
According to the van der Waals theory, oil and water
shouldn’t separate and surfactants shouldn’t form

membranes, but they do . . . . Such behaviors are
crucial for life as we know it to exist.

—Jacob Israelachvili
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Intermolecular Forces

In nanoscale systems, multiple chemical interactions are involved. For example, let
us consider a dispersion of nanoparticles, shown in Figure 1.1. The glass vial in the
image holds a liquid in which small solid particles (approximately 80 nm in diam-
eter) are suspended. The nanoparticles shown in Figure 1.1 are composed of silver
(Ag), which are known to exhibit special optical properties such as enhanced scat-
tering and absorbance. The nanoparticles remain suspended in the liquid because
they are coated with a layer of organic molecules, called polymers. What kinds of
chemical interactions occur in this nanoscale system?

First, we can identify the chemical bonds that make up the different states of mat-
ter in the system. These include the bonds that hold the Ag atoms together within the
core of the nanoparticle. Likewise, we can consider the chemical bonds within each
molecule of liquid and any other molecules present in the system. Interatomic forces
are responsible for the chemical bonds that hold atoms together to form molecules
and solids. These include ionic, covalent, and metallic bonds – the so-called “strong”
bonds. We will cover the formalization of these bonding models in later chapters. As
we will find out, these bonds occur over short distances (a few angstroms) and are
often highly directional.

But what about the chemical interactions that allow the nanoparticles to remain
suspended in the liquid? What about the interaction between nanoparticles? Or
the interaction between a molecule of liquid and a nanoparticle? Or between
two molecules of liquid? Intermolecular forces are responsible for these “weak”
or secondary bonds that occur between molecules, particles, and surfaces. The
bonds that result from intermolecular forces lack specificity, stoichiometry, and
directionality. These forces can also result in interactions that occur over long
distances – much longer than interatomic bond lengths.

As we will see throughout Chapter 1, intermolecular forces play an important
role in dictating materials and molecular behavior at the nanoscale. We will cover
five different types of intermolecular forces: electrostatic, hydrogen bonding, van der
Waals (vdW), hydrophobic, and steric forces. For each of these, we will derive and
discuss their universal force laws. We will also discuss the differences between these
forces for molecules versus nanoscale objects. Finally, we will develop an under-
standing of how potential energy diagrams can be used to predict the overall inter-
molecular interactions between two objects as a function of separation distance.

Chemical Principles of Nanoengineering, First Edition. Andrea R. Tao.
© 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.



8 1 Intermolecular Forces

Figure 1.1 A vial of Ag
nanoparticles suspended in
liquid.

This knowledge will be applied toward understanding the behavior of nanosystems
ranging from atoms and molecules (e.g. DNA and polymers) to particles and other
nanomaterials (e.g. liposomes, metal nanoparticles, C60).

1.1 The Pairwise Potential

Intermolecular forces can lead to attraction or repulsion between atoms, molecules,
particles, and surfaces, and contribute significantly to how nanoscale materials and
systems behave. These forces are classified as conservative forces, meaning that they
satisfy the relationship:

F = −dV(r)
dr

(1.1)

where F is the force, V(r) is the potential energy of the object, and r is distance.
Because of this relationship, potential energy can be used as a descriptor of whether
the force between two objects is attractive or repulsive.

We often consider pairwise potentials that describe V(r) as a function of sep-
aration distance to determine attraction or repulsion. For example, two possible
pairwise potentials between two spherical particles of radius Rs are depicted in
Figure 1.2.

In a closed system, objects at equilibrium will move into a position that minimizes
the total potential energy. Thus, in the pairwise potential on the left, the two
objects repel each other since V(r) becomes increasingly positive as the objects
approach each other. In the pairwise potential on the right, the two objects attract
each other since V(r) becomes increasingly negative as the objects approach each
other.
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Figure 1.2 Examples of two pairwise potentials showing repulsive (left) and attractive
(right) interactions between approaching spherical particles.

