T

)
. (1.5)

A proof can be found in Ref. [22]. An interesting consequence is that every
time series has an associated HVg with a mean degree 2 ≤ k ≤ 4, where the lower
bound is reached for constant series, whereas the upper bound is reached for
aperiodic series [18].
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(a)

(b)

Figure 1.2 Illustrative example of the Natu-
ral (a) and Horizontal (b) visibility algorithms.
We plot the same time series and represent
the graphs generated through both visibility
algorithms below. Each datum in the series
corresponds to a node in the graph, such
that two nodes are connected if their cor-
responding data heights fulfill the visibility

criteria of equations 1.1 and 1.2, respectively.
Observe that the Horizontal Visibility graph
is a subgraph of the Natural Visibility graph
for the same time series. (Luque et al. [18].
Reproduced with permission of American
Physical Society.)
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1.1.2
A Brief Overview of Some Initial Applications

In order to end this introduction without intending to be exhaustive, we believe
appropriate to point out some of the areas where, despite the recent method, the
visibility algorithm has been applied with interesting results:

1.1.2.1 Seismicity

Aguilar-San Juan and Guzman-Vargas presented, in Ref. [23], a statistical analysis
of earthquake magnitude sequences in terms of the visibility graph method. Mag-
nitude time series from Italy, southern California, and Mexico are transformed
into networks and some organizational graph properties are discussed. Connec-
tivities are characterized by a scale-free distribution with a notable effect for large
scales due to either the presence or absence of large events. In addition, a scaling
behavior is observed between different node measures such as betweenness cen-
trality, clustering coefficient, nearest-neighbor connectivity, and earthquakemag-
nitude. Moreover, parameters which quantify the difference between forward and
backward links are proposed to evaluate the asymmetry of visibility attachment
mechanism. Their results show an alternating average behavior of these parame-
ters as earthquake magnitude changes. Finally, they evaluate the effects of reduc-
ing temporal and spatial windows of observation upon visibility network proper-
ties for main shocks.
Telesca et al. [24–26] have analyzed the synthetic seismicity generated by a sim-

ple stick-slip systemwith asperities by using themethod of the visibility graph.The
stick-slip system mimics the interaction between tectonic plates, whose asperi-
ties are given by sandpapers of different granularity degrees. The visibility graph
properties of the seismic sequences have been put in relationship with the typical
seismological parameter, the b-value of the Gutenberg–Richter law. Between the
b-value of the synthetic seismicity and the slope of the least-square line fitting, the
k–M plot (relationship between the magnitude M of each synthetic event and its
connectivity degree k), a close linear relationship is found, which is verified by real
seismicity.

1.1.2.2 Hurricanes

Elsner et al. [27] demonstrated the method of construction of a network from a
time series of US hurricane counts and showed how it can be used to identify
unusual years in the record. The network links years based on a line-of-sight vis-
ibility algorithm applied to the time series plot and is physically related to the
variation of hurricanes from 1 year to the next.The authors find that the distribu-
tion of node degree is consistent with a random Poisson process. High hurricane-
occurrence years that are surrounded by years with few hurricanes have many
linkages. Of the environmental conditions known to affect coastal hurricane activ-
ity, they find years with little sunspot activity during September (peak month of
the hurricane season) best correspond with the unusually high linkage years.
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1.1.2.3 Turbulence
A classic topic in fluid mechanics is the complex behavior exhibited by some
fluids within a certain regime, characterized basically by a dimensionless number
known as Reynolds number, consisting of a high-dimensional spatiotemporal
form of chaos called turbulence. The multiscale nature of this phenomenon is
reflected in the distribution of velocity increments and energy dissipation rates,
which exhibit anomalous scalings suggesting some kind of multifractality. A first
attempt to characterize an energy dissipation rate time series by means of the
visibility algorithm was made by Liu et al. [28]. In this work, a series obtained
from wind tunnel experimental measurements was mapped into a graph by the
natural visibility version of the algorithm yielding a power law of exponent 𝛾 = 3.0
for the degree distribution. An edge covering box-counting method was used to
prove the nonfractality of the graph and allometric scalings for the skeleton and
random spanning trees of the graph were proposed, but no functional relation to
any physical magnitude characterizing the phenomenon could be derived.

1.1.2.4 Financial Applications
Yang et al. [29] mapped six exchange rate series and their corresponding
detrended series into graphs by means of the NVa. The results suggest that, for
certain purposes, these series can be modeled as fractional Brownian motions.
The multifractal structure of the series was broken by shuffling them and so,
shuffled series mapped into graphs with exponential degree distributions.
Qian et al. [30], in the same philosophy as Liu et al. [28], built three different

classes of spanning trees from the graphs associated to 30 world stock market
indices and studied their allometric properties, finding universal allometric scal-
ing behavior in one of the classes. No satisfactory explanation was found for this
fact.They also built spanning trees from graphs associated to fractional Brownian
motions with different Hurst exponents, finding discrepancies in their allometric
behavior with the ones mapped from the stock market indices. These discrepan-
cies were attributed to the nonlinear long-term correlations and fat-tailed distri-
butions of the financial series.

1.1.2.5 Physiology
Shao [31] used the visibility algorithm to construct the associated networks of
time series of filtered data of five healthy subjects and five patients with congestive
heart failure (CHF). He used the assortative coefficient of the networks to distin-
guish healthy patients from CHF patients. On the contrary, Dong and Liâ [32], in
a comment on the first work, calculated the assortativity coefficients of heartbeat
networks extracted from time series of healthy subjects and CHF patients and
concluded that the assortative coefficients of such networks failed as an effective
indicator to differentiate healthy patients from CHF patients at large.
Ahmadlou et al. [33] presented a new chaos-wavelet approach for electroen-

cephalogram (EEG)-based diagnosis of Alzheimer’s disease (AD) using the
visibility graph. The approach is based on the research ideology that nonlinear
features may not reveal differences between AD and control group in the
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band-limited EEG, but may represent noticeable differences in certain subbands.
Hence, complexity of EEGs is computed using the VGs of EEGs and EEG
subbands produced by wavelet decomposition. Two methods are used for com-
putation of complexity of the VGs: one based on the power of scale-freeness of a
graph structure and the other based on the maximum eigenvalue of the adjacency
matrix of a graph. Analysis of variation is used for feature selection. Two classifiers
are applied to the selected features to distinguish AD and control EEGs: a radial
basis function neural network (RBFNN) and a two-stage classifier consisting
of principal component analysis (PCA) and RBFNN. After comprehensive
statistical studies, effective classification features and mathematical markers are
presented.

1.2
Visibility Graphs and Entropy

1.2.1
Definitions of Entropy in Visibility Graphs

Following the pioneering works of Rashevsky [34] and Trucco [35], the use of
entropy in graphs was introduced by A. Mowshowitz in 1968 [36] to characterize
the complexity of a graph. Soon afterward, Korner in 1971 [37] applied a differ-
ent definition of the concept to solve a coding problem formulated in information
theory. Since then, various graph entropy measures have been developed, rein-
vented, and applied to a diversity of situations (see [38] for a review). Shannon
[39] defined the entropy of any set of probabilities {pi} as H = −

∑
pi log pi ≥ 0,

where pi is the probability of occurrence of the event i, but what is the meaning of
pi in a graph? Here we can consider several possibilities. For example, pi could be
the probability that a vertex in the graph has a degree k = i, hence we can rename
it as p(k), and thus the graph entropy becomes:

h = −
∑

k
p(k) log p(k). (1.6)

Another possibility could be to consider clustering rather than degree, using p(C)
instead.However, clustering is computationally harder to obtain, and it is very easy
to prove that −

∑
p(C) log p(C) produces exactly the same value as Eq. 1.6. Other

alternatives (as the probability of having two nodes connected, etc.) do not pro-
duce significantly different results; thus, for the following, we will use the degree
distribution and define as graph entropy the one defined by Eq. 1.6 (note that in
directed graphs, one could also consider the in and out degree distributions and
hence define h𝑖𝑛 and h𝑜𝑢𝑡).
In the case of visibility graphs coming from time series, the graph entropy h is

strongly linked to the Shannon entropy H of its corresponding time series x(t),
given by H = −

∑
p(x) log p(x) as at the end of the day, the information in the

visibility graph comes from the time series. Therefore, the graph entropy of the
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visibility graph is a very good proxy of the Shannon entropy for the associated
time series.
Graph entropy is obtained from the whole structure of the graph, and hence is a

static magnitude. However, as visibility graphs come from dynamic processes, one
should consider the role of entropies linked to such processes. Thus, in an itera-
tive process, one can consider the Kolmogorov–Sinai entropy [40, 41], which was
introduced to solve the “isomorphism problem,” that is, whether there is a map-
ping between two seemingly different dynamical systems, preserving the dynam-
ical and statistical relationships between the successive states. As HKS is invariant
under any isomorphism, two dynamical systems with different values for HKS are
nonisomorphic. HKS can be defined as the rate of increment of entropy along the
transformation T : Let us consider an abstract space Ω with a probability mea-
sure 𝜇 that assigns probabilities to subsets of Ω. Let us make a partition A of Ω
composed by separate subsets A1,A2,… ,An such that their union isΩ. The prob-
ability assigned to each subset is pi = 𝜇(Ai),PA = (p1, p2,… , pn) and its Shannon
entropy is h(PA) = −

