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Magnetism

Maria Bałanda and Robert Pełka

1.1
Origin of Magnetism

In magnetism, an object of fundamental importance is the magnetic moment [1].
In the framework of classical electrodynamics, an elementarymagneticmoment is
equivalent to a current loop. If there is a current around a negligible oriented loop
of area |dS|, then the magnetic moment associated with this current amounts to

d𝛍 = I d𝐒, (1.1)

which implies that the magnetic moment is expressed in ampere square meter.
The length of the pseudo-vector dS is equal to the area of the loop, its direction
is perpendicular to the loop, and its sense coincides with the orientation of the
current around the elementary loop. Thus, the magnetic moment points normal
to the loop of current and hence can be either parallel or antiparallel to the angu-
lar momentum associated with the charge going round the loop and producing
the current (see Figure 1.1). The orbiting electrical charges considered in solid-
state physics are all associated with particles carrying mass. Therefore, besides
the orbital motion of charge, there is an orbital motion of mass implying that a
magnetic moment is always connected with angular momentum. In atoms, the
magnetic moment 𝛍 associated with an orbiting electron shows the same direc-
tion as the angular momentum L of the electron, and is linearly proportional to it:

𝛍𝐋 = 𝛾L𝐋, (1.2)

where 𝛾L is a constant called the gyromagnetic ratio. This relationship between
themagneticmoment and the angularmomentum is demonstrated by two related
phenomena: the Einstein–de Haas effect, where rotation is induced by magneti-
zation, and the Barnett effect, where the reverse is the case.
The energy of the magnetic moment 𝛍 in a magnetic field B is given by

E = −𝛍•𝐁 (1.3)

Hence, the energy attains aminimum value when themagnetic moment is parallel
to the magnetic field. Beyond the state corresponding to the minimum energy,
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Figure 1.1 An elementary magnetic moment
d𝝁= I dS due to an elementary current loop (a). An
electron in a hydrogen atom orbiting with veloc-
ity v around the nucleus (a single proton) giving
rise to the magnetic moment 𝝁 antiparallel to its
orbital angular momentum l (b).

there is a torque on the magnetic moment given by

𝐆 = 𝛍 × 𝐁 (1.4)

Since the magnetic moment is associated with the angular momentum L by
Eq. (1.2), and because torque is equal to rate of change of angular momentum,
Eq. (1.4) implies

d𝛍
dt

= 𝛾𝛍 × 𝐁. (1.5)

According to Eq. (1.5), the change of 𝛍 is perpendicular to both 𝛍 and B. Hence,
rather than turning the magnetic moment toward the magnetic field, the latter
causes the direction of 𝛍 to precess around B. This equation also implies that
the magnitude |𝛍| is time-independent. This situation is exactly analogous to the
spinning of a gyroscope or spinning top.The precession frequency called the Lar-
mor precession frequency is equal to |𝛾B|. This feature distinguishes the mag-
netic moment from the electric dipole in an electric field. A stationary electric
dipole moment is not associated with any angular momentum; therefore, if it is
not aligned with the electric field, there is a torque tending to turn the direction
of the dipole toward the electric field.
One can easily estimate the characteristic size of atomic magnetic moments.

Consider an electron (charge −e, mass me) performing a circular orbit around
the nucleus of a hydrogen atom (the Bohr model, see Figure 1.1b). The current
I around the atom is I =−e/T , where T = 2𝜋r/v is the orbital period, v= |v| is
the speed, and r is the radius of the circular orbit. The magnitude of the angular
momentum of the electron, mevr, must be equal to ℏ in the ground state, so that
the magnetic moment of the electron is

𝜇 = 𝜋r2I = − eℏ
2me

≡ −𝜇B, (1.6)

where 𝜇B is the Bohr magneton, whose value equals 9.274× 10−24 Am2. This is a
convenient unit for describing the size of atomic magnetic moments. Note that
sign of the magnetic moment in Eq. (1.6) is negative. Because of the negative
electronic charge, its magnetic moment is antiparallel to its angular momentum.
The gyromagnetic ratio associated with the orbital motion of an electron is hence
𝛾L =𝜇/ℏ=−e/2me. The Larmor frequency is then 𝜔L = |𝛾|B= eB/2me.
In addition to the orbital angular momentum of an orbiting electron, there is

an intrinsic angular momentum called spin momentum, introduced by Uhlen-
beck and Goudsmit in 1925 to explain the existing spectroscopic observations.
The splitting of many spectral lines in the magnetic field (the so-called anomalous
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Zeeman effect) can be rationalized only if an electron possesses the spin angu-
lar momentum ℏs. It was experimentally verified and theoretically confirmed that
magnetic moment associated with the spin angular momentum is given by

𝛍s = −gs
e

2me
ℏ𝐬, (1.7)

with gs = 2(1+ 𝛼/2𝜋 + · · ·)≈ 2.0023, where 𝛼 = 1/137.04 is the fine structure con-
stant. Hence, the gyromagnetic ratio associated with the spin angular momentum
is 𝛾s =−gse/2me. The fact that in the case of the spin magnetic moment an addi-
tional factor gs ≈ 2 occurs, which is absent for orbital magnetic moment, is called
the gyromagnetic anomaly.
The orbital angular momentum in a real atom depends on the electronic state

occupied by the electron. With quantum numbers l and ml, the component of
orbital angular momentum along a fixed axis (usually the z-axis) is mlℏ and the
magnitude of the orbital angular momentum is

√
l(l + 1)ℏ. Thus, the component

ofmagneticmoment along the z-axis is−ml𝜇B and themagnitude of the totalmag-
netic dipole moment is

√
l(l + 1)𝜇B. The spin of an electron is characterized by a

spin quantumnumber s, which for an electron takes the value 1/2.The component
of spin angular momentum is msℏ with only two possible values of ms =±1/2.
The component of angular momentum along a particular axis is then ℏ/2 or
−ℏ/2. These alternatives are referred to as “up” and “down,” respectively. The
magnitude of the spin angularmomentum for an electron is

√
s(s + 1)ℏ =

√
3ℏ∕2.

The component of magnetic moment associated with spin along a particular
axis is equal to −gs𝜇Bms and its magnitude is

√
s(s + 1)gs𝜇B =

√
3gs𝜇B∕2. In

general, both orbital and spin angular momenta for electrons in atoms combine
to form total angular momentum ℏ𝐉. The resultant magnetic moment is then
given by

𝛍J = −gJ
e

2me
ℏ𝐉, (1.8)

where the Landé factor gJ can take different values depending on the relative
contributions of spin and orbital angular momenta. It is equal to 1 for the pure
orbital contribution and 2 for the pure spin contribution. This point will be
discussed later in more detail.