Worked Example 1.1
Question: Consider a volume of liquid-dispersed nanoparticles with separation dis-
tance, r, that behave according to the following pair potential:

V(r) = e− r∕2

Plot the force curve for two approaching nanoparticles and determine whether
you expect the nanoparticles to stay dispersed or aggregate in the liquid at room
temperature.
Answer: First, we can derive the expression for the force between two approaching
quantum dots:

F = −dV(r)
dr

= − d
dr

(
e−r∕2

)
= 1

2
e− r∕2

Plotting F(r) gives Figure 1.3:

Figure 1.3 Force curve.
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Figure 1.4 An example of
a pair potential where the
attractive and repulsive
forces cancel each other
out, leading to a potential
well or energy minimum.
The energy minimum in
this plot corresponds to the
equilibrium of the system.

Since F(r) is always positive, the force between the nanoparticles is purely repul-
sive and increases in magnitude as r → 0. Thus, we expect the nanoparticles to repel
each other and remain dispersed in the liquid.

In most nanoscale systems, multiple intermolecular interactions contribute to the
behavior of a given object. Equilibrium is achieved when the net force acting on the
object is zero. Consider the pair potential shown in Figure 1.4. There is a strong
repulsive potential for small values of r and a strong attractive potential at large val-
ues of r. At an intermediate value of r, the attractive and repulsive forces are perfectly
balanced. Equilibrium is achieved at this energy minimum, where the slope of the
pair-potential curve is equal to zero:

F = −dV(r)
dr

= 0 (1.2)

At equilibrium, a small perturbation of the system will result in the system being
restored to the energy minimum. For example, consider what would happen if the
two spheres at equilibrium were pulled apart and we increased r by a small amount:
the negative force acting on the spheres would bring the spheres back toward each
other and lower V(r). Similarly, if we pushed the two spheres closer together and
decreased r by a small amount, the positive force acting on the spheres would pull
the spheres away each other and lower V(r). For this reason, the energy minimum
shown in Figure 1.4 is also referred to as the stable equilibrium or a potential well.
Note that an equilibrium point corresponding to an energy maximum corresponds
to an unstable equilibrium.

Worked Example 1.2
Question: Consider two nanoscale objects with a separation distance, r (in nm), and
whose interaction energy is described by the following pair potential:

V(r) = −10
r

+ 1
r3
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Determine whether or not the two objects can interact and reach a stable equilib-
rium and the separation distance for which equilibrium occurs.
Answer: First, we can recognize that the pair potential consists of an attractive term
(−10/r) and a repulsive term (1/r3). Equilibrium occurs when the forces associated
with these two potential terms cancel each out.

F = −dV(r)
dr

= 0

= − d
dr

(
−10

r
+ 1

r3

)
= −10

r2 + 3
r4

Thus, we can solve for r:

r = (3∕10)1∕2 ≈ 0.55 nm

The objects reach a stable equilibrium at r = 0.55 nm because this corresponds to
a minimum in the potential energy diagram.

The pair potential discussed above provides a simple example of how we can use
energy and force curves to understand how a nanoscale system will behave (e.g.
whether it will be in or out of equilibrium). This will depend entirely on whether
an interaction is repulsive or attractive, which in turn is dependent on the strength
and distance dependence of each contributing intermolecular interaction. Table 1.1
lists the scaling laws for several different types of intermolecular forces. In the fol-
lowing sections, we will learn about these various intermolecular forces and their
corresponding force and energy scaling laws.

1.2 Electrostatic Interactions

Electrostatic interactions, which are generated by the electric force between charges,
account for a number of interaction geometries found in nanoscale systems. These
include:

Table 1.1 General relationships between interaction geometries and separation distance.

Geometry of interaction Type of interaction Distance dependence

Ion–ion Electrostatic 1/r
Ion–dipole Electrostatic 1/r2

Dipole–dipole Electrostatic 1/r3

Hydrogen bond Electrostatic 1/r2

Two atoms van der Waals 1/r6

Atom–surface van der Waals 1/r3

Sphere–sphere van der Waals 1/r
Sphere–surface van der Waals 1/r
Surface–surface van der Waals 1/r2
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● ion pairs
● ion–dipole and dipole–dipole interactions
● dative bonds, where a molecule is coordinated to a metal center
● 𝜋–𝜋 bonding.