∑
pi log pi. Let us consider T a dynamic transformation in

Ω, leaving invariant the probabilities: pi = 𝜇(Ai) = 𝜇(T−1(Ai)). After m iterations
of this transformation, we define Am as A ∨ T−1(A) ∨ T−2(A)… ∨ T−m+1(A). For
this given partition A and iterative process T , the Kolmogorov–Sinai entropy is
given by

HKS(T ,A) = lim
m→∞

1
m

H(PAm ). (1.7)

It represents the increase of entropy due to the transformationT in the partitionA.
Note that, for m = 1, that is, for a single-step process, Kolmogorov–Sinai entropy
is equal to Shannon entropy.
In order to consider the entropy rate due purely to T , regardless of the partition

considered, one has to take into account all the infinite possible partitions and
keep the partition, which produces the higher value:

HKS(T) = sup
A

HKS(T ,A). (1.8)

In the case of chaotic time series, Kolmogorov–Sinai entropy exhibits a very
interesting property, thanks to the Pesin theorem [42].This theorem states an inti-
mate relationship between HKS and the positive Lyapunov exponents given by

HKS ≤
∑

i,𝛾i≥0
𝛾i =

∑
i
𝛾+i . (1.9)

This inequality, known as Pesin inequality, turns into an equality for suffi-
ciently chaotic systems. Thus, for a deterministic dynamics, Kolmogorov–Sinai
entropy is a criterion and quantitative index of chaos [43, 44]. The relevance of
Kolmogorov–Sinai entropy in data analysis to globally quantify the temporal
organization of the evolution has been recognized in numerous applications, and
it is now a standard tool of nonlinear time series analysis.
Block entropy is another way to link Kolmogorov–Sinai entropy and Shannon

entropy. For a stationary stochastic process (xt)t≥0 (in discrete time t), Shannon
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entropy of the array (x1,…,xn) is termed block entropy of order n and denoted Hn.
It is the Shannon entropy of the n-word distribution, namely:

Hn = −1
n

∑
x1…xn

p(x1 … xn) log p(x1 … xn). (1.10)

The n-block entropy captures quantitatively correlations of range shorter than
n, by contrast with the simple entropy H = H1, which is only sensitive to the fre-
quencies of the different elementary states.TheKolmogorov–Sinai entropy can be
recovered from the block entropy [45] as the asymptotic limit of block entropies.
Taking advantage of this fact, we can define for a visibility graph an analogous set
of graph block entropies related to the degrees of the graph, as

hn = −1
n

∑
k1…kn

p(k1 … kn) log p(k1 … kn). (1.11)

And its asymptotic limit will be an analogue to the Kolmogorov–Sinai entropy,
but for the visibility graph, that is, the graph Kolmogorov–Sinai entropy:

hKS = lim
n→∞

hn. (1.12)

1.2.2
Pesin Theorem in Visibility Graphs

The period-doubling bifurcation cascade or Feigenbaum scenario is perhaps the
better known andmost famous route to chaos [46, 47].This route to chaos appears
an infinite number of times among the family of attractors spawned by unimodal
maps within the so-called periodic windows that interrupt stretches of chaotic
attractors.Their shared bifurcation accumulation points form transitions between
order and chaos that are known to exhibit universal properties [48].
A general observation is that the HVg extracts not only universal elements of

the dynamics, free of the peculiarities of the individual unimodal map, but also
of universality classes characterized by the degree of nonlinearity. Therefore, all
the results presented in the following, while referring to the specific logistic map
for illustrative reasons, apply to any unimodal map. In the case of the Feigenbaum
scenario, these graphs are named Feigenbaum graphs.
Logistic map is defined by the quadratic difference equation xt+1 = f (xt) =

𝜇xt(1 − xt), where xt ∈ [0, 1] and the control parameter 𝜇 ∈ [0, 4]. According to
the horizontal visibility (HV) algorithm, a time series generated by the logistic
map for a specific value of 𝜇 (after an initial transient of approach to the attractor)
is converted into a Feigenbaum graph (see Figure 1.3). This is a well-defined
subclass of HV graphs, where consecutive nodes of degree k = 2, that is, consec-
utive data with the same value, do not appear, what is actually the case for series
extracted from maps (besides the trivial case of a constant series).
A deep-seated feature of the period-doubling cascade is that the order in which

the positions of a periodic attractor are visited is universal [50], the same for all
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Figure 1.3 Feigenbaum graphs from the
logistic map xt+1 = f (xt) = 𝜇xt(1 − xt). The
main figure portrays the family of attractors
of the logistic map and indicates a transi-
tion from periodic to chaotic behavior at
𝜇∞ = 3.569946… through period-doubling
bifurcations. For 𝜇 ≥ 𝜇∞, the figure shows
merging of chaotic-band attractors, where
aperiodic behavior appears interrupted by

windows that, when entered from their left-
hand side, display periodic motion of period
T = m ⋅ 20 with m > 1 (for 𝜇 < 𝜇∞, m = 1)
that subsequently develops into m period-
doubling cascades with new accumulation
points 𝜇∞(m). (Luque et al. [49]. Reproduced
with permission of American Institute of
Physics.)

unimodal maps.This ordering turns out to be a decisive property in the derivation
of the structure of the Feigenbaum graphs. See Figure 1.4, which plots the graphs
for a family of attractors of increasing period T = 2n, that is, for increasing val-
ues of 𝜇 < 𝜇∞. This basic pattern also leads to the expression for their associated
degree distributions at the n-th period-doubling bifurcation:

p(n, k) =
(

1
2

)k∕2
, k = 2, 4, 6,… , 2n,

p(n, k) =
(

1
2

)n
, k = 2(n + 1), (1.13)
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n = 0

n = 1

n = 2 Increasing μ

n = 3

n = 4

n = 5

Figure 1.4 Periodic Feigenbaum graphs for
𝜇 < 𝜇∞. The sequence of graphs associated
to periodic attractors with increasing period
T = 2n undergoing a period-doubling cas-
cade. The pattern that occurs for increasing
values of the period is related to the uni-
versal ordering with which an orbit visits

the points of the attractor. Observe that the
hierarchical self-similarity of these graphs
requires that the graph for n − 1 is a sub-
graph of that for n. (Luque et al. [49]. Repro-
duced with permission of American Institute
of Physics.)

and zero for k odd or k > 2(n + 1). At the accumulation point 𝜇∞, the period
diverges (n → ∞) and the distribution is exponential for all even values of the
degree,

p(∞, k) =
(1
2

)k∕2
, k = 2, 4, 6,… , (1.14)

and zero for k odd.
Bymaking use of the expressionwe have for the degree distribution p(n, k) in the

region 𝜇 < 𝜇∞, we obtain for the graph entropy h(n) after the nth period-doubling
bifurcation (do not confuse with block entropy hn), the following result:

h(n) = −
2(n+1)∑

k=2
p(n, k) log p(n, k)

= −
2n∑

k=2

1
2k∕2

log
( 1
2k∕2

)
− 1

2n log
( 1
2n

)
=

log 2
2

(
k − 2

2n

)
= log 4

(
1 − 1

2n

)
. (1.15)

Weobserve that the graph entropy increaseswithn and, interestingly, depends lin-
early on the mean degree k. This linear dependence between h and k is related to
the fact that, generally, the entropy and the mean of a probability distribution are
proportional to exponentially distributed functions, a property that holds exactly
in the accumulation point (eq. 1.14) and approximately in the periodic region
(eq. 1.13), where there is a finite cutoff that ends the exponential law. Finally, note
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that in the limit n → ∞ (accumulation point), the entropy converges to a finite
value h(∞) = log 4.
Something similar happens in the chaotic region of the logistic map. Here, we

find a period-doubling bifurcation cascade of chaotic bands that takes place as
𝜇 decreases from 𝜇 = 4 to 𝜇∞. For the largest value of the control parameter,
at 𝜇 = 4, the attractor is fully chaotic and occupies the entire interval [0, 1] (see
Figure 1.3). This is the first chaotic band n = 0 at its maximum amplitude. As
𝜇 decreases in value within 𝜇∞ < 𝜇 < 4 band-narrowing and successive band-
splittings [46–48, 50] occur. In general, after n reverse bifurcations, the phase
space is partitioned in 2n disconnected chaotic bands, which are self-affine copies
of the first chaotic band [51]. The values of 𝜇 at which the bands split are called
Misiurewicz points [50], and their location converges to the accumulation point
𝜇∞ for n → ∞. Significantly, while in the chaotic zone orbits are aperiodic, for
reasons of continuity, they visit each of the 2n chaotic bands in the same order as
positions are visited in the attractors of period T = 2n [50]. In Figure 1.5, we have
plotted the Feigenbaum graphs generated through chaotic time series at different
values of 𝜇 that correspond to an increasing number of reverse bifurcations. Since
chaotic bands do not overlap, one can derive the following degree distribution for
a Feigenbaum graph in the chaotic zone after n chaotic-band reverse bifurcations
by using only the universal order of visits

p𝜇(n, k) =
(

1
2

)k∕2
, k = 2, 4, 6,… , 2n,

p𝜇(n, k ≥ 2(n + 1)) =
(

1
2

)n
, (1.16)

and zero for k = 3, 5, 7,… , 2n + 1. We note that this time, the degree distribution
retains some dependence on the specific value of 𝜇, concretely, for those nodes
with degree k ≥ 2(n + 1), all of which belong to the top chaotic band (labeled with
dashed links in Figure 1.5).The HV algorithm filters out chaotic motion within all
bands except for that taking place in the top band, whose contribution decreases
as n → ∞ and appears coarse-grained in the cumulative distribution p𝜇(n, k ≥