1.2
Macroscopic Approach

A piece of magnetic solid consists of a large number of atoms with magnetic
moments. A macroscopic characteristic of the intensity of magnetism in a solid is
given by the magnetizationM defined as the magnetic moment per unit volume.
This quantity is usually considered in the continuum approximation, that is, on a
length scale large enough to disregard the graininess due to the individual atomic
magnetic moments. M is thus considered a smooth vector field, continuous
everywhere except at the edges of the magnetic solid.
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Although free space (vacuum) fails to have any magnetization, it can accommo-
date a nonzero magnetic field. The magnetic field is described by the vector fields
B (called magnetic induction) andH (called magnetic field strength) related by

𝐁 = 𝜇0𝐇, (1.9)

where 𝜇0 = 4𝜋 × 10−7 Hm−1 is the permeability of free space. The two magnetic
fields B andH are just scaled versions of each other, the former measured in tesla
(abbreviated to T) and the latter measured in amperes per meter. In a magnetic
solid, the general relationship is

𝐁 = 𝜇0(𝐇 +𝐌), (1.10)

and the relationship between B and H is more complicated and the two vector
fields may be very different in magnitude and direction. In the special case that
the magnetizationM is linearly related to the magnetic fieldH, the solid is called
a linearmaterial, and the constant dimensionless proportionality factor 𝜒 is called
the magnetic susceptibility, and hence we may write

𝐌 = 𝜒𝐇. (1.11)

In this special case, the relationship between B andH is still linear, that is

𝐁 = 𝜇0(1 + 𝜒)𝐇=𝜇0𝜇r𝐇, (1.12)

where 𝜇r = 1+𝜒 is the relative permeability of the material.
For the sake of argument, consider a region of free space with an applied mag-

netic field given by fields Ba and Ha, where Ba =𝜇0Ha. On inserting a magnetic
solid into the region of free space, the internal fields inside the solid, given by Bi
and Hi, can very much differ from Ba and Ha, respectively. Due to the magnetic
field produced by all magnetic moments in the solid, both Bi and Hi will depend
on the position inside it at which they are measured. This is true except in the
special case of an ellipsoid-shaped sample, where if the magnetic field is applied
along one of the principal axes of the ellipsoid, then everywhere inside the sample

𝐇i = 𝐇a − N𝐌, (1.13)

where N is the appropriate demagnetizing factor. The term Hd =−NM is called
the demagnetizing field.When themagnetization is large compared to the applied
field (measured before the sample was inserted), these demagnetizing corrections
need to be taken seriously. For the special case of weak magnetism, where 𝜒 ≪ 1,
M ≪H , H i ≈Ha, and Bi ≈𝜇0H i, we can neglect the demagnetizing correction.
However, in ferromagnets, demagnetizing effects are always significant. There-
fore, a comment is in order here. Experimental measurement gives the ratio of
magnetization M and an applied field Ha:

𝜒exp =
M
Ha

. (1.14)

This quantity will in general differ from the intrinsic magnetic susceptibility of a
material given by

𝜒int =
M
Hi

. (1.15)
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The two quantities are related by

𝜒exp =
M

Hi + NM
=

𝜒int
1 + N𝜒int

. (1.16)

When 𝜒 int ≪ 1, there is little distinction between 𝜒 int and 𝜒exp. By contrast, when
𝜒 int is closer to or above 1, the distinction can be very significant. For example,
in a ferromagnet approaching the Curie temperature from above, 𝜒 int →∞, but
𝜒exp → 1/N .

1.3
Units in Magnetism

The SI system of units (Système International d’Unités) is the legal one, but as
Olivier Kahn rightly remarked, legality is not science. In fact, most researchers
involved in the field of molecular magnetism prefer to use the cgs emu system.
In the cgs system, distance, mass, and time are measured in centimeters, grams,
and seconds, respectively. The unit of magnetic field (H) in the system is oersted
(Oe), and the unit of magnetic induction (B) created by the magnetic field of 1Oe
is 1G. In vacuum, B is related to H through Eq. (1.9), where the permeability 𝜇0
in the cgs emu system is equal to 1. The counterpart of Eq. (1.10) in the cgs emu
system is the relation B=H+ 4𝜋M. The magnetic moment is measured in units
failing to carry a specific name and hence referred to as emu (simple represen-
tation of “electromagnetic unit”). The definition of 1 emu of magnetic moment
can be clarified by considering a magnet placed in an external magnetic field B.
Such a magnet will experience a torque given by Eq. (1.4), which implies that the
magnitude of the torque depends crucially on the orientation of the magnet with
respect to the magnetic field. There are actually two oppositely directed orienta-
tions, in which the magnet will experience the maximum torque. The magnitude
of the magnetic moment is defined as the maximum torque experienced by the
magnet when placed in unit external magnetic field. Hence, the cgs emu unit for
magnetic moment is clearly dyne centimeter per gauss, where dyne is the unit of
force (dyne= g cm s−2). As dyne cm= erg (the unit of energy), emu of magnetic
moment= ergG−1. The volume magnetic susceptibility (see Eq. (1.11)) is dimen-
sionless and traditionally expressed in electromagnetic unit per cubic centimeter,
such that the dimension of emu is formally cubic centimeter.Therefore, the molar
magnetic susceptibility is expressed in cubic centimeter per mole. The magneti-
zation is defined as the magnetic moment per unit volume and is expressed in
oersted or electromagnetic unit per cubic centimeter. The molar magnetization
can be expressed in either cubic centimeter oersted permole orNA𝜇B units, where
NA is Avogadro’s number and 𝜇B is the Bohr magneton.The relationship between
the two units is: 1NA𝜇B = 5585 cm3 Oemol−1. Table 1.1 summarizes the relevant
quantities expressed in the SI system and the cgs emu system together with appro-
priate conversion factors.
For a paramagnet, the molar susceptibility 𝜒m is given by Curie’s law (see

Eq. (1.33)), which expressed in terms of the effective moment in SI units acquires
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Table 1.1 Units in the SI system and cgs emu system.

Quantity Symbol SI unit cgs emu unit

Length X 10−2 m =1 cm
Mass m 10−3 kg =1 g
Force F 10−5 N =1 dyne
Energy E 10−7 J =1 erg
Magnetic induction B 10−4 T =1G
Magnetic field strength H 103/4𝜋 Am−1 =1Oe
Magnetic moment M 10−3 J T−1 or Am2 =1 ergG−1 or emu
Magnetization(=moment
per volume)

M 103 Am−1 or
J T−1 m−3

=1Oe or emu cm−3

Magnetic susceptibility 𝜒 4𝜋 × 1 =1 emu cm−3 or
emu cm−3 Oe−1

Molar susceptibility 𝜒m 4𝜋 × 10−6 m3 mol−1 =1 emumol−1 or
emumol−1 Oe−1

Mass susceptibility 𝜒g 4𝜋 × 10−3 m3 kg−1 =1 emu g−1 or
emu g−1 Oe−1

Magnetic flux Φ 10−8 Tm2 or Wb =1G cm2 or Mx
Demagnetization factor N 0<N < 1 0<N < 4𝜋

m, meter; g, gram; N, newton; J, joule; T, tesla; G, gauss; A, ampere; Oe, Oersted; Wb, Weber; Mx,
Maxwell.

the form

𝜒m =
𝜇0NA𝜇

2
eff𝜇

2
B

3kBT
. (1.17)

Hence, 𝜒mT is independent of temperature and is related to the effective moment
through the equation 𝜇eff = [3kB∕𝜇0NA𝜇

2
B]

1∕2
√
𝜒mT , so that

𝜇eff = 797.8
√

𝜒SI
m T ≈ 800

√
𝜒SI
m T (SI) (1.18)

𝜇eff = 2.827
√

𝜒
cgs
m T ≈

√
8𝜒cgs

m T (cgs emu), (1.19)

where 𝜇eff is measured in Bohr magnetons per formula unit, 𝜒SI
m in cubic meter

per mole, and 𝜒
cgs
m is measured in electromagnetic unit per mole.