The electric forces in the above interactions are all governed by Coulomb’s law,
which states that for two bodies with charges Q1 and Q2 and separated by a distance,
r, the potential energy of interaction is:

V(r) =
Q1Q2

4𝜋𝜀𝜀or
(1.3)

The corresponding electric force is given by:

F = −dV(r)
dr

=
−Q1Q2

4𝜋𝜀𝜀or2 (1.4)

where the constant 𝜀 is the relative permittivity of the medium surrounding the bod-
ies and 𝜀o is the vacuum permittivity. Note that Q1 and Q2 can be designated as
positive or negative, where like charges are repulsive (resulting in a positive V(r))
and dislike charges are attractive (resulting in a negative V(r)). Permittivity can be
thought of as the charge capacitance of a material, where a material with a large 𝜀

value is able to store more of the electric field. A medium with a high permittivity
decreases the electrostatic force that is generated from Q1 and Q2 since it can more
effectively screen the two charged bodies from each other.

Worked Example 1.3
Question: Calculate the interaction potential for a Na+ ion and Cl− ion in water with
a separation distance of 100 and 0.1 nm. At 20 ∘C, water has a relative permittivity
of 𝜀 = 80.2.
Answer: Each ion has a charge of +/− e. Plugging this into Coulomb’s law, we get

V(r) =
Q1Q2

4𝜋𝜀𝜀or
= (+1)(−1)(1.602 × 10−19 C)2

4𝜋(80.2)
(

8.85 × 10−12 C2

J ⋅ m

)
r

= −2.88 × 10−30 J ⋅ m
r

= −28.8 × 10−24 J for r = 100 nm

= −28.8 × 10−21 J for r = 0.1 nm

It can sometimes be helpful to look at binding energies in units of kJ/mol to com-
pare these values to average bond energies:

V(r) = −0.017 kJ
mol

for r = 100 nm

V(r) = −17 kJ
mol

for r = 1 nm

For comparison, the covalent Cl—Cl bond in Cl2 is ∼240 kJ/mol, over one order of
magnitude higher than the binding energy for our electrostatic interaction at 0.1 nm.
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Figure 1.5 Schematic of a
spherical particle with a
uniform shell of negative
charge immersed in an
electrolyte solution.

Electric fields that occur in a medium containing free charges (e.g. blood or elec-
trolytes such as a salt solution) undergo electrostatic screening. For example, con-
sider a spherical nanoparticle with surface charge, −Q, shown in Figure 1.5.

In an electrolyte solution, such as an aqueous solution of NaCl, the ionic charge
distribution near the nanoparticle surface becomes much more concentrated
compared to the bulk electrolyte. Positively charged ions (e.g. Na+) are attracted
to the negatively charged nanoparticle, causing an increase in ion concentration
near the nanoparticle surface. The mobile charges in the electrolyte effectively
reduce the overall electric field generated by the charged nanoparticle. The screened
electric field decays exponentially according to the following relationship:

V(r) = Voe−r∕𝜆D (1.5)

where the term 𝜆D is called the Debye length and r is distance from the nanoparticle
surface. 𝜆D is a characteristic persistence length for the electrostatic effect and can
be calculated using the formula:

𝜆D =

√
𝜀𝜀okBT

2NAe2 ∑ ciz2
i

(1.6)

where e is the elementary charge, i is the number of different types of ions, c is the
concentration of each ion, and z is the valence of each ion. An electrolyte such as an
aqueous solution of NaCl is considered symmetric (since the number of Na+ ions is
equal to the number of Cl− ions) and monovalent (since z = 1 for both ions). For a
solution of NaCl, the formula for 𝜆D can be simplified to:

𝜆D(m) =

√
𝜀𝜀okBT
2NAe2C

(1.7)

where C is concentration of the dissolved NaCl in molar units (M). Thus, we see that
both an increase in the electrolyte concentration and an increase in the ion valence
serve to reduce 𝜆D and more effectively screen electrostatic interactions. Debye
lengths for standard electrolyte solutions tend to be between 1 and 100 nm. Because
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the dimensions of nanomaterials are on the order of these Debye lengths, electrolyte
concentration can have a profound impact on the electrostatic interactions of
nanomaterials.