2(n + 1)). As would be expected, at the accumulation point 𝜇∞, we recover the
exponential degree distribution (Eq. 1.14), i.e., limn→∞p𝜇(n, k) = p(∞, k).
Regarding graph entropy in the chaotic zone, in general h cannot be derived

exactly since the precise shape of p𝜇(k) is unknown (albeit the asymptotic shape
is also exponential). However, arguments of self-affinity similar to those used for
describing the degree distribution of Feigenbaum graphs can be used to find some
regularity properties of the entropy h𝜇(n). Concretely, the entropy after n chaotic
band reverse bifurcations can be expressed as a function of n and of the entropy
in the first chaotic band h𝜇(0). Using the expression of the degree distribution, a
little algebra yields:

h𝜇(n) = log 4 +
htop
𝜇 (n)
2n = log 4 +

h𝜇(0)
2n .

The chaotic-band reverse bifurcation process in the chaotic region from right
to left leads in this case to a decrease of entropy with an asymptotic value of log 4
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n = 3
=3.5748…μ

4–8

n = 2
=3.5925…μ

2–4

n = 1
=3.5925…

D
ecreasing μ

μ
2–4

n = 0
μ=4

Figure 1.5 Aperiodic Feigenbaum graphs
for 𝜇 > 𝜇∞. A sequence of graphs associ-
ated with chaotic series after n chaotic-band
reverse bifurcations, starting at 𝜇 = 4 for
n = 0, when the attractor extends along a
single band and the degree distribution does
not present any regularity (dashed links).
For n > 0, the phase space is partitioned in
2n disconnected chaotic bands and the nth

self-affine image of 𝜇 = 4 is the nth Misi-
urewicz point 𝜇2n−1−2n . In all cases, the orbit
visits each chaotic band in the same order
as in the periodic region 𝜇 < 𝜇∞. This order
of visits induces an ordered structure in the
graphs (black links) analogous to that found
for the period-doubling cascade. (Luque
et al. [49]. Reproduced with permission of
American Institute of Physics.)

for n → ∞ at the accumulation point. These results show that the graph entropy
behaves qualitatively as the map’s Lyapunov exponent 𝜆, with the peculiarity of
having a shift of log 4, as confirmed numerically in Figure 1.6.
This agreement is expected in the chaotic region in view of the Pesin

theorem [42], which relates the positive Lyapunov exponents of a map with
its Kolmogorov–Sinai entropy (see Eq. 1.9) that for unimodal maps reads
hKS = 𝜆,∀𝜆 > 0, as we stated that graph entropy h can be used as a proxy for
HKS. Unexpectedly, this qualitative agreement seems also valid in the periodic
windows (𝜆 < 0), since the graph entropy is positive and approximately varies
with the value of the associated (negative) Lyapunov exponent although HKS = 0,
hinting at a Pesin-like relation valid also out of chaos.
In short, graph entropy obtained from the whole structure of the HVg stores

much of the information in the dynamic process, and it is a good estimation for
the Kolmogorov–Sinai entropy of the original time series. We will see that the
same happens with graph block entropies. For this example, we will use another
common transition to chaos: intermittency, the seemingly random alternation
of long quasi-regular or laminar phases, the so-called intermissions, and rela-
tively short irregular or chaotic bursts. Intermittency is omnipresent in nonlinear
science and has been weighed against comparable phenomena in nature, such
as Belousov–Zhabotinski chemical reactions, Rayleigh–Benard instabilities, and
turbulence [47, 52–54]. Pomeau and Manneville [55] introduced a classification
as types I–III for different kinds of intermittency. For definiteness, we chose the
case of type I intermittency, as it occurs just preceding an (inverse) tangent bifur-
cation in nonlinear iterated maps, although the very same methodology can be
extended to other situations.
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Figure 1.6 Horizontal visibility network
entropy h and Lyapunov exponent 𝜆 for
the Logistic map. We plot the numericalval-
ues of h and 𝜆 for 3.5 < 𝜇 < 4 (the numer-
ical step is 𝛿𝜇 = 5 × 10−4 and in each case
the processed time series have a size of
212 data). The inset reproduces the same
data but with a rescaled entropy h − log(4).

The surprisingly good match between both
quantities is due to the Pesin identity (see
text). Unexpectedly, the Lyapunov exponent
within the periodic windows (𝜆 < 0 inside
the chaotic region) is also well captured by
h. (Luque et al. [49]. Reproduced with per-
mission of American Institute of Physics.)

Type I intermittency can be observed infinitely many times in the logistic map

xt+1 = F(xt) = 𝜇xt(1 − xt), 0 ≤ x ≤ 1, 0 ≤ 𝜇 ≤ 4, (1.17)

close to the control parameter values 𝜇 = 𝜇T at which windows of periodicity
open with period T for values 𝜇 > 𝜇∞. For instance, at 𝜇3 = 1 +

√
8, this map

exhibits a cycle of period T = 3 with subsequent bifurcations. This is the most
visible window of periodicity in the chaotic regime (and the one in whose vicinity
the following results have been obtained).The regular periodic orbits hold slightly
above 𝜇T , but below 𝜇T the dynamics consists of laminar episodes interrupted by
chaos (i.e., intermittency).
In the bottom part of Figure 1.7, we show the HV graph of the associated inter-

mittent series, which consists of several repetitions of a three-nodemotif (periodic
backbone) linked to the first node of the subsequent laminar trend, interwoven
with groups of nodes irregularly (chaotically) connected among them.We observe
that the motif repetitions in the graph correspond to the laminar regions in the
trajectory (pseudo-periodic data with pseudo-period three) and the chaotically
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x(t)

Laminar trend Chaotic burst Laminar trend

Peak node

t

Figure 1.7 Graphical illustration of how the
horizontal visibility (HV) graph inherits in
its structure the dynamics of the associated
intermittent series. In the top of the figure,
we show a sample intermittent series gener-
ated by the logistic map close to 𝜇c (𝜖 > 0),
producing laminar regions (black) mixed with
chaotic bursts (white). In the bottom, we plot
the associated HV graph. Laminar regions

are mapped into nodes with a periodic back-
bone, whereas the actual pseudo-periodicity
of the series is inherited in the graph by the
existence of the so-called peak or interfa-
cial nodes. Chaotic bursts are mapped into
chaotic nodes, with a characteristic degree
distribution. (Núñez et al. [56]. Reproduced
with permission of American Physical Soci-
ety.)

connected groups correspond to the chaotic bursts in the trajectory. As laminar
trends are indeed pseudo-periodic in the sense that they can be decomposed as a
periodic signal and a drift, this pseudo-periodicity expresses in the graph struc-
ture by allowing a node for each period-three motif to be connected to the first
node in the next laminar region (the so-called peak or interfacial node), as the
values of the time series in the chaotic bursts are always smaller than those in the
former laminar trend.Therefore, the connectivity of this node is a direct function
of the length of the previous laminar phase.
Trajectories generated by canonical models evidencing type I intermittency

show power-law scaling in the Lyapunov exponent of the trajectories [55, 57],
which reads 𝜆 ∼ 𝜖0.5 as 𝜖 → 0, where 𝜖, called the channel width of the Poincaré
section, is the distance between the local Poincaré map and the diagonal [58].
In our case, it is equal to 𝜖 = 𝜇T − 𝜇. In Figure 1.8, we made a log–log plot of
the values of graph block entropies hn as a function of the channel width 𝜖 and
the block size n. A power law scaling is recovered, albeit with a different scaling
exponent 𝛼 < 0.5:

hn ∼ 𝜖𝛼(n). (1.18)

As we stated, h1 (corresponding to the graph entropy, Eq. 1.6) is only a proxy
of the Kolmogorov–Sinai entropy of the time series, and thus a comparison with
the Lyapunov exponent is only approximate. The same is valid for graph block
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Figure 1.8 Log–log plot of the block
entropies hn constructed from degree dis-
tributions of n-sequence of connectivities
in the HV graphs as a function of 𝜖: n = 1
(squares), n = 2 (upward-pointing triangles),
n = 3 (downward-pointing triangles), and
n = 4 (right triangles). A scaling of the form

hn ∼ 𝜖𝛼(n) is found. (Inset panel) Log–log
plot of the convergence of 𝛼(n) to the expo-
nent associated to the Lyapunov exponent,
as a function of n. A relation of the form
[0.5 − 𝛼(n)] ∼ n−0.19 is found. (Núñez et al.
[56]. Reproduced with permission of Ameri-
can Physical Society.)

entropies with n > 1, but note that as n increases 𝛼 decreases according to [0.5 −
𝛼(n)] ∼ n−0.19, converging to 0.5. Here we recall that the limit n → ∞ of graph
block entropies hn was our graph Kolmogorov–Sinai entropy, Eq. 1.12, giving:

hKS = lim
n→∞

hn ∼ lim
n→∞

𝜖𝛼(n) = 𝜖0.5 ∝ 𝜆, (1.19)

proving again the relationship between graph entropies and the Pesin theorem.We
remark that, whereas the graph entropy and the graphKolmogorov–Sinai entropy
are magnitudes defined in the graph, the Lyapunov exponent is only defined in
the system. Still, the strong numerical evidence in favor of a Pesin-like identity
between the map’s Lyapunov exponent and the entropies defined in the graph
support that a graph analogue of the Lyapunov exponent can be defined in the
graph space.