1.4
Ground State of an Ion and Hund’s Rules

A typical atom contains many electrons, majority of which reside in filled shells
with no net angular momentum. However, there may be unfilled shells and
the electrons in these shells combine to give nonzero spin and orbital angular
momenta. For atoms with high atomic number Z, the spin–orbit interaction
energy (

∑
i
𝜆i𝐥i•𝐬i, where index i enumerates the electrons in unfilled shells) is

the dominant energy compared with the electrostatic interactions and therefore
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cannot be treated as a small perturbation. In this case, one has to couple the spin
and orbital angular momentum of each electron separately, and consequently the
weaker electrostatic effect may then couple the total angular momentum from
each electron. This type of scheme of determining the ground state of an atom or
ion is called j–j coupling. Far more frequently, another scheme known as L–S
coupling or Russell–Saunders coupling is effective, where the reverse is the case,
that is, the spin–orbit interaction may be treated as a weak perturbation of the
main energy terms determined by the electrostatic interactions. The latter terms
control the values of total orbital angular momentum ℏL originating from the
combination of all the orbital angular momenta of the electrons in the unfilled
shells and total spin angular momentum ℏS being the result of the combination
of all their spin angular momenta. The different configurations corresponding
to different possible values of L and S quantum numbers will cost different
amounts of energy. The choice of spin angular momentum affects the spatial
part of the total atomic wavefunction and the orbital angular momentum affects
how the electrons travel around the nucleus affecting the electrostatic repulsion
energy. Furthermore, the spin and orbital angular momenta weakly couple via the
spin–orbit interaction (𝜆𝐋•𝐒) giving rise to the total angular momentum J=L+ S
being a conserved quantity and an (L, S) multiplet being split into a number of
levels with differing J quantum number.
The combination of angular momentum quantum numbers, which minimize

the energy, can be estimated using empirical rules listed in order of decreasing
importance known as Hund’s rules [2].

a) Maximize S in the way compatible with the Pauli exclusion principle. With l
being the orbital quantum number of the partially completed shell and p the
number of electrons within this shell (i.e., p< 2(2l + 1)), one obtains

S = 1
2
[(2l + 1) − |2l + 1 − p|] (1.20)

b) Maximize L in the way compatible with the Pauli exclusion principle and rule
(a). L is given by

L = S•|2l + 1 − p| (1.21)

c) Finally, the value of J is found using J = |L− S| if the shell is less than half-
full (p≤ 2l + 1) and J= L+ S if it is more than half-full (p≥ 2l + 1). This can be
written as

J = S•|2l − p|. (1.22)

The third rule arises from an attempt to minimize the spin–orbit energy. The
scope of applicability of the third rule is limited to certain circumstances. While it
works very well for rare earth ions, the spin–orbit energies loose on their signif-
icance in the case of transition metal ions where the crystal field effects become
dominant.
The configuration which is found using Hund’s rules is described using a term

symbol of the form 2S+1LJ with 2S + 1 named multiplicity, and L= 0,1,2,… labeled
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by subsequent letters S,P,D, F ,G, . . . . Generally, Hund’s rules enable to predict
the ground state of an atom or ion; however, they are not suited to describe any
excited state or its distance from the ground state. Reliable estimations of the
magnetic moment of an ion confine to those cases where only the ground state
is populated.The predictions of the orbital angular momentum quantum number
L, the spin angular momentum quantum number S, and the total angular momen-
tum quantum number J for the magnetically relevant 3d ions (transition metals
Sc–Zn) and 4f ions (lanthanides La–Lu) are shown in Figure 1.2.
Given the quantum numbers L, S, and J , the ground state of an ion is defined.

Equation (1.8) gives the corresponding magnetic moment of that state, where the
Landé gJ factor can be shown as

gJ =
3
2
+ S(S + 1) − L(L + 1)

2J(J + 1)
. (1.23)

Thus, the magnitude of the magnetic moment is given by

𝜇 = 𝜇BgJ
√

J(J + 1). (1.24)

It should be compared with the effective magnetic moment determined in the
susceptibility measurement. An extremely good experimental agreement is found
between this prediction and the measured values for 4f ions in the solid state. A
discrepancy occurs for Sm and Eu, which is due to the low-lying excited states
with different J from the ground states. Much poorer agreement is found for the
3d ions because of the effect of the local crystal environment.
The competition between the electrostatic interaction and the spin–orbit cou-

pling in an atom or ion determines the splitting of the energy states and specifies
the ground state. The ensuing structure of the energy spectrum (states character-
ized by L and S are split into a number of levels with differing J) is known as fine
structure. However, not only the electrons in an atomhavemagneticmoment.The
nucleus often has a nonzero spin defined by the nuclear spin quantum number
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Figure 1.2 S, L, and J for (a) 3d and (b) 4f ions according to Hund’s rules (n is the number
of electrons in the corresponding subshell).
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I, taking both integer and half-integer values and representing the total angular
momentum of the nucleus in units of ℏ. The unit of nuclear magnetism is the
nuclear magneton 𝜇N given by

𝜇N = eℏ
2mp

= 5.0508 × 10−27 Am2, (1.25)

where mp is the mass of the proton. This is three orders of magnitude smaller
than the typical electronic magnetic moment given by the Bohr magneton 𝜇B.
The magnetic moment of a nucleus takes a value of

𝜇 = gI𝜇N
√

I(I + 1), (1.26)

where gI is the nuclear g-factor, which is a number of order of unity reflecting
the detailed structure of the nucleus.The nuclear moment canmagnetically inter-
act with the electronic moment, but the interaction is very weak. This leads to
energy splitting, which is even smaller than the fine structure, and hence known
as hyperfine structure. The essential principles of its origin can be understood by
considering a nuclear moment 𝛍, which is subject to a magnetic field Be produced
by the motion and spin of all the electrons. This produces an energy term −𝛍 ⋅Be,
with Be proportional to the total angular momentum of all the electrons J, so that
the Hamiltonian for the hyperfine interaction is usually written as

Ĥhf = A𝐈•𝐉. (1.27)

Due to the relative weakness of this interaction, its effect on the magnetic proper-
ties of the solids becomes apparent only in the sub-kelvin range of temperatures.

1.5
An Atom in a Magnetic Field

For an isolated atom in a constant magnetic field B, the Hamiltonian takes the
form

Ĥ = Ĥ0 + 𝜇B(𝐋 + gs𝐒)•𝐁 + e2
8me

∑
i
(𝐁 × 𝐫i)2, (1.28)

where Ĥ0 includes the electronic kinetic energy and potential energy. The sec-
ond term describes the effect of the atom’s own magnetic moment due to the
presence of unpaired electrons and is known as the paramagnetic term. It is a
dominant perturbation to the original Hamiltonian Ĥ0, but it sometimes vanishes
leaving the sole contribution given by the third term and giving rise to the so-
called diamagnetic moment, which is present even if the net magnetic moment of
the atom vanishes. All materials show some degree of diamagnetism.The diamag-
netic moment is directly proportional to the applied field and aligns antiparallel
with it. It may be shown that the diamagnetic susceptibility is negative and for a
spherically symmetric ion takes the general form

𝜒 = −N
V

𝜇0e2

6me

Z∑
i=1

⟨r2i ⟩, (1.29)
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where N is the number of ions (each with Z electrons of mass me) in a solid of
volume V and ri is the magnitude of the position vector of the ith electron. The
quantum mechanical average ⟨r2i ⟩ indicates that the effect crucially depends on
the spatial extension of the filled atomic shells. This expression assumes first-
order perturbation theory and zero absolute temperature. As the temperature is
increased above zero, states above the ground state become progressively more
important, but this is marginal effect. Diamagnetic susceptibilities are usually
temperature-independent.
By contrast, paramagnetism is associated with a positive susceptibility, so that

an applied magnetic field induces a magnetization aligning parallel with the
applied magnetic field, which caused it. The nonzero magnetic moment on an
atom is associated with its total angular momentum J=L+ S and is given by
Eq. (1.8). According to the Hamiltonian in Eq. (1.28), the energy of the atom in a
magnetic field B taking the direction of the z-axis is

E = gJ𝜇BmJ B, (1.30)

wheremJ =−J ,−J + 1,… , J − 1, J . Using themethods of statistical physics, one can
calculate the corresponding partition function, the free-energy thermodynamic
potential, and finally the magnetization, which takes the form

M = ngJ𝜇BJBJ (x), (1.31)

where n denotes the number of atoms in a unit volume, x= gJ𝜇BJB/kBT , and BJ(x)
is the Brillouin function given by

BJ (x) =
2J + 1
2J

coth
(
2J + 1
2J

x
)
− 1

2J
coth

(
x
2J

)
. (1.32)

At finite temperatures and for low magnetic fields, the Brillouin function can
be approximated by its Maclaurin expansion, BJ(x)= (J+1)x/3J +O(x3), and the
corresponding magnetic susceptibility is given by the formula

𝜒 = M
H

≈
𝜇0M

B
= C

T
, (1.33)

where C = n𝜇0gJ𝜇B
2J(J + 1)/3kB is the Curie constant and the expression amounts

to the Curie law predicting an inversely proportional dependence on temperature.
If J = 0 in the ground state, then there is no paramagnetic effect in first-order

perturbation theory. However, its second-order predicts a change in the ground-
state energy, because it takes account of excited states with J ≠ 0 being mixed in.
The ensuing correction to the susceptibility is positive, small, and temperature
independent, and is referred to as van Vleck paramagnetism.