Worked Example 1.4
Question: Calculate 𝜆D for a nanoparticle dispersed in 1 and 10 mM aqueous solu-
tions of NaCl, and compare the screened electric field, V(r), for both cases.
Answer: We can plug this electrolyte concentration directly into the formula
for 𝜆D:

𝜆D(m) =

√
𝜀𝜀okBT
2NAe2C

=

√√√√√√ (80.2)
(

8.85 × 10−12 C2

J ⋅ m

)(
1.38 × 10−23 J

K

)
(293 K)

2(6.02 × 1023)(1.602 × 10−19 C)2
(

10−3mol
l

)(
103l
m3

)
= 9.6 × 10−9 m = 9.6 nm for 1 mM NaCl

Similarly, we can plug in C = 10 mM to obtain 𝜆D = 3.0 nm. We can compare the
electric field potentials for the two concentrations by plotting V(r)/V o as a function
of distance (Figure 1.6).

Figure 1.6 Change in
electric field potential for
varying electrolyte
concentration.

We see that for 10 mM NaCl, nanoparticle charge will be more effectively shielded
and the electric field decays much closer to the nanoparticle surface. Note that
the Debye length is only dependent on the medium and not the properties of the
nanoparticle.

In many nanoscale systems, we must consider the additive effects of multiple pairs
of electrostatic interactions. For example, the total binding energy of an ionic solid – a
material held together almost entirely through electrostatic ionic bonds – can be
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Figure 1.7 Three examples of how surface charge can be generated on nanostructures.

calculated by summing up all of the ion-pair potentials in the solid. If we wanted
to calculate the binding energy in 1 M of table salt (NaCl), we could do so by sum-
ming up all ion-pair potentials involving Na+ and Cl− ions in the NaCl crystal lattice.
Note that this would include both the electrostatic interactions for attractive Na+/Cl−
pairs and repulsive Na+/Na+ and Cl−/Cl− pairs.

We can also use summation to calculate how electrostatic interactions contribute
to the overall binding energy between two charged nanostructures or nanopar-
ticles. However, we must take two major differences into consideration. First,
nanostructures are not point charges. Unlike ions such as Na+, nanostructures
possess dimensions that approach the Debye length of most media. Second, many
nanostructures are not composed of a charged material, but rather possess a net
surface charge. Surface charges can arise due to various mechanisms as shown in
Figure 1.7, including:
● Atomic defects at the surface
● Adsorption of ions onto the surface
● Adsorption or binding of molecules with functional groups that are charged
● Chemical reactions that occur at the surface (e.g. acid/base reactions).

For nanostructures where surface charges are isotropically (i.e. uniformly) dis-
tributed over its surface, it is convenient to describe the surface charge density, 𝜎,
given by:

𝜎 =
∑

q
A

(1.8)

where
∑

q is the total net charge distributed over a surface area, A (Figure 1.8).
Thus, a nanoparticle that possesses a net surface charge density, 𝜎, can be treated

like a uniform shell of charge
∑

q.

Worked Example 1.5
Question: Consider an Au nanoparticle with a diameter, d = 30 nm, that is nega-
tively charged due to adsorbed citrate ions (Figure 1.9).

The citrate ion can be approximated as a sphere with radius r = 3.6 Å. Estimate
the overall net charge, Q, and the surface charge density, 𝜎, for the Au nanoparticle.



16 1 Intermolecular Forces

Figure 1.8 A spherical particle with an
isotropic distribution of surface charge.

Figure 1.9 Citrate-coated Au
nanoparticle.