1.2.3
Graph Entropy Optimization and Critical Points

The information stored in the graph entropy (Eq. 1.6) allows also to identify the
critical points inmapswith order-to-chaos transitions.We can arrive to this result
via optimization of the entropy. In order to illustrate this, we will consider the
logistic map and the period-doubling bifurcation cascade, or Feigenbaum sce-
nario, already considered at the beginning of the previous section. Consider the
Lagrangian

 = −
∞∑

k=2
p(k) log p(k) − (𝜆0 − 1)

( ∞∑
k=2

p(k) − 1

)
− 𝜆1

( ∞∑
k=2

𝑘𝑝(k) − k

)
,
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for which the extremum condition reads
𝜕

𝜕p(k)
= − log p(k) − 𝜆0 − 𝜆1k = 0,

and has the general solution

p(k) = e−𝜆0−𝜆1k .

The Lagrange multipliers 𝜆0 and 𝜆1 can be calculated from their associated con-
straints. First, the normalization of the probability density,

∞∑
k=2

e−𝜆0−𝜆1k = 1,

implies the following relation between 𝜆0 and 𝜆1

e𝜆0 =
∞∑

k=2
e−𝜆1k = e−𝜆1

e𝜆1 − 1
,

and differentiation of this last expression with respect to 𝜆1 yields

−
∞∑

k=2
ke−𝜆1k = e−𝜆1 − 2

(e𝜆1 − 1)2
.

Second, the assumption that the mean degree is a well-defined quantity (true for
HV graphs) yields

∞∑
k=2

ke−𝜆0−𝜆1k = k = 2 − e−𝜆1
1 − e−𝜆1

.

Combining the above results, we find

𝜆1 = log

(
k − 1
k − 2

)
,

and

𝜆0 = log

(
(k − 2)2

k − 1

)
.

Hence, the degree distribution that maximizes h is

p(k) = k − 1
(k − 2)2

(
k − 2
k − 1

)k

,

which is an increasing function of k. The maximal entropy therefore found for
the maximal mean degree, which we saw in the section “Natural and Horizontal
Visibility algorithms,” is k = 4. This yields an associated degree distribution

p(k) = 3
4

(2
3

)k
= 1

3

(2
3

)k−2
,

which coincides with the one expected for a random uncorrelated series, as we
saw in the aforementioned section. Remarkably, we conclude that the HV graph
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with maximal entropy is that associated with a purely uncorrelated random
process.
So far, we have not used any property of the Logistic map and their associated

Feigenbaum graphs, and hence the previous result is a completely general one.
Now we will use them in the form of restrictions to the maximization of the graph
entropy. Note that by construction, the Feigenbaum graphs from the Logistic map
along the period-doubling route to chaos (𝜇 < 𝜇∞) do not have odd values for
the degree. Let us assume now this additional constraint in the former entropy
optimization procedure. The derivation proceeds along similar steps, although
summations now run only over even terms. Concretely, we have

e𝜆0 =
∞∑

k=1
e−𝜆12k = 1

e2𝜆1 − 1
,

which after differentiation over 𝜆1 gives
∞∑

k=1
ke−𝜆12k = e2𝜆1 − 2

(e2𝜆1 − 1)2

and
∞∑

k=1
2ke−𝜆0−𝜆12k = k = 2e2𝜆1

e2𝜆1 − 1
.

We obtain for the Lagrange multipliers

𝜆1 =
1
2
log

(
k

k − 2

)
,

and

𝜆0 = log

(
k − 2
2

)
.

The degree distribution that maximizes the graph entropy turns now to be

p(k) = 2
k − 2

(
k − 2

k

)k∕2

.

As before, entropy is an increasing function of k, attaining its larger value for
the upper-bound value k = 4, which reduces to p(k) = (1∕2)k∕2, k = 2, 4, 6,…,
equation 1.14. We conclude that the maximum entropy of the entire family
of Feigenbaum graphs, if we require that odd values for the degree are not
allowed, is achieved at the logistic map accumulation point. Finally, the network
entropy is trivially minimized for a degree distribution p(2) = 1, that is, the HV
degree distribution coming from the constant series. In short, the graph entropy
optimization leads to three special regimes: random dynamics, constant time
series, and the critical accumulation point, where the transition order-to-chaos
takes place.
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In the case of intermittency also studied in the previous section, it is very evi-
dent to show how the graph entropy corresponds to a minimum in the transition
point. Eq. 1.18 showed that in this scenario, graph entropy (corresponding to block
entropy with n = 1) was h1 ∼ 𝜖𝛼(1) (being 𝛼(1) ≃ 0.12, see inset in Figure 1.8).
Clearly, as we approach to the transition point, 𝜖 → 0 (i.e., as 𝜇 → 𝜇c, coming from
the chaotic zone to the ordered period-three window), we obtain h1 → 0. Hence,
graph entropy reaches a global minimum for the HV graph at tangency 𝜖 = 0 (but
note that there is no continuity in h1: when we effectively arrive to 𝜖 = 0, suddenly
the graph changes radically to an ordered graph with h1 = log 3).
Finally, we will study a third route to chaos, quasi-periodicity. Quasi-periodicity

is observed along time evolution in nonlinear dynamical systems [47, 48, 59] and
also in the spatial arrangements of crystals with forbidden symmetries [50, 60].
These twomanifestations of quasi-periodicity are rooted in self-similarity and are
seen to be related through analogies between incommensurate quantities in time
and spatial domains [50]. Quasi-periodicity can be visualized also in the graphs
generated when the HV algorithm is applied to the stationary trajectories of the
universality class of low-dimensional nonlinear iterated maps with a cubic inflex-
ion point, as represented by the circle map [50].
We briefly recall that the critical circle map [47, 48, 59] is the one-dimensional

iterated map given by

𝜃t+1 = fΩ,K (𝜃t) = 𝜃t + Ω − 1
2𝜋

sin(2𝜋𝜃t),mod 1, (1.20)

representative of the general class of nonlinear circle maps: 𝜃t+1 = fΩ,K (𝜃t) = 𝜃t +
Ω + g(𝜃t),mod 1, where g(𝜃) is a periodic function that fulfills g(𝜃 + 1) = g(𝜃).
The dynamical variable 0 ≤ 𝜃t < 1 can be interpreted as a measure of the angle

that specifies the trajectory on the unit circle, the control parameter Ω is the so-
called bare winding number.The dressed winding number for themap is defined as
the limit of the ratio:𝜔 ≡ limt→∞(𝜃t − 𝜃0)∕t and represents an averaged increment
of 𝜃t per iteration. Trajectories are periodic (lockedmotion) when the correspond-
ing dressed winding number 𝜔(Ω) is a rational number p∕q and quasi-periodic
when it is irrational.The resulting hierarchy of mode-locking steps at k = 1 can be
conveniently represented by aFarey tree, which orders all the irreducible rational
numbers p∕q ∈ [0, 1] according to their increasing denominators q.
TheHV algorithm assigns each datum 𝜃i of a time series {𝜃i}i=1,2,… to a node i in

its associated HV graph, and i and j are two connected nodes if 𝜃i, 𝜃j > 𝜃n for all n
such that i < n < j.The associatedHVgraph is a periodic repetition of amotif with
q nodes, p of which have connectivity k = 2. (Observe that p in the map indicates
the number of turns in the circle to complete a period). For k ≤ 1, the order of
visits of positions in the attractors and their relative values remain invariant for a
locked region with 𝜔 = p∕q [61], such that the HV graphs associated with them
are the same. In Figure 1.9 we present an example, in which the first and last nodes
in the motif correspond to the largest value in the attractor.
In Figure 1.10, we depict the associated HV periodic motifs for each p∕q in the

Farey tree. We directly observe that the graphs can be constructed by means of
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Figure 1.9 Examples of two standard circle
map periodic series with dressed winding
number 𝜔 = 5∕8, K = 0 (a) and K = 1 (b). As
can be observed, the order of visits on the

circle and the relative values of 𝜃n remain
invariant and the associated HV graph is
therefore the same in both cases.