1.6
Mechanisms of Magnetic Interactions

Magnetic solids may be classified into two basic, limiting models. The model of
localized moments coming from electrons residing in an atomic or ionic shell
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describes the magnetism of nonconducting materials. The other case is the ferro-
magnetism ofmetals, where the delocalized electronsmay be responsible for both
magnetism and charge transport. A bulk magnetic state with a long-range order
and collective behavior of magnetic moments below a certain critical temperature
Tc arises when there is a sufficiently strong magnetic interaction in the system.
Localized magnetic moments interact via exchange or dipolar forces, while in the
case of delocalized electrons, it is the exchange of spin-up and spin-down bands.
The different types of magnetic interactions are described below [1, 3].

1.6.1
Dipolar Interactions

Apart from all interactions of the quantummechanical origin itemized below, the
mutual correlations between spins are governed by the classic dipolar interaction
related to the field produced by particular magnetic moments. The energy of two
parallel magnetic dipoles 𝛍i and 𝛍j separated by the distance rij is

Edip = −
𝛍i•𝛍j[3cos2𝛼 − 1]

r3ij
, (1.34)

where 𝜃 is the angle between direction of the moments and the vector connecting
the dipoles. In opposite to exchange mechanisms, the dipolar interaction is long
range (∼r−3), it does not need the overlap of orbitals, and works through space.
Edip is usually three orders of magnitude smaller than the exchange energy; taking
𝜇 = 1𝜇B and r = 0.1 nm, one may expect magnetic order at Tc ≈𝜇2/r3 ≈ 1K.
However, if the magnetic system consists of N exchange-correlated spin
domains, dipolar forces may trigger magnetic ordering at a higher temperature of
Tc

′ ≈ (N𝜇)2/r′3 [4]. Dipolar interaction is strongly anisotropic and the resultant
energy depends on the shape of the object. Domain structure of ferromagnetic
materials is the result of the tendency to minimize the dipolar interaction energy.

1.6.2
Direct Exchange

The dominant interaction leading to the collective state with the long-range order
of localizedmagneticmoments in a solid is an exchange coupling. It is based on the
tendency of reducing the electrostatic energy through separation in space charges
of the same sign and on the Pauli exclusion principle for fermions, which states
that the two electrons in the same spatial state cannot be in the same quantum
state (say both spin-up). Consider the setup of two electrons with spins S1 and S2.
If the energy of the setup in the singlet state (resultant spin S = 0) is ES, and that of
the triplet state (resultant spin S = 1) is ET, then the so-called exchange integral is

Jex =
ES − ET

2
, (1.35)

and the spin dependent term inHamiltonian isHspin =−JexS1⋅S2. IfES >ET, the Jex
integral is positive and the magnetic coupling is ferromagnetic and the resultant
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Figure 1.3 Spatially symmetric bonding orbital of a diatomic molecule with antiparallel
spins and spatially antisymmetric antibonding molecular orbital.

spin S = 1; when ES <ET, the Jex integral is negative, and coupling is antiferromag-
netic with resultant S = 0.
In the system of many electrons, calculation of exchange integral is compli-

cated, asmutual interactions of all electron pairs should be accounted for. Carriers
of magnetic moments are spins of unpaired electrons residing on outer shell of
atoms or ions. These electrons occupy the orbitals in such a way that the ground
state adopts the highest value of the resultant spin that is allowed by the Pauli
exclusion principle (Hund’s rule). In a system of two or more atoms, the electrons
interact due to the spatial overlap of the orbitals (direct exchange). Various config-
urationsmay arise: for the nonzero overlap integral, the kinetic exchange evokes an
antiparallel alignment of spins, while in case of zero overlap integral, the poten-
tial exchange will tend the spins to align parallel. Figure 1.3 presents molecular
orbitals for a diatomic molecule. The spatially symmetric bonding orbital, corre-
sponding to the sum of the two atomic orbitals of energy E0, comprises a nonzero
electronic charge between the atoms. The electrons are coupled here antiparal-
lel, in line with the rule for the total wavefunction (product of the space and spin
components) for fermions, which should be antisymmetric. In general, the spa-
tially symmetric orbital has the lowest energy, this is why the most probable state
is a singlet with opposite spins. The spatially antisymmetric antibonding orbital,
corresponding to the difference of the two atomic orbitals, contains a nodal plane
with no charge between the atoms. For this case, the triplet state with parallel
spin alignment is possible on condition of charge separation. As wavefunctions of
electrons decay quickly with distance, exchange coupling decreases rapidly with
the distance between metal-ion centers (Jex ∼ r−10 [4]) and concerns mainly the
nearest neighbors.

1.6.3
Indirect Exchange – Superexchange

In systems in which direct exchange cannot be realized due to insufficient
overlap of magnetic orbitals, magnetic coupling may be mediated by orbitals of
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Figure 1.4 Superexchange interaction between metal ions mediated by the oxygen ligand.
Dependent on the M1–O–M2 angle, the resulting coupling is antiferromagnetic (a) or weak
ferromagnetic (b).

a nonmagnetic ligand (e.g., oxygen) located in between. It is the superexchange
interaction, which is responsible for the magnetic properties of the most of
magnetic materials, especially nonmetallic compounds, for example, oxides or
fluorides. Like in the direct exchange, the mechanism of superexchange has
two contributions: the weaker, potential one, which stabilizes ferromagnetic
ground state through the orthogonal orbitals, and the kinetic one, preferring the
antiferromagnetism, due to overlap of metal orbitals with ligand orbitals. The
energy of the coupling depends on the electron configuration of magnetic ions
and on the M1–O–M2 bond angle. The rules framed by Goodenough, Kanamori,
and Anderson help predict the resulting coupling. In the case of singly occupied
M1 and M2 3d obitals, one has (i) strong negative coupling when M1–O–M2
angle is equal to 180∘ (see Figure 1.4a); (ii) weak positive coupling for M1–O–M2
angle equal 90∘ (Figure 1.4b); and (iii) weak positive coupling occurs also if there
is an empty orbital of M2 of other symmetry than that of M1 [5]. The Hubbard
model describes the superexchange with energy U of Coulomb repulsion and
with a matrix element t for the virtual hopping of the oxygen 2p electrons. If
U ≪ t, then one gets a metallic state, while in the case of a large metal–ligand
distance, the ground state of the system is nonconducting (Mott–Hubbard
insulator).