Answer: Because r ≪ d, we can assume that the citrate ions are uniformly covering
the nanoparticle surface. We can estimate the total charge of the nanoparticle by
estimating the total number of citrate ions multiplied by the ionic charge. Assuming
citrate ions cover the entire surface of the nanoparticle without any consideration of
repulsion between citrate ions, we get:

Q = 4𝜋(15 nm)2

𝜋(0.36 nm)2 (−3)(1.602 × 10−19 C) = −3.3 × 10−15 C

We can then estimate net surface charge density as:

𝜎 = Q
A

= −3.3 × 10−15 C
4𝜋(15 × 10−9 m)2

= −1.2 C
m2

Now let us consider the case where we would like to calculate the electrostatic-pair
potential between a point charge, q, and a nanoparticle with radius, R, with a uni-
form surface charge density, 𝜎 (in units of C/m2). The separation distance between
the center of the nanoparticle and the ion is some distance, z. Recall that our
nanoparticle resembles a hollow shell of charges. We can calculate the total charge
potential by adding up the electrostatic interactions for infinitesimally thin, hollow
rings of charge with a radius of Rsin 𝜃 (Figure 1.10).

The distance, d, between the ion and the shaded ring is given by:

d =
√
(R sin 𝜃)2 + (z − R cos 𝜃)2 =

√
z2 − 2zR cos 𝜃 + R2 (1.9)

The total charge potential is then given by:

V =
q

4𝜋𝜀𝜀o
⋅ 2𝜎 ∫

𝜋

0

𝜋R sin 𝜃 ⋅ Rd𝜃
d

(1.10)
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Figure 1.10 Ion–particle
electrostatic interaction.

Figure 1.11 A uniform
shell of charge
approximated as a point
charge.

We can use integration by substitution to help solve the integral:

y = d2 = z2 − 2zR cos 𝜃 + R2

dy = 2zR sin 𝜃d𝜃

Plugging y = d2 into our integral, we get:

V(z) =
q𝜎

2𝜋𝜀𝜀o ∫
𝜃=𝜋

𝜃=0

𝜋R
2z

dy

y
1
2

=
q𝜎R
𝜀𝜀oz

[(z + R) − (z − R)]

=
q𝜎R2

𝜀𝜀oz
=

qQ
4𝜋𝜀𝜀oz

(1.11)

Thus, we see that for calculating the electrostatic potential between a point charge
and a nanoparticle with an even distribution of charge at its surface, the nanopar-
ticle can be treated as a point charge Q located at the center of the nanoparticle
(Figure 1.11).

Worked Example 1.6
Question: Consider the 30 nm Au nanoparticle in water that is negatively charged
due to adsorbed citrate ions from the previously worked example. Plot the
electrostatic-pair potential between the nanoparticle and a citrate ion as a function
of separation distance.
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Answer: We can treat the charged nanoparticle as a point charge with
Q = − 8.3× 10−16 C and the citrate ion as a point charge with q = − 4.8× 10−19 C.
Thus, the pair potential can be plotted (Figure 1.12) using Coulomb’s law for two
ions with a separation distance, r:

V(r) =
Q1Q2

4𝜋𝜀𝜀or
= (−8.3 × 10−16 C)(−4.8 × 10−19 C)

4𝜋(80.2)
(

8.85 × 10−12 C2

J ⋅ m

)
r

= 4.5 × 10−26 J ⋅ m2

r
= 4.5 × 10−8 J

r(nm)

Figure 1.12 Pair potential
for a nanoparticle and
citrate ion.

Note that r is the center-to-center separation distance and that the nanoparticle
surface is located at r = 15 nm. Thus, the ion and nanoparticle cannot come closer
than a separation distance of r = 15 nm.

1.3 Permanent Dipole Interactions and Hydrogen
Bonding

A dipole occurs when there is a separation of charge. In chemical systems, dipole
interactions must involve polar molecules, which carry no net charge but possess
an electric dipole moment. A dipole results when the electronegativity difference
between the atoms involved is moderately large.