the following inflation process: let p∕q be a Farey fraction with “parents” p′∕q′ <

p′′∕q′′, that is, p∕q = (p′ + p′′)∕(q′ + q′′).The “offspring” graph G(p∕q) associated
with 𝜔 = p∕q, can be constructed by the concatenation G(p′′∕q′′)⊕ G(p′∕q′) of
the graphs of its parents. By means of this recursive construction, we can system-
atically explore the structure of every graph along a sequence of periodic attractors
leading to quasi-periodicity. A standard procedure to study the quasi-periodic
route to chaos is selecting an irrational number 𝜔∞ ∈ [0, 1]. Then, a sequence
𝜔n of rational numbers approaching 𝜔∞ is taken. This sequence can be obtained
through successive truncations of the continued fraction expansion of 𝜔∞. The
corresponding bare winding numbers Ω(𝜔n) provide attractors, whose periods
grow toward the onset of chaos, where the period of the attractor must be infi-
nite. Awell-studied case is the sequence of rational approximations of𝜔∞ = 𝜙−1 =
(
√
5 − 1)∕2 ≃ 0.6180…, the reciprocal of the Golden ratio, which yields winding

numbers {𝜔n = Fn−1∕Fn}n=1,2,3,…, where Fn is the Fibonacci number generated by
the recurrence Fn = Fn−1 + Fn−2 with F0 = 1 and F1 = 1.The first few steps of this
route are shown in Figure 1.10(b): 𝜔1 = 1∕1, 𝜔2 = 1∕2, 𝜔3 = 2∕3, 𝜔4 = 3∕5, 𝜔5 =
5∕8… , 𝜔6 = 8∕13…. Within the range Ω(Fn−1∕Fn), one observes trajectories of
period Fn and, therefore, this route to chaos consists of an infinite family of peri-
odic orbits with increasing periods of values Fn, n → ∞. If we denote by G𝜙−1 (n)
the graph associated to 𝜔n = Fn−1∕Fn in the Golden ratio route, it is easy to prove
that the associated connectivity distribution P(k) for G𝜙−1 (n) with n ≥ 3 and k ≤

n + 1 is pn(2) = Fn−2∕Fn, pn(3) = Fn−3∕Fn, pn(4) = 0 and pn(k) = Fn−k+1∕Fn. In the
limit n → ∞ the connectivity distribution at the accumulation point G𝜙−1 (∞), the
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Figure 1.10 Six levels of the Farey tree and
the periodic motifs of the graphs associated
with the corresponding rational fractions
p∕q taken as dressed winding numbers 𝜔
in the circle map (for space reasons, only
two of these are shown at the sixth level).
(a) In order to show how graph concatena-
tion works, we have highlighted an example

using different gray tones on the left-hand
side: as 1∕3 > 1∕4, G(1∕3) is placed on the
left-hand side, G(1∕4) on the right-hand side
and their extremes are connected to an addi-
tional link closing the motif G(2∕7). (b) Five
steps in the Golden ratio route, b = 1 (thick
solid line); (c) Three steps in the Silver ratio
route, b = 2 (thick dashed line).

quasi-periodic graph at the onset of chaos, takes the form

p∞(k) =
⎧⎪⎨⎪⎩
1 − 𝜙−1 k = 2
2𝜙−1 − 1 k = 3
0 k = 4
𝜙1−k k ≥ 5.

(1.21)

A straightforward generalization of this scheme is obtained by considering the
routes {𝜔n = Fn−1∕Fn}n=1,2,3,… with Fn = bFn−1 + Fn−2, F0 = 1, F1 = 1, where b a
natural number. It can be easily seen that limn→∞Fn−1∕Fn = (−b +

√
b2 + 4)∕2,

which is a solution of the equation x2 + 𝑏𝑥 − 1 = 0. Interestingly, all the posi-
tive solutions of the above family of quadratic equations happen to be positive
quadratic irrationals in [0, 1] with pure periodic continued fraction representa-
tion: 𝜙−1

b = [b, b, b,…] = [b] (b = 1 corresponds to the Golden number, b = 2 to
the Silver number, and so on). Every b > 1 fulfills the condition Fn−1∕Fn < 1∕2.
For fixed b ≥ 2, we can deduce from the construction process illustrated in

Figure 1.10, and from the balance equation p∞(k) = 𝜙−1
b p∞(k + b), that the degree

distribution p∞(k) for quasi-periodic graphs with b ≥ 2 is

p∞(k) =

⎧⎪⎪⎨⎪⎪⎩
𝜙−1

b k = 2
1 − 2𝜙−1

b k = 3
(1 − 𝜙−1

b )𝜙(3−k)∕b
b k = 𝑏𝑛 + 3, n ∈ ℕ

0 otherwise.

(1.22)

Let us proceed now with the optimization of graph entropy. It has to take
into account the constraints found in the HV graphs from the circle map:
p(2) = 𝜙−1

b , p(3) = 1 − 2𝜙−1
b , mean connectivity ⟨k⟩ = 4 (as it comes from a non-

periodic series), and p(k) = 0 ∀k ≠ 𝑏𝑛 + 3, n ∈ ℕ. Note that these are in fact the
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constraints for b ≥ 2; for b = 1, the first two constraints should be p(2) = 1 − 𝜙−1

and p(3) = 2𝜙−1 − 1 (see Eq. 1.21), but to make this proof as general as possible,
we will proceed with b ≥ 2 and let the case b = 1 as an exercise for the reader.
In order to take into account the first two constraints, we define

P ∶= 1 − p(2) − p(3) = 1 − 𝜙−1
b − (1 − 2𝜙−1

b ) = 𝜙−1
b , (1.23)

that is, the sum of p(k) for k > 3. For the third constrain, we define the reduced
mean connectivity

Q ∶= 4 − 2p(k) − 3p(3) = 1 + 4𝜙−1
b ; (1.24)

therefore, introducing these constraints in the Lagrangian, we have

 = −
∞∑

k=3+𝑏𝑛
p(k) log p(k) − (𝜆0 − 1)

( ∞∑
k=3+𝑏𝑛

p(k) − P

)
− 𝜆1

( ∞∑
k=3+𝑏𝑛

𝑘𝑝(k) − Q

)
,

for which the extremum condition reads
𝜕

𝜕p(k)
= − log p(k) − 𝜆0 − 𝜆1k = 0,

and has the solution

p(k) = e−𝜆0−𝜆1k .

From this, and using the definition of P we get

P =
∑
k>3

p(k) =
∞∑

k=3+𝑏𝑛
e−𝜆0−𝜆1k = e−𝜆0

∞∑
k=3+𝑏𝑛

e𝜆1k = 𝜙−1
b .

As the infinite sum gives
∞∑

k=3+𝑏𝑛
e−𝜆1k = e−(3+b)𝜆1

1 − e−b𝜆1
, (1.25)

we get the following relationship between the Lagrange multipliers:

e−𝜆0 =
𝜙−1

b (1 − e−b𝜆1 )
e−(3+b)𝜆1

. (1.26)

Using now the reduced mean connectivity Q, we get

Q =
∑
k>3

𝑘𝑝(k) =
∞∑

k=3+𝑏𝑛
ke−𝜆0−𝜆1k = e−𝜆0

∞∑
k=3+𝑏𝑛

ke𝜆1k = 1 + 4𝜙−1
b . (1.27)

In order to calculate the sum, we can derive Eq. 1.25 respect to 𝜆1, which gives
∞∑

k=3+𝑏𝑛
ke−𝜆1k = e−3𝜆1

{
3e−b𝜆1

1 − e−b𝜆1
+ be−b𝜆1 (1 − e−b𝜆1 ) + be−2b𝜆1

(1 − e−b𝜆1 )2

}
.

Substituting this sum into Eq. 1.27 and using Eq. 1.26, we get

1 + 4𝜙−1
b = e−3𝜆1

{
3e−b𝜆1

1 − e−b𝜆1
+ be−b𝜆1 (1 − e−b𝜆1 ) + be−2b𝜆1

(1 − e−b𝜆1 )2

}
𝜙−1

b (1 − e−b𝜆1 )
e−(3+b)𝜆1

,
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which after some algebra, yields

𝜙b + 4 = 3 + b + be−b𝜆1

1 − e−b𝜆1
,

giving for the second Langrangian multiplier

e−𝜆1 =
(
𝜙b + 1 − b
𝜙b + 1

)1∕b

.

This can be simplified multiplying and dividing by 𝜙b and making use of the rela-
tionship for metallic numbers 𝜙2

b = 1 + b𝜙b, giving

e−𝜆1 = 𝜙
− 1

b
b .

Introducing it in Eq. 1.26, we get for the first Lagrange multiplier the result

e−𝜆0 =
𝜙−1

b (1 − e−b𝜆1 )
e(3−b)𝜆1

=
𝜙−1

b (1 − 𝜙−1
b )

𝜙
− 3+b

b
b

= 𝜙
3
b
b (1 − 𝜙−1

b ).