1.6.4
Indirect Exchange – Double Exchange

In compounds in which magnetic ion occurs in two oxidation states, for example,
Fe2+ and Fe3+ or Mn3+ and Mn4+, magnetic coupling may be realized by means
of a real electron delocalization to the empty orbital of the neighbor. The hop-
ping of an extra electron of Fe2+ or of Mn3+ via the O-2p orbital proceeds without
the spin-flip of the hopping electron and results in the ferromagnetic coupling of
the two centers. This mechanism, called the double exchange, operates in Fe3O4,
La1−xSrxMnO3, or in the Prussian blue, and is associated with increase of conduc-
tivity. Such correlation of electric conductivity and ferromagnetism may result in
a significant magnetoresistivity.
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1.6.5
Indirect Exchange – Antisymmetric Exchange

Energy of the aforementioned exchange interaction does not depend on the direc-
tion of spins in the crystal lattice. In the structures where there is no inversion
symmetry on the line connecting magnetic ions of spins S1 and S2, the spin–orbit
interaction in one of them may give rise to the weak anisotropy in the exchange.
This contribution is the Dzyaloshinsky–Moriya (DM) interaction equal to

ĤDM = 𝐃•(𝐒𝟏 × 𝐒𝟐). (1.36)

The measure of the DM interaction is the D vector, perpendicular to the plane
determined by M1, M2, and ligand centers, and proportional to 𝜆, the spin–orbit
coupling constant. This interaction tends to align S1 and S2 perpendicularly
against D and against each other and a small canting of magnetic moments
may appear. It gives rise to the weak net moment in an antiferromagnet, like in
hematite 𝛼-Fe2O3 or in iron borate FeBO3. Figure 1.5 shows collinear and canted
spin arrangements. In general, the DM interaction favors a noncollinear ordering
of spins. It influences properties of multiferroics and low-dimensional elements
for spintronics.

1.6.6
Itinerant Exchange – RKKY Interaction

Another type of indirect exchange is active in metals, where conduction electrons
may mediate the interaction between localized magnetic moments of metal ions
(Ruderman, Kittel, Kasuya, and Yosida interaction). This type of coupling applies
mainly to lanthanides, in which the 4f shells are localized close to the nucleus.The
4f moments polarize spins of the 5d/6s itinerant electrons and this polarization
is transferred to the moment of the adjacent metal ion. The RKKY mechanism
depends on a density of states of conduction electrons and works on a long range.
The coupling is oscillatory and falls off as r−3

JRKKY ∝
cos(2kFr)

r3
, (1.37)

D = 0

(a) (b)

D ≠ 0

M ≠ 0
M1

M = 0

O

O

Collinear spins Canted spins

M2 M1 M2

Figure 1.5 (a) Collinear antiferromagnet in case of symmetric exchange; (b) canted
moments with weak net magnetization in case of Dzyaloshinsky–Moriya antisymmetric
exchange.
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Figure 1.6 RKKY coupling of localized moments mediated by the conduction electrons. The
interaction shows an oscillatory behavior.

where kF is the Fermi wave vector (see Figure 1.6). Depending on the distance
between the localizedmoments of magnetic ions, it may be ferromagnetic or anti-
ferromagnetic. RKKY interaction evokes the long-range magnetic order with the
variety of magnetic structures (ferromagnetic and antiferromagnetic, spiral, and
helical arrangements). Oscillatory exchange appears also between ferromagnetic
layers separated with the nonmagnetic one.

1.6.7
Magnetism of Itinerant Electrons

In the RKKY magnetic interaction, conduction electrons mediate the coupling
between the localized moments of the metal ions. Generally, in metals, magnetic
moments may come solely from itinerant electrons. Electrons are fermions and
occupy all states with wave vector k within the Fermi sphere |k|≤ |kF|, while the
energy of the highest occupied level at T = 0 is Fermi energy:

EF =
ℏ2k2

F
2me

. (1.38)

The density of states g(E) depends on electron energy as E1/2. Due to the Pauli
exclusion principle, each state can be occupiedwith two electrons of opposite spin
direction. As shown in Figure 1.7a, in the applied magnetic field, the energy of
one sub-band decreases, while it increases for the other. Only electrons from the
Fermi level will respond, as only these are able to change spin orientation. Thus,
the number of spin-up electrons (n↑) will differ from that of spin-down electrons
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Figure 1.7 (a) Density of states g(E) for itin-
erant electrons: at H≠ 0, the spin sub-bands
split, giving rise to Pauli paramagnetism. (b)
Relationship between the exchange constant

and ratio of the rab interatomic distance to
the radius of the 3d shell. (The Bethe–Slater
curve, after [5]).

(n↓), resulting in a net magnetization

M = 𝜇B(n↑ − n↓) = g(EF)𝜇2
BB (1.39)

and paramagnetic susceptibility, termed as Pauli paramagnetism

𝜒Pauli = 𝜇0g(EF)𝜇2
B =

3n𝜇0𝜇
2
B

2EF
, (1.40)

where n is the number of electrons per unit volume. Since EF is about 1 eV
(∼104 K), Pauli susceptibility is small and temperature-independent.
As remarked by Landau, besides the Pauli paramagnetism, there is a diamag-

netic term due to orbital contribution to the susceptibility. This is, however,
weaker than 𝜒Pauli.
The model of a free-electron gas used above is not accurate enough, as it does

not account for any interaction between the conduction electrons. However, in
transition metals, there is the exchange of the d-band electrons, which is the
source of magnetization. Under certain condition, the splitting of the spin-up and
spin-down sub-bands can occur spontaneously leading to the ferromagnetism.
The condition, known as the Stoner criterion, reads

Ug(EF) ≥ 1, (1.41)

where U is the Coulomb energy of interaction of the two sub-bands. Among the
3d elements, only iron, cobalt, and nickel fulfill the Stoner criterion and are fer-
romagnetic. It is mainly due to the large g(EF) density of states at the Fermi level.
On the contrary, as it follows from the Bethe–Slater curve (see Figure 1.7b), ferro-
magnetism is related to the large ratio of the interatomic distance rab to the radius
r3d of the 3d electron shell. The fingerprint of the band ferromagnetism is a non-
integral value of magnetic moment at saturation, 2.22𝜇B for Fe, 1.76𝜇B for Co and
0.61𝜇B for Ni and high Curie temperatures (1043, 1388, and 627K, respectively).
The 4f ferromagnet – Gd, hasTC = 293.4K. Palladium, forwhichUg(EF) is slightly
less than 1, exhibits only the enhanced Pauli susceptibility.
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1.7
Collective Magnetic State

A sufficiently strong interaction between magnetic moments sets off the sponta-
neous order of moments below a critical temperature Tc > 0. Different types of
ordering are met: ferromagnets, antiferromagnets, ferrimagnets, metamagnets,
spin glasses, and so on. The study published by Hurd [6] included also magnetic
behavior of amorphous systems and superparamagnets. Furthermore, one should
also mention systems with reduced dimensions, where shape anisotropy has an
essential influence on spin ordering and collective behavior. Magnetic moments
in magnets behave in a collective way and the order parameter decreases from
the maximum value at T = 0 down to zero at T =Tc. Exchange interaction,
which aligns the spins, is isotropic and does not decide on the orientation of
magnetization in the crystal. It is the magnetocrystalline anisotropy, caused by
the spin–orbit interaction, which determines an orientation of moments relative
to the crystallographic directions. Main types of arrangements of magnetic
moments in a bulk magnet are shown in Figure 1.8.

1.7.1
Models of Interaction and Dimension of the Lattice

Bulk magnetic systems are usually described with the Heisenberg model, which
assumes magnetic interactions between the nearest neighbors to be entirely
isotropic.The Hamiltonian of the magnetic interaction in this case takes the form

Ĥ = −2Jex
∑
i≠j

(Sx
i Sx

j + Sy
i Sy

j + Sz
i Sz

j ) (1.42)

(a) (b) (c)

(d)

(e)

Figure 1.8 Arrangements of magnetic moments in (a) ferromagnet, (b) antiferromagnet, (c)
spin glass, (d) helical structure, and (e) spiral structure.
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Table 1.2 Occurrence (+) or absence (−) of the long-range order at T ≠ 0 for dimensions of
the lattice and order parameter; ⊗ − Berezinsky–Kosterlitz–Thouless transition.