The dipole moment, 𝜇, for a polar bond is given by:

𝜇 = q ⋅ l (1.12)

where q is the charge at either end of the dipole and l is the length of the bond
(Figure 1.13). The moment is typically given in units of Debye (D), where small polar
molecules generally exhibit values of 𝜇≈ 1 D = 3.336× 10−30 C ⋅m.
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Figure 1.13 Schematic of a dipole.

Worked Example 1.7
Question: Calculate the electrostatic potential generated between an ion with
charge, Q, and a dipole with moment, 𝜇, and an arbitrary angle of orientation, 𝜃
(Figure 1.14).

Figure 1.14 Ion–dipole interaction.

Answer: We can start this problem by considering the electric field generated
between the ion and the two opposing ends of the dipole. We can label the locations
of the ion and dipole by forming a triangle with corners located at A, B, and C and
with the separation distance, r, bisecting the length of the dipole. This gives the
expression:

V(r, 𝜃)ion−dip =
−Qq

4𝜋𝜀𝜀o

[ 1
AB

− 1
AC

]
where for r ≫ l:

AB =

√(
r − l

2
cos 𝜃

)2

+
(

l
2

sin 𝜃

)2

≈ r − l
2

cos 𝜃

AC =

√(
r + l

2
cos 𝜃

)2

+
(

l
2

sin 𝜃

)2

≈ r + l
2

cos 𝜃

Plugging this into the expression for V(r), we get:

V(r, 𝜃)ion−dip =
−Qq

4𝜋𝜀𝜀o

[
1

r − l
2

cos 𝜃
− 1

r + l
2

cos 𝜃

]

=
−Qq

4𝜋𝜀𝜀o

⎡⎢⎢⎣ l cos 𝜃
r2 − l2

4
cos2𝜃

⎤⎥⎥⎦
=

−Q(ql) cos 𝜃
4𝜋𝜀𝜀or2

V(r, 𝜃)ion−dip = −Q𝜇 cos 𝜃
4𝜋𝜀𝜀or2 (1.13)

In a similar manner to the worked example above, the electrostatic potential
between two randomly oriented dipoles with fixed orientations (Figure 1.15) can be
calculated:

Vdip−dip =
−𝜇A𝜇B

4𝜋𝜀𝜀or3 [2 cos 𝜃A cos 𝜃B − sin 𝜃A sin 𝜃B cos𝜑] (1.14)
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Figure 1.15 Dipole–dipole
interaction.

with the potential energy for two dipoles aligned in head-to-tail configuration
(Figure 1.16) given by the simplified expression:

V(r) =
−2𝜇A𝜇B

4𝜋𝜀𝜀or3 for 𝜃 = 0 (1.15)

Hydrogen bonding is among one of the strongest intermolecular forces and is
responsible for a variety of chemical phenomena ranging from the high boiling
point of water to the helical structure of DNA. Hydrogen bonding is a specialized
electrostatic force that involves a dipole–dipole interaction between two polar
bonds (Figure 1.17). One of the dipoles must consist of a bond that contains a H
atom that is covalently bound to a small electronegative atom, such as O, N, F, or
Cl. This bond is known as the hydrogen donor. The other participating dipole serves
as the hydrogen acceptor. Because the dipole moment of the covalent bond in the
H-donor is high, the resulting strong attractive interaction is capable of aligning
other polar bonds. The strength of most hydrogen bonds lies between 10 and
40 kJ/mol, which makes them still considerably weaker than the intramolecular
forces discussed later in Chapter 2. A table of typical hydrogen bonding values is
given in Table 1.X.

H donor H acceptor H-bond strength (kJ/mol)

F–H F 161
N–H N 29
O–H O 21
N–H N 13
N–H O 8

While individual hydrogen bonds are still considered weak bonds, hydrogen
bonding can have an additive effect when the bond strengths of multiple hydrogen

Figure 1.16 Aligned dipoles.