Therefore, the degree distribution maximizing graph entropy in the circle map
case is given by

p(k) =

⎧⎪⎪⎨⎪⎪⎩
𝜙−1

b k = 2
1 − 2𝜙−1

b k = 3

𝜙
3
b
b (1 − 𝜙−1

b )𝜙
− k

b
b k = 𝑏𝑛 + 3, n ∈ ℕ

0 otherwise.

(1.28)

which is exactly the same as Eq. 1.22. Q.E.D.

1.3
Renormalization Group Transformations of Horizontal Visibility Graphs

The infinite families of graphs generated by the HV algorithm from time
series formed by trajectories obtained along the three routes to chaos in
low-dimensional maps are particularly suitable objects for exploration via the
renormalization group (RG) transformation.TheRGmethodwas originally devel-
oped in quantum field theory and in statistical mechanics of phase transitions
to remove unwanted divergences in relevant quantities by redefining parameters
iteratively [62, 63]. The method is capable of handling problems involving many
length scales, and was found to be specially tractable and fruitful in nonlinear
dynamics, where functional composition appears as the basic operation [47].
The central feature of study of the RG method is that of self-affine structures,

and these appear profusely in the prototypical nonlinear one-dimensional iterated
maps we chose to use for the assessment of the HV procedure. Some time ago, the
transitions from periodic to chaotic motion present in these maps were studied
via the RGmethod with celebrated results [47]. The transformation  in this case
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consists of functional composition and rescaling, such as

 {f𝜇(x)} = 𝛼f𝜇
[
f𝜇(𝛼−1x)

]
, (1.29)

where f𝜇(x) is the one-dimensional nonlinear map, for instance, the logistic map,
with control parameter 𝜇. Repeated application of  modifies the original map
f𝜇(x) into another map  {f𝜇(x)}, a second application into yet another map
 (2){f𝜇(x)}, and so on, with  (n){f𝜇(x)} after n applications. A “flow” is generated
in the set of maps that terminates when n → ∞ at a fixed-point map f ∗𝜇 (x) that
satisfies

f ∗𝜇 (x) = 𝛼f ∗𝜇
[
f ∗𝜇 (𝛼−1x)

]
, (1.30)

for a given value of 𝛼. The fixed points that occur are classified as trivial or non-
trivial according to whether these are reached, respectively, for all nonzero values
of a small set of variables called relevant, or only for vanishing values of these vari-
ables. In our example, there is only one relevant variableΔ𝜇 ≡ 𝜇 − 𝜇c, where 𝜇c is
the value of the control parameter 𝜇 at which a transition from regular to chaotic
behavior takes place. The fixed-point maps enjoy a universal quality in the sense
that a whole class of maps lead to and share the properties of these maps. This is
the case of unimodal (one hump)maps of nonlinearity z > 1, where z is the degree
of its extremum, so that the logistic map is one member of the universality class
of quadratic maps z = 2. There is an infinite number of irrelevant variables, those
that specify the differences between any given map for a given value of z and its
nontrivial fixed-point map f ∗𝜇c

(x).
An important feature of HV graphs is that each one of them represents a large

number of nonlinear map trajectories, that is, many time series lead to the same
HV graph, and each of them captures significant characteristics of a class of tra-
jectories. In our case studies, the three routes to chaos, each HV graph represents
an attractor.This is illustrated by the HV graphs obtained for the period-doubling
cascade shown in Figure 1.4. These sets of graphs are independent of the details
of the unimodal map, including the value of z. Therefore, we anticipate that appli-
cation of RG transformations directly on the HV graphs would lead to a compre-
hensive description of their self-similar properties and characterization via their
fixed-point graphs, in particular those that represent the transitions to chaos.
A guide for the construction of the RG transformation appropriate for theHV

graphs already described is to observe in them the effect of functional composi-
tion of the map under consideration.Thus, we look at the HV graphs obtained for
the period-doubling cascade of unimodalmaps when 𝜇 < 𝜇∞. See the consecutive
graphs in Figure 1.4 that are obtained from the original map f𝜇 via the composi-
tions f (2)𝜇 , f (4)𝜇 ,… , f (2

n)
𝜇 ,…Note that each of these graphs transforms into the pre-

vious one if is defined as the coarse-graining of every couple of adjacent nodes,
where at least one of them has degree k = 2 into a block node that inherits the
links of the previous two nodes. See Figure 1.11.That is,{G(1, n)} = G(1, n − 1),
and therefore an iteration of this process yields an RG flow that converges to the
trivial fixed point (n){G(1, n)} = G(1, 0) ≡ G0 = {G0}. This is the stable (triv-
ial) fixed point of the RG flow for all 𝜇 < 𝜇∞. We note that there is also only one
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Figure 1.11 Renormalization process and
network RG flow structure. (a) Illustration
of the renormalization process: a node with
degree is coarse-grained with one of its
neighbors (indistinctively) into a block node
that inherits the links of both nodes. This
process coarse-grains every node with the

degree of each renormalization step. (b)
Example of an iterated renormalization pro-
cess in a sample Feigenbaum graph at a
periodic window with initial period after
period-doubling bifurcations (an orbit of
period). (c) RG flow diagram.
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relevant variable in our RG scheme, represented by the reduced control parameter
Δ𝜇 ≡ 𝜇c − 𝜇, where in this case 𝜇c = 𝜇∞. Hence, in order to identify a nontrivial
fixed point, we set Δ𝜇 = 0 or equivalently n → ∞, where the structure of the HV
graph turns to be completely self-similar under.

1.3.1
Tangent Bifurcation

A common description of the tangent bifurcation [47] thatmediates the transition
between a chaotic attractor and an attractor of period T starts with the composi-
tion f (T) of a one-dimensional map f , that is, the logistic map, at such bifurcation,
followed by an expansion around the neighborhood of one of the T points tangent
to the line with unit slope. In general, in the neighborhood of the bifurcation, we
have

x′ = f (T)(x) = x + u sign(x)xz + · · · , z > 1, (1.31)

where the most common value for the degree of nonlinearity at tangency is z = 2,
obtained when the map is analytic at x = 0 with nonzero second derivative.When
a small constant term 𝜖 ≲ 0 is added to Eq. (1.31), we observe in the original map
f regular period T orbits, but for 𝜖 ≳ 0, the dynamics associated with f consists of
quasi-regular motion while xt ≃ 0, named laminar episodes, interrupted by irreg-
ular motion until there is reinjection at a position x < 0, that leads to a second
laminar episode, and so on, after reinjections at varying positions x < 0. The suc-
cession of laminar episodes and irregular bursts is known as intermittency of type I
[47]. This can be observed at the windows of periodicity of the logistic map that
open with period T for values of control parameter 𝜇 = 𝜇T > 𝜇∞, in which case
𝜖 = 𝜇T − 𝜇. For convenience, we relabel𝜇T ≡ 𝜇c.When 𝜖 = 0 trajectories initiated
at x0 < 0 evolve monotonically toward x = 0, performing asymptotically a period
T orbit in the original map f (x). While trajectories initiated at x0 > 0 move away,
also monotonically, from x = 0, escaping soon from the local map in Eq. (1.31). In
the original map f this leads, after a finite number of iterations, to reinjection at a
position x < 0 of f (T)(x), followed by repetition of the case x0 < 0.
The RG fixed-point map at the tangent bifurcation, the solution of Eq. (1.30),

was obtained in analytical closed-form Ref. [47] together with the specific value
𝛼 = 21∕(1−z), which upon expansion around x = 0 reproduces Eq. (1.31). Here, we
are interested in reporting the effect of the transformation on the intermittent
graphsG(𝜖) already described. Results for the RG flows include the following [56]:

(i) When 𝜖 < 0 (𝜇 ≳ 𝜇c), trajectories are periodic and every HV graph trivially
renormalizes toward the chain graph G0 (an infinite chain with k = 2) for
all nodes [56]. The graph G0 is invariant under renormalization {G0} =
G0, and indeed constitutes a trivial (attractive) fixed point of the RG flow,
(n){G(𝜖 < 0)} = G0.

(ii) When 𝜖 > 0 (𝜇 ≲ 𝜇c), repeated RG transformations eliminate progressively
the links in the graph associated with correlated elements in the time series,



30 1 Entropy and Renormalization in Chaotic Visibility Graphs

leading ultimately to theHV graph that corresponds to a random time series
Grand. The links between laminar nodes stem mainly from temporal corre-
lated data, whereas the links between burst and peak nodes originate from
uncorrelated segments of the time series. If the laminar episodes are elimi-
nated from the time series, the burst and reinjection data values form a new
time series, which upon renormalization leads to the random time series.
We have limn→∞ (n){G(𝜖 > 0)} = Grand, where Grand is the HV graph asso-
ciated with a random uncorrelated process with the aforementioned graph
properties. This constitutes the second trivial (attractive) fixed point of the
RG flow [56].