Dimension of the crystal lattice, d

Model d= 1 d= 2 d= 3

Ising D= 1 − + +
XY D= 2 − ⊗ +
Heisenberg D= 3 − − +

Source: After [7].

and spins are treated as three-dimensional vectors. Since, generally, the number D
of nonzero spin components may differ from three, the following models concern
three types of coupling:

a) D= 3, Heisenberg model, 𝐒 = [Sx, Sy, Sz]
b) D= 2, XY model, 𝐒 = [Sx, Sy]
c) D= 1, Ising model, 𝐒 = [Sz].

A measure of the degree of magnetic ordering below the critical point is the
order parameter. A good order parameter is the spontaneous magnetization; in
the Ising model, it is a scalar value. The aforementioned spins may reside on the
networks of different lattice dimension: d = 1, 2, 3. On the basis of the theoret-
ical analysis, it has been found that for the three-dimensional lattice (d = 3), the
long-rangemagnetic order at T ≠ 0may arise regardless of the dimension D of the
order parameter. Magnetic order is periodic, commensurate, or incommensurate
to the crystal lattice. In the two-dimensional system (d = 2, layer), the long-range
order is possible only for the Ising model, while for the XY case, transition to
the vortex state is possible (Berezinsky–Kosterlitz–Thouless transition). In the
one-dimensional network (d = 1, chain), the long-range order beyond T = 0 is not
possible at all. Table 1.2 provides the summary of these conclusions.

1.7.2
Ferromagnets

Themost prominent and important magnetic solids from the application point of
view are ferromagnets (e.g., Fe, Co, Ni, Gd, MnSb, EuO, SmCo5, and Nd2Fe14B),
the “strongly magnetic” materials, with spontaneous magnetization due to the
parallel alignment of spins (Figure 1.8a). Ferromagnetic samples consist of
domains in which magnetization reaches its saturation. Orientation of domains
and their shapes are governed by the dipolar forces trying to reduce the mag-
netostatic energy. Orientation of magnetization in the domain depends on the
magnetocrystalline anisotropy.
A phenomenological model of ferromagnets was proposed byWeiss within the

molecular field theory [1, 3]. Magnetic interactions in the ordered systems are rep-
resented as an effective field Heff acting on each local moment, in addition to the
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external field H . All magnetic ions face the same Heff, which is proportional to the
averagemagnetizationM,Heff = 𝜆M, where𝜆 is themolecular field constant. Tem-
perature dependence of the magnetization can be calculated by the simultaneous
solution of the two equations:

M = NAgJ𝜇BJBJ (y) (1.43)

and

y = JgJ
𝜇B(H + 𝜆M)

kBT
, (1.44)

where BJ(y) is the Brillouin function defined in Eq. (1.32) and J , gJ, and 𝜇B are the
same as defined in Section 1.1. In zero external field, the nonzero magnetization
can be obtained below the critical temperature (Curie temperature):

TC =
gJ𝜇B(J + 1)𝜆Ms

3kB
. (1.45)

The relevant temperature dependence of M/Ms at H = 0 for different values of
total angular momentum J is shown in Figure 1.9. At T >TC, the system is in the
paramagnetic state.When the external field is nonzero,magnetization around and
above TC grows, while the phase transition disappears. In the limit H → 0 and
small value of y argument, the following approximation is valid

M
Ms

≈
gJ𝜇B(J + 1)

3kB

(H + 𝜆M
T

)
=

TC
𝜆Ms

(H + 𝜆M
T

)
, (1.46)

from which an expression for a paramagnetic susceptibility is obtained:

𝜒 = lim
H→0

M
H

=
TC

𝜆T
(
1 − TC

T

) =
TC
𝜆

T − TC
= C

T − TC
, (1.47)
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Figure 1.9 Temperature dependence of the relative magnetization M/Ms for different values
of total angular momentum J. (After [3].)
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which is known as the Curie–Weiss law. In general, instead of TC, a symbol 𝜃 is
used for theWeiss temperature, which, depending on dimensionality of the lattice
and anisotropy, may differ from TC.
On the basis of the experimentally determined TC, the molecular field can be

estimated. Taking TC of iron (∼103 K) and J = 1/2, one gets Heff = 𝜆Ms ≈ 1500T,
which is an extremely high value. In order to relate it to the exchange integral, we
assume that the exchange interaction is active only between the z nearest neigh-
bors and is represented with the integral Jex. From the equation

Heff = 2
gJ𝜇B

zJexS (1.48)

and Ms =NAgJ𝜇BJ , we obtain

𝜆 =
2zJex

NAg2J 𝜇
2
B
. (1.49)

Thus, in view of Eq. (1.45), TC is a linear function of the exchange interaction.
A distinctive feature of a large number of ferromagnets is the irreversible (with

respect to an imposed magnetic field) process of magnetization and a hystere-
sis loop (see Figure 1.14a in Section 1.8) [8]. Applying external field H to the
unmagnetized material evokes first domain walls motion, while in stronger field,
a rotation of magnetization toward the field direction occurs up to saturation at
H =Hs, when M(Hs)=Ms. When H is reduced to zero, magnetization does not
vanish, M(H = 0)=MR (MR – remanent magnetization), while only at the field
Hc (Hc – coercive field) oriented in opposite direction, M disappears. When the
applied field is parallel to the so-called easy axis, magnetization of saturation is
achieved at the smallest Hs. The main term of the anisotropy energy is

Ean = Kusin2𝜑, (1.50)

where𝜑 is the angle betweenM and the easy axis and Ku is the uniaxial anisotropy
constant, which depends on the symmetry of the crystal and temperature. The
domain walls in strongly anisotropic magnet are narrow, while those in weakly
anisotropic magnet are broad.This difference is reflected in the shape of the M(H)
curve and the value of Hc, which is proportional to Ku.

1.7.3
Antiferromagnets

In antiferromagnets (e.g., 𝛼-Fe2O3, Cr2O3, CoO, MnO, and LaFeO3), the inter-
action between magnetic moments is negative and their alignment is antiparallel
(Figure 1.8b). Magnetic lattice is divided into two (or more) sublattices in such a
way that their net magnetization is zero, that is,M1 =−M2. Molecular field on the
sublattices is H1 =−|𝜆|M2 and H2 =−|𝜆|M1, with the negative molecular field
constant, 𝜆< 0. Magnetization on each sublattice is given by the same expres-
sion as that of a ferromagnet (Eq. 1.45), with |𝜆| instead of 𝜆. The M1 and M2
follow the same temperature dependence, and going toward higher temperatures
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the long-range magnetic order disappears at the Néel temperature, TN, which is
expressed as

TN =
gJ𝜇B(J + 1)|𝜆|Ms

3kB
. (1.51)

Furthermore, expression for magnetic susceptibility in the molecular field
approach is similar to that of a ferromagnet (Eq. 1.46) with the difference that
−TC is replaced by +TN. The Curie–Weiss formula for the susceptibility in the
paramagnetic state is common for ferromagnets and antiferromagnets, which is
expressed as

𝜒 = C
T − 𝜃

, (1.52)

where 𝜃 > 0 for ferromagnets and 𝜃 < 0 for antiferromagnets.
Figure 1.10 presents the Curie–Weiss law in three forms, i.e. the temperature

dependence of 𝜒 , 𝜒−1 and 𝜒T, where the last function in the high temperature
range (T–𝜃) is proportional to the square of the effective magnetic moment (see
Eq. (1.18)).
Equation (1.52) should be completed with the diamagnetic contribution,

especially important for organometallic substances, and with the temperature-
independent paramagnetic (TIP) term, allowing for excited states of the system
(van Vleck paramagnetism) and/or contribution from free electrons (Pauli
paramagnetism). All of these are small and nearly independent on temperature,
one uses therefore the modified Curie–Weiss law:

𝜒 = C
T − 𝜃

+ 𝜒0. (1.53)

Magnetic susceptibility of antiferromagnets depends on the direction of the
applied field. Field H perpendicular to the sublattice magnetization invokes rota-
tion of M1 and M2 against the molecular field and the susceptibility 𝜒⊥ does not
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Figure 1.10 Three forms of the Curie–Weiss
law for paramagnets: (a) magnetic suscep-
tibility 𝜒 , (b) reciprocal susceptibility 1/𝜒 ,
(c) 𝜒T . Data of noninteracting moments
(𝜃 = 0), ferromagnetic (FM, 𝜃 = T t > 0), and

antiferromagnetic (AFM, 𝜃 =−T t < 0) interac-
tion are shown. Transition to the long-range
order occurs at the temperature T t, only
paramagnetic region is shown.
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Figure 1.11 (a) Temperature dependence of the magnetic susceptibility for an antiferromag-
net (see text). (b) Different types of magnetization curves for an antiferromagnet; Ha is an
anisotropy field, Hc is a critical field to reach saturation.

depend on temperature (𝜒⊥(T)=𝜒⊥(TN)). On the contrary, susceptibility in par-
allel field, 𝜒 ||, at T = 0 is zero and increases with temperature to reach 𝜒⊥. As
shown in Figure 1.11a, for a polycrystallinematerial, the average value is obtained:

𝜒poly =
1
3
𝜒|| + 2

3
𝜒⊥. (1.54)

Magnetocrystalline anisotropy of the energy about 102 times smaller than the
exchange influences also a shape of the magnetization curve of an antiferromag-
net. Figure 1.11b shows types of magnetization curves for different values of
an anisotropy field. Depending on the anisotropy, magnetization of saturation
(Ms = 2M) may be reached through: (i) gradual rotation of moments against the
negative exchange interaction, (ii) reorientation of the spin axis at H1 followed by
rotation (spin flop), or (iii) an abrupt direct reversal of one sublattice (spin flip).
The last case presents the field-induced transition to the ferromagnetic state and
concerns the systems called metamagnets. Metamagnetism is common in the
layered compounds (e.g., FeCl2 and CoCl2), where antiferromagnetic interaction
occurs between the ferromagnetically coupled layers.
It is important to note that antiferromagnetic ordermaynot only be the collinear

one; cancellation of a net moment occurs also for spiral and helical structures, as
it takes place in rare earth metals [9].

1.7.4
Ferrimagnets

Ferrimagnet is a system of nonequivalent sublattices coupled by the antiferromag-
netic interaction. In the sublattices, values of magnetic moments or the number
of magnetic ions may differ and thus the substance will have a net magnetiza-
tion. Similar to ferromagnets, the ferrimagnetic materials show hysteresis and
saturation of magnetization. Due to the different molecular field affecting each
sublattice, the temperature dependence of particular sublattices may vary and the
resultantmoment can show a compensation point atTcomp <Tc. AtT=Tcomp, the
total magnetization vanishes, yet for T >Tcomp, it appears and then vanishes at
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Figure 1.12 Magnetic coupling in ferrimagnetic Fe3O4.

T =Tc. Susceptibility in the paramagnetic state does not follow the Curie–Weiss
law, one can roughly estimate the Weiss temperature 𝜃 only from data at T ≫Tc.
Ferrimagnetic order appears in a large group of oxides. Ferrites, MeO⋅Fe2O3

(Me – 3d metal), which are usually insulators, crystallize in the spinel structure.
The most famous ferrite is magnetite Fe3O4, Tc = 858K, the first-known mag-
netic material. The Fe3+ ions (S = 5/2) occupy equally tetrahedral and octahedral
lattice sites, while the Fe2+ ions (S = 2) occupy solely the octahedral sites.The dou-
ble exchange aligns Fe2+ and Fe3+ moments in parallel, but the superexchange
through the oxygen ligand couples the octahedral and tetrahedral sublattices anti-
ferromagnetically. As shown in Figure 1.12, the netmoment comes only fromFe2+.
Spinel ferrites show low dependence of magnetization on crystallographic direc-
tions, and have low coercive fields.
In ferrimagnets of the garnet cubic structure, R3Fe5O12 (R is yttrium or rare

earth element) or in hexagonal BaFe12O19, valence of the iron is Fe3+; however,
the number of moments in the tetrahedral sites differs from that in the octahedral
sites.

1.7.5
Spin Glasses

In contrast to long-range ordered magnets, spin glasses are the systems in which
interactions between the moments of nearest neighbors, both positive and neg-
ative, are random. The feature of a spin glass (SG) is disorder and competition
of interactions (frustration). Due to frustration, spins have no preferential ori-
entation and the system, as a whole, is not able to simultaneously minimize its
energy in the whole volume. Geometric frustration in a triangular or Kagomé lat-
tice with antiferromagnetic interactions leads up to spin fluctuation (spin liquid)
and is insufficient for the formation of a spin glass. In turn, a random frustration,
connected with a disorder in the occupancy of sites or bonds, leads to the spin
glass magnetic collective state below the characteristic freezing temperature, T f.
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First-spin glasses were diluted alloys of a magnetic metal in a nonmagnetic
matrix, for example, CuMn or AuFe. Concentration of a magnetic component is
here too low for long-range interactions, but short-range interactions through
the conduction electrons are possible. In nonconducting compounds, the spin
glass phase appears when positions in a crystal lattice are occupied at random
by magnetic and nonmagnetic ions, and ferromagnetic and antiferromagnetic
couplings are equivalent, like in (Eu0.80Sr0.20)S and Rb2Cu1−xCoxF4.
Experimental evidence of the spin glass phase is as follows [10]:

• “Cusp”-shaped anomaly in the differential (AC – alternating current) magnetic
susceptibility at the freezing temperature T f; in the limit of the frequency of the
AC field f→ 0 and T f →Tg, where Tg is the glass transition temperature.

• The “S” shape of the hysteresis loop of magnetization and a small remanence,
which decreases with time.

• Dependence of magnetization on the measurement scenario (“history” of
the sample): difference in MZFC (zero-field cooling) and MFC (field cooling)
magnetization branches in such a way that (i) the FC branch is reversible and
MFC(T <T f)=MFC(T = 0) and (ii) MZFC is irreversible and relaxes up to MFC.

Due to the competition of magnetic interactions, dynamics of magnetization
in spin glasses is complex. An important feature is a wide distribution of relax-
ation times and a dramatic increase of the average relaxation time upon cooling.
It was found that the temperature T f of the “cusp” anomaly observed in the AC
susceptibility measurements depends on the frequency f of the alternating field
and increases with f according to the Vogel–Fulcher formula:

f = f0 exp
(
−

Ea
Tf − T0

)
, (1.55)

where f 0 ≈ 1013 s, Ea is the activation energy, and T0 describes the interaction
between the spin clusters formed during the cooperative SG transition.
The mean field model of the spin glass formulated by Sherrington and Kirk-

patrick [11] concerns an infinite Ising spin system. In this approach, distribution of
exchange interactions is given by J0 – the average exchange integral and ΔJ – the
exchange deviation. As shown in Figure 1.13a, dependent on the J0/ΔJ ratio, three
possible transitions on the temperature decrease are expected:

i. paramagnet→ spin glass (P→ SG)
ii. paramagnet→ ferromagnet (P→ FM)
iii. the twofold transition: paramagnet→ ferromagnet→ spin glass (reentrant

spin glass – RSG)

The analysis of the SG phase diagram in the applied magnetic field has shown
that the temperature of the paramagnet→ spin glass transition decreases with the
field increase according to T f(H = 0) – T f(H ≠ 0)≈H2/3. This is the so-called de
Almeida–Thoules irreversibility line. In general, two irreversibility lines are pos-
sible: the one for freezing transverse spin components (Gabay–Toulouse line) and
the other for freezing the longitudinal spin components of the field dependence
given above (see Figure 1.13b).
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Figure 1.13 (a) Schematic Sherrington–Kirkpatrick phase diagram; (b) H–T mean field phase
diagram for spin glass showing the freezing lines of longitudinal and transverse spin com-
ponents (for details, see text).