(iii) When 𝜖 = 0 (𝜇 = 𝜇c), the HV graph generated by trajectories at tangency
converges after repeated application of  to a nontrivial fixed point. This
occurs after only two steps when T = 3, 2{G(= 0)} = Gc = {Gc} and
remains invariant under  afterward. This feature can be demonstrated
by explicit application of  upon G(𝜖 = 0) (see Figure 1.12 for a graphical
illustration of this process). The fixed-point graph Gc is the HV graph of a

G(ε=0)

n∞

n∞

n∞

  2{G(ε=0)}

  {G(ε=0)}

Figure 1.12 Illustration of the renormaliza-
tion operator  applied on the HV graph at
𝜖 = 0. This graph renormalizes, after two iter-
ations of , into an HV graph Gc which is

itself (i) invariant under  and (ii) unstable
under perturbations in 𝜖, thus constituting a
nontrivial (saddle) fixed point of the graph-
theoretical RG flow.
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monotonically decreasing time series bounded at infinity by a large value,
that of the initial position x0. The fixed-point graph Gc is unstable under
perturbations in 𝜖, and it is thus a saddle point of the RG flow, attractive
only along the critical manifold [spanned by G(𝜖 = 0) and its replicas within
other periodic windows of period T]. The RG flow diagram is shown in
Ref. [56].

1.3.2
Period-Doubling Accumulation Point

A classic example of functional composition RG fixed-point map is the solution
of Eq. (1.30) associated with the period-doubling accumulation points shared by
all unimodal maps [64]

f𝜇(x) = 1 − 𝜇|x|z, z > 1, −1 ≤ x ≤ 1, 0 ≤ 𝜇 ≤ 2. (1.32)

In practice, it is often numerically illustrated by use of a single map,
the quadratic z = 2 logistic map with the control parameter located at
𝜇 = 𝜇∞(1) = 1.401155189092, the value for the accumulation point of the
main period-doubling cascade [47, 64].
Iterating  on the Feigenbaum graphs, we can trace the RG flows of the

period-doubling and band-splitting graphs G(Δ𝜇) already described. A complete
schematic representation of the RG flows can be seen in Figure 1.11. Results
include the following [21, 49]:

(i) We have seen that when Δ𝜇(1) < 0 (𝜇 < 𝜇∞(1)), the RG flow produced by
repeated application of on the period-doubling cascade of graphs G(1, n)
leads to G0 ≡ G(1, 0), the infinite chain with k = 2 for all nodes, that is,
{G0} = G0 is the trivial (attractive) fixed point of this flow.

(ii) We have also seen that when Δ𝜇(1) = 0 (𝜇 = 𝜇∞(1)), the graph G(1,∞) ≡
G∞ that represents the accumulation point of the cascade of period 2∞ is
the nontrivial (repulsive) fixed point of the RG flow,{G∞} ≡ G∞. In con-
nection with this, let pt(k) be the degree distribution of a generic Feigen-
baum graph Gt in the period-doubling cascade after t iterations of , and
point out that the RG operation{Gt} ≡ Gt+1 implies a recurrence relation
(1 − pt(2))pt+1(k) = pt(k + 2), whose fixed point coincides with the degree
distribution found for the period-doubling cascade. This confirms that the
nontrivial fixed point of the flow is indeed G∞.

(iii) When Δ𝜇(1) > 0 (𝜇 > 𝜇∞(1)) and 𝜇 does not fall within a window of
periodicity m > 1. Under the same RG transformation, the self-affine struc-
ture of the family of 2n-band attractors yields {G𝜇(1, n)} = G𝜇(1, n − 1),
generating an RG flow that converges to the Feigenbaum graph associated
to the first chaotic band, (n){G𝜇(1, n)} = G𝜇(1, 0). Repeated application
of  breaks temporal correlations in the series, and the RG flow leads
to a second trivial fixed point (∞){G𝜇(1, 0)} = Grand = {Grand}, where
Grand is the HV graph generated by a purely uncorrelated random pro-
cess. As mentioned above, this graph has a universal degree distribution
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p(k) = (1∕3)(2∕3)k−2, independent of the random process underlying
probability density.

(iv) When Δ𝜇(m) < 0 (Δ𝜇(m) ≡ 𝜇∞(m) − 𝜇), where 𝜇∞(m) is the accumulation
point of the period-doubling cascades in the window of periodicity with
initial period m. Since the RG transformation specifically applies to nodes
with degree k = 2, the initial applications of  only change the core struc-
ture of the graph associated with the specific value m (see Figure 1.11 for an
illustrative example).The RG flowwill therefore converge to the trivial fixed
point G0 via the initial path(p){G𝜇(m, n)} = G𝜇(1, n), with p ≤ m, whereas
it converges to the trivial fixed pointGrand forG𝜇(m, n) via(p){G𝜇(m, n)} =
G𝜇(1, n). In the limit of n → ∞, the RG flow proceeds toward the nontrivial
fixed point G∞ via the path(p){G(m,∞)} = G(1,∞). Incidentally, extend-
ing the definition of the reduced control parameter toΔ𝜇(m) ≡ 𝜇∞(m) − 𝜇,
the family of accumulation points is found at Δ𝜇(m) = 0.
In summary, the repeated application of the RG transformation  gen-

erates flows terminating at two different trivial fixed points G0 and Grand or
at the nontrivial fixed point G∞. The graph G0 is a chain graph, in which
every node has two links, Grand is a graph associated with a purely ran-
dom uncorrelated process, whereas G∞ is a self-similar graph that repre-
sents the onset of chaos. The RG properties within the periodic windows
are incorporated into a general RG flow diagram. As it is common to all RG
applications, crossover phenomenon between these fixed points is present
when n is large (or 𝜇 ≃ 𝜇∞) for both 𝜇 < 𝜇∞ and 𝜇 > 𝜇∞. In both cases,
the graphs G(1, n − j) and G𝜇(1, n − j) with j ≪ n closely resemble the self-
similar G∞ (obtained only when 𝜇 = 𝜇∞) for a range of values of the number
j of repeated applications of the transformation  until a clear departure
takes place toward G0 or Grand when j becomes comparable to n. Hence, for
instance, the graph(j){G𝜇(1, n)}will only show its true chaotic nature (and
therefore converge to Grand) once j and n are of the same order. In other
words, this happens once its degree distribution becomes dominated by the
contribution of ptop

𝜇 (n, k) (alternatively, once the core of the graph, related
to the chaotic band structure and the order of visits to chaotic bands, is
removed by the iteration of the renormalization process).

1.3.3
Quasi-Periodicity

As with the intermittency and the period-doubling routes, the quasi-periodic
route to chaos exhibits universal scaling properties. And an RG approach,
analogous to that for the tangent bifurcation and the period-doubling cascade,
has been carried out for the critical circle map [47]. The fixed-point map f ∗(𝜃)
of an RG transformation that consists of functional composition and rescaling
appropriate for maps with a zero-slope cubic inflection point satisfies

f ∗(𝜃) = 𝛼gmf ∗
(
𝛼𝑔𝑚f ∗(𝛼−2

𝑔𝑚𝜃)
)
, (1.33)
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where (for the golden mean route) 𝛼gm = −1.288575 is a universal constant [47].
We proceed as above and apply the same RG graph transformation to the fami-
lies of HV graphs that represent the quasi-periodic route to chaos associated with
the goldenmean [65].Then, we consider other routes associated with othermetal-
lic mean numbers. The results are as follows:

(i) We have{G𝜙−1 (n)} = G1−𝜙−1 (n − 1) and{G1−𝜙−1 (n)} = G𝜙−1 (n − 1), and
hence the RG flow alternates between the two mirror routes described
previously. If we define the operator “time reverse” by G𝜙−1 (n) ≡
G1−𝜙−1 (n), the transformation becomes {G𝜙−1 (n)} = G𝜙−1 (n − 1) and
{G1−𝜙−1 (n)} = G1−𝜙−1 (n − 1). Repeated application of  yields two
RG flows that converge, for n finite, to the trivial fixed point G0 (a
graph with p(2) = 1). On the contrary, the quasi-periodic graphs, the
accumulation points n → ∞, are nontrivial fixed points of the RG flow:
{G𝜙−1 (∞)} = G𝜙−1 (∞) and {G1−𝜙−1 (∞)} = G1−𝜙−1 (∞). However, the
above RG procedure works only in the case of the golden ratio route. This
can be noted by looking at the silver ratio route shown in Figure 1.10.
For this reason, the RG transformation was extended to other irrational
numbers by constructing an explicit algebraic version of  and then
applying to the Farey fractions associated with the graphs [65]. This is

R
(

p
q

)
=
⎧⎪⎨⎪⎩

R1

(
p
q

)
= p

q−p
if p

q
<

1
2
,

R2

(
p
q

)
= 1 − q−p

p
if p

q
>

1
2
,

(1.34)

along with the algebraic analog of the “time reverse” operator R(x) = 1 −
R(x). Observe that along the golden ratio route, fractions are always greater
than 1∕2, and we can therefore renormalize this route by setting

R
(Fn−1

Fn

)
= R2

(Fn−1
Fn

)
=

Fn−2
Fn−1

, (1.35)

whose fixed-point equation R(x) = x is x2 + x − 1 = 0, with 𝜙−1 a solution
of it. The generalization of this scheme to the metallic number ratios, irra-
tional numbers with simple continued fractions, is obtained by considering
the routes {3c9n = Fn−1∕Fn}n=1,2,3,… with Fn = bFn−1 + Fn−2, F0 = 1, F1 = 1
and b a natural number. It can be easily observed that limn→∞Fn−1∕Fn =
(−b +