1.7.6
Superparamagnets

Superparamagnetic properties arise when the size of the magnetic particles is
reduced down to the critical value ds ≈ 2Jex1/2/Ms (ds ≈ 1–100 nm) when division
into domains would not lower the energy. Thus, the particle is the single-domain
and has an enormous magnetic moment of ≥103𝜇B. There is no hysteresis when
the system gets magnetized and the M(H) curves measured at different tempera-
tures as the function of H/T are the same. Magnetic susceptibility at high temper-
atures follows the Curie law, like in paramagnets but on the temperature decrease
it stops and at the so-called blocking temperature, TB, falls down to zero. Such
behavior is due to the strong increase in the response time of the sample to the
magnetic field change.
Let us analyze the temperature dependence of the relaxation time for the single-

domain particle. Due to the magnetocrystalline anisotropy or shape anisotropy,
only up and down orientations of magnetization are possible. The energy barrier
ΔE for the orientation change is a product of the anisotropy constant K and parti-
cle volume V . Relaxation of magnetization is exponential (M(t) = M(0) exp

(
t
𝜏

)
)

and is thermally activated, therefore magnetization changes at high temperatures
are quicker but slow down on cooling. The relaxation time is given by

𝜏 = 𝜏0 exp
(

ΔE
kBT

)
= 𝜏0 exp

(
KV
kBT

)
, (1.56)

where 𝜏0 ∼ 10−9 s. The value of 𝜏 depends not only on temperature, but also on
the volume and anisotropy of the particles. For example, the relaxation time of
the cobalt particle of diameter 6 nm at room temperature is< 10−1 s, while in case
of 12-nm diameter it is about 1 year. Experimental methods used to investigate
magnetic relaxation (magnetometry, Mössbauer, neutron scattering, muon
spin rotation, etc.) operate in different time windows. If one assumes 𝜏 = 100 s
as an upper limit of the experimental observation time, then the exponent in
Eq. (1.56) is KV /kBT = 25, while the temperature for which the relaxation time
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of the given particle would exceed 100 s, will be called the blocking temperature
TB =KV /25kB. At T <TB, magnetic moments of the particles are in the blocked
state and magnetization is irreversible (hysteresis loop). At T >TB, the particles
are in the superparamagnetic state, magnetization is reversible, and there is no
hysteresis loop. Detailed analysis of the relaxation for an exact system of particles
is a complex task. Different mechanisms of relaxation have to be allowed and the
distribution of particle size, as well as a possible interparticle coupling should be
taken into account.

1.8
Applications and Research

Magnetic materials are used in numerous and miscellaneous applications. The
benchmark for using a given material is the shape of the hysteresis loop mea-
sured at room temperature. Materials with highest ordering temperatures are of
the main interest. Figure 1.14a shows schematically the M(H) dependence for a
ferromagnet (or ferrimagnet), where Ms is the magnetization of saturation, MR
is the remanence, and coercivity Hc is the reverse field needed to bring down
magnetization to zero.The Ms is an intrinsic feature that reveals the spontaneous
magnetization, which exists within a domain of a ferromagnet.The MR and Hc are
the extrinsic properties, which depend on the microstructure of the sample, size
of grains, defects, thermal history, and field-sweeping rate.The area under the full
hysteresis loop is a measure of the energy needed to reverse the magnetization.
Dependent on the shape of the loop, two main categories of magnetic materials
are defined: soft magnets (easy to magnetize and demagnetize, small energy dis-
sipated) and hard magnets (large energy dissipated). Soft magnetic materials have
small magnetocrystalline anisotropy and small coercivity field (Hc < 125Oe) and

H
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Ni–Fe
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Figure 1.14 (a) Schematic shape of a hysteresis loop: Ms – magnetization of saturation,
MR – remanence, and Hc – coercivity; (b) approximate market share of the main types of
applied magnetic materials. (After [3].)
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are used in transformer cores, motors, and generators. A standard soft magnet is
the nickel–iron alloy called permalloy with Hc ≈ 10−2 Oe.
Hard magnets, referred as permanent magnets, have large coercive field

Hc > 5 kOe due to large anisotropy and domain wall pinning. Due to large
remanence, they generate magnetic field and are used in motors, generators,
loudspeakers, actuators, and holding devices. The important materials here are
ferrites, for example, Ba2Fe12O19, or rare earth compounds, such as Sm–Co alloys
or Nd2Fe14B with Hc of about 12 kOe. Materials with an intermediate coercive
field, 125Oe<Hc < 5 kOe, are used for magnetic recording. Fine particles of Fe
or Co-doped 𝛾-Fe2O3 are used for flexible recording media, while thin films of
Fe–Ni or Fe–Co alloys are applied in write/read heads. An approximate market
share of main types of applied magnets is shown in Figure 1.14b.
In order to achieve the best performance materials, investigation of the effect

of microstructure, grain boundaries, texture, and other factors of magnetization
reversal processes are performed. It appears that mixedmultiphase and/or nanos-
tructured magnets may offer new, promising properties. Research on “stronger,
lighter, and more energy-efficient” magnetic materials has been reviewed [12].
It is known that ferromagnetic materials may show a considerable change of

various physical properties upon an applied magnetic field. There are magnets
showing magnetoelastic, magnetocaloric, magneto-optic, magnetoelectric, and
magnetotransport effects, which may be used as sensors. Of special importance
is a phenomenon of a giant magnetoresistance (GMR) appearing in mag-
netic/nonmagnetic multilayers coupled by the RKKY interaction. They are used
in hard disk drives and random-access memory cells, which have significantly
increased the density of information stored. GMR is explained in terms of
two components (with spin-up and spin-down) of electric current. It assumes
different mobilities, mean free paths, and hence different resistances of the
components, which decrease the resistivity of the field-aligned multilayers.
Magnetic nanoscale materials also show other interesting effects in addition to

the GMR.When at least one of the dimensions is diminished down to nanometers
(1–100 nm), that is, a characteristic magnetic or electrical length scale, changes
in anisotropy, remanence, Curie point, conductivity, and other properties occur.
Investigation of nanostructuredmagnets is a very active area of research. Stacks of
thin films are the base ofmodernmagnetic sensors andmemory elements; systems
with two nanoscale dimensions are nanowires or nanorods, which may be used in
electronics, magnetic recording, or biomedicine; if all three dimensions are con-
fined down to nanometers, one deals with superparamagnetic nanoparticles (see
above), widely applied as magnetic recording media and in medicine for diagnos-
tics and targeted therapy. Related to the nanoscale magnetism is magnetism of
the molecule-based materials, an important and promising interdisciplinary area
of research [13].
Discovery of GMR entered a new, interdisciplinary field of research –

spintronics. Spintronics joins magnetism with electronics, in contrast to con-
ventional electronics, dealing solely with the electron charge. It is believed that
manipulating spin polarization ofmobile electrons bymeans ofmagnetic field will
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offer an enhanced functionality, higher speed, and reduced power consumption
of the devices [14]. Materials used in spintronics are films of conventional 3d
metals and alloys, half-metals with electrons of only one spin polarization at
the Fermi level such as CrO2 or La1−xSrxMnO3 (LSMO). It was found that spin
lifetimes and diffusion lengths are much longer in semiconductors than they
are in metals [3]. Another interesting and successful approach is using organic
[15, 16] and molecular [17] components into spintronic systems. The important
features of the spin transport in organic and molecular materials are convenient
values of the spin diffusion length and the spin relaxation time due to the very
small spin orbital coupling in carbon-based compounds.
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