√
b2 + 4)∕2, which is a solution of the equation x2 + 𝑏𝑥 − 1 = 0. Inter-

estingly, all the positive solutions of the above family of quadratic equations
happen to be positive quadratic irrationals in [0, 1] with pure periodic con-
tinued fraction representation: 𝜙−1

b = [b, b, b,…] = [b] (b = 1 corresponds
to the golden route, b = 2 to the silver route, etc.). Every b > 1 fulfills the
condition Fn−1∕Fn < 1∕2, and, as a result, we have

R
(Fn−1

Fn

)
= R1

(Fn−1
Fn

)
=

Fn−1
(b − 1)Fn + Fn−2

. (1.36)
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The transformation R1 can only be applied (b − 1) times before the result
turns greater than 1∕2, so the subsequent application of R followed by rever-
sion yields

R(b)
(Fn−1

Fn

)
= R2

[
R(b−1)
1

(Fn−1
Fn

)]
=

Fn−2
Fn−1

. (1.37)

It is easy to demonstrate by induction that

R(b−1)
1 (x) = x

1 − (b − 1)x
, (1.38)

whose fixed-point equation R(b−1)
1 (x) = R2[R

(b−1)
1 (x)] = x leads in turn to

x2 + 𝑏𝑥 − 1 = 0, with 𝜙−1
b a solution of it. We can proceed in an analogous

way for the symmetric case 3c9n = 1 − (Fn−1∕Fn), but, as the sense of the
inequalities for 1∕2 is reversed, the role of the operators R1 and R2 must be
exchanged. The RG flow results are:

(ii) The graphs for fixed b ≥ 2 are renormalized viaR(b){G𝜙−1
b
(n)} = G𝜙−1

b
(n − 1),

and, as before, it is found that iteration of this process yields two RG flows
that converge to the trivial fixed point G0 for n finite. The quasi-periodic
graphs, reached as accumulation points (n → ∞), act as nontrivial fixed
points of the RG flow, since R(b){G𝜙−1

b
(∞)} = G𝜙−1

b
(∞).

(iii) Again for fixed b ≥ 2, it is found with the help of the construction pro-
cess illustrated in Figure 1.10, that p∞(2) = 𝜙−1

b , p∞(3) = 1 − 2𝜙−1
b and

p∞(k ≠ 𝑏𝑛 + 3) = 0, n = 1, 2, 3,… Whereas p∞(k = 𝑏𝑛 + 3), n = 1, 2, 3,…
can be obtained from the condition of RG fixed-point invariance of the
distribution, as it implies a balance equation p∞(k) = 𝜙−1

b p∞(k + b), whose
solution has the form of an exponential tail. The degree distribution p∞(k)
for these sets of quasi-periodic graphs was given earlier.

1.3.4
Entropy Extrema and RG Transformation

An important question pointed out some time ago [66] is whether there exists a
connection between the extremal properties of entropy expressions and the RG
approach. Namely, that the fixed points of RG flows can be obtained through a
process of entropy optimization, adding to the RG approach a variational quality.
The families of HV graphs obtained for the three routes to chaos offer a valuable
opportunity to examine this issue. As we have seen, they possess simple closed
expressions for the degree distribution p(k) and through them there is, when not
analytical, exact quantitative access to their entropy

h[p(k)] = −
∑

k
p(k) log p(k). (1.39)

On the contrary, these families have been ordered along RG flows and their basic
fixed points have been determined. The answer provided by HV graphs to the
question posed above is clearly in the affirmative. We give some details below.
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1.3.4.1 Intermittency

It is found that the entropy h reaches a minimum value at tangency and
that this value is retained for 𝜖 < 0 [56]. The approach to the minimum, at
h(𝜖 = 0) = log 3, for the window of periodicity T = 3 of the logistic map can be
seen in Figure 1.8. This value is maintained within the window, provided |𝜖| is
below the period-doubling bifurcations that take place there. Hence, entropy
reaches a global minimum for the HV graph at tangency. Next, we inquire about
the effect of the RG transformations on h. The entropy at the nontrivial fixed
point vanishes, as h[pGc

(k)] → 0 when the number of nodes N → ∞, that is, the
RG reduces h when 𝜖 = 0. Also, the RG transformations increase h when 𝜖 > 0
(as h[pGrand

(k)] = log(27∕4) [21, 49]) and reduce it when 𝜖 < 0 (since h[pG0
(k)] = 0

[21, 49]). When 𝜖 > 0, the renormalization process of removal at each stage
of all nodes with k = 2 leads to a limiting renormalized system that consists
only of a collection of uncorrelated variables, generating an irreversible flow
along which the entropy grows. On the contrary, when 𝜖 < 0, renormalization
increments the fraction of nodes with degree k = 2 at each stage driving the
graph structure toward the simple chain G0 and thus decreases its entropy to its
minimum value.

1.3.4.2 Period Doubling

As we have seen, the degree distribution p(k) that maximizes h is exactly p(k) =
(1∕3)(2∕3)k−2, which corresponds to the distribution for the second trivial fixed
point of the RG flow Grand. Alternatively, with the incorporation of the additional
constraint that allows only even values for the degree (the topological restriction
for Feigenbaum graphs G(1, n)), entropy maximization yields a degree distribu-
tion that coincides with the one found in the nontrivial fixed point of the RG
flow G∞. Finally, the degree distribution that minimizes h trivially corresponds
to G0, the first trivial fixed point of the RG flow. Remarkably, these results indicate
that the fixed-point structure of the RG flow is obtained via optimization of the
entropy for the entire family of networks. The network entropy is trivially mini-
mized for a degree distribution p(2) = 1, that is, at G0 with h = 0. The entropy h
is an increasing function of k, attaining its larger value for the upper-bound value
k = 4, which reduces to p(k) = (1∕2)k∕2, k = 2, 4, 6, . . . .We conclude that themax-
imum entropy of the entire family of Feigenbaum graphs (when we require that
odd values for the degree are not allowed) is achieved at the accumulation point,
that is, at the nontrivial fixed point G∞ of the RG flow.These results indicate that
the fixed-point structure of an RGflow can be obtained from an entropy optimiza-
tion process, confirming the aforementioned connection.

1.3.4.3 Quasi-periodicity

Notably, all the aforementioned RG flow directions and fixed points for this
route to chaos can be derived directly from the information contained in the
degree distribution via optimization of the graph entropy functional h[p(k)]. The
optimization is for a fixed b and takes into account the constraints: p(2) = 𝜙−1

b ,
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p(3) = 1 − 2𝜙−1
b , maximum possible mean connectivity k = 4 and p(k) = 0 for all

k ≠ 𝑏𝑛 + 3, n = 1, 2, 3,…. The degree distributions p(k) that maximize h[p(k)]
can be proven to be exactly the connectivity distributions in Eqs (1.21) and
(1.22) for the quasi-periodic graphs at the accumulation points found above.
This establishes a functional relation between the fixed points of the RG flow
and the extrema of h[p(k)], as it was verified for the intermittency and the
period-doubling routes.
Thus, we observe the familiar picture of the RG treatment of a model phase

transition, two trivial fixed points that represent disordered and ordered, or high-
and low-temperature phases, and a nontrivial fixed point with scale-invariant
properties that represent the critical point. There is only one relevant variable,
Δ𝜇 = 𝜇c − 𝜇, that is necessary to vanish to enable the RG transformation to
access the nontrivial fixed point.

1.4
Summary

Visibility algorithm is a tool that allows mapping time series into graphs. This
algorithm has been applied with interesting results to several research areas. In
this chapter, we have introduced several definitions of entropy applied to visibil-
ity graphs: graph entropy, and graph Kolmogorov–Sinai entropy.These entropies
defined in the graph are equivalent to Shannon entropy and Kolmogorov–Sinai
entropy of the time series.
In fact, we have seen that the former are very good proxies of the latter, and we

have found that there is a very good agreement between these entropies and the
Lyapunov exponent of the corresponding chaotic time series, in view of the Pesin
theorem.
Graph entropy also allows to identify the critical points in chaoticmaps, via opti-

mization of this entropy.We have seen that critical points correspond to extremals
in the process of graph entropymaximization, which produces degree distribution
of the visibility graphs at the critical points and at two trivial points: the random
series and constant series.
Finally, we have defined some renormalization processes in the visibility graphs

that generate flows leading to the same points than the graph entropy maximiza-
tion does: two fixed points that represent ordered and disordered phases (i.e., the
constant series and the random series, respectively), and a nontrivial fixed point
that represents the critical point.
The property that is seldom observed [66] is that an entropy functional, in the

present case h[p(k)], varies monotonously along the RG flows and is extremal at
the fixed points. A salient feature of the HV studies of the routes to chaos in low-
dimensional nonlinear iteratedmaps, intermittency [56], period doubling [21, 49],
and quasi-periodicity [65] is the demonstration that the entropy functional h[p(k)]
attains extremal (maxima, minima, or saddle point) values at the RG fixed points.
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