Figure 1.17 Hydrogen bonding between HF
molecules.
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Figure 1.18 Hydrogen bonding in hierarchical structures of cellulose fibers.

bonds are consolidated within a single structure. For example, cellulose is an
example of a molecule where hydrogen bonding can occur both within and between
molecules (Figure 1.18). Cellulose is one of the most abundant naturally occurring
organic substances, serves as the main structural material of plants, and is the main
component of materials such as wood, cotton, and hemp. Cellulose is a polymer – a
chain-like molecule composed of many structural repeat units that are covalently
bonded together – composed of repeating units of d-glucose:

Cellulose molecules readily align themselves in a side-by-side fashion to form fib-
rils. This is due to hydrogen bonding between the hydroxyl groups (–OH) on each
glucose residue. Cellulose fibrils and fibers are extremely strong due to the coop-
erative nature of these multiple hydrogen bonds. While one hydrogen bond may
not provide significant stabilization, there are typically hundreds of hydrogen bonds
holding together two cellulose chains, resulting in high strength and low water sol-
ubility of the resulting fibril.

Hydrogen bonding is one of the main intermolecular forces that controls DNA
hybridization, where single-stranded DNA bonds or hybridizes with complementary
nucleotide molecules to form double-stranded DNA. As shown in Figure 1.19, DNA
strands contain four molecular bases: guanine (G), cytosine (C), adenine (A), and
thymine (T).

Figure 1.19 The four molecular bases
of DNA.
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Figure 1.20 Hydrogen-bonded Watson–Crick base pairs (right) form the hybridized
double-stranded DNA structure (left).

Each of these bases undergoes complementary base-pairing through hydrogen
bonding: G-C and A-T, also known as Watson–Crick base pairs (Figure 1.20).

G-C base pairs are bound by three hydrogen bonds, while A-T base pairs are
bound by only two hydrogen bonds. Base-pairing in DNA hybridization is highly
specific due to the geometry of each base: bonding outside of the Watson–Crick
base pairs results in a mismatch between hydrogen donors and acceptors, too much
steric overlap, or intermolecular distances that are too large to support adequate
hydrogen bonding.

Worked Example 1.8
Question: A typical cellulose chain from wood pulp has a length of ∼1000 glucose
units. Estimate the binding strength between two neighboring cellulose chains of
this length based on hydrogen bonding interactions alone.
Answer: Let us estimate that each glucose unit in a chain of cellulose contributes
one hydrogen bond through a hydroxyl group to its neighbor. The binding strength
of the HO—H hydrogen bond is 21 kJ/mol. The total binding energy can be esti-
mated as:

E = (1000 glucose units) ×
(

1 bond
unit

)
×
(

21 kJ
mol

)
= 21 × 103 kJ

mol
= 35 × 10−21 kJ per chain

This is a significant binding strength when compared to the bond energies for
strong covalent bonds, such as a single C—C bond (∼380 kJ/mol) or a triple C—C
bond (∼830 kJ/mol).
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Worked Example 1.9
Question: Calculate the binding strength of the G-C and A-T base pairs based
on hydrogen bonding. Estimate the energy cost to melt – aka “dehybridize” – a
double-stranded DNA molecule with 100 bp.
Answer: Let us first calculate the binding strength of the base pairs. For the A-T
base pair:

EAT = E(NH − O bond) + E(NH − N bond)

= 8 kJ
mol

+ 13 kJ
mol

= 21 kJ
mol

For the G-C base pair:

EGC = 2(NH − O bond) + (NH − N bond) = 29 kJ
mol

In comparison, the experimental values for the hydrogen bond energies of the base
pairs are EAT = 13 kJ/mol and EGC = 19 kJ/mol, indicating that our calculated values
overestimate base-pair binding energies.

1.4 van der Waals Forces

As shown in Table 1.1, vdW forces – sometimes referred to generally as dispersion
forces – are characterized by interaction potentials that decay with a scaling law of
∝ 1/r6. vdW forces are composed of three different types of interactions: Keesom,
Debye, and London forces. Since each of these separate interactions possess the same
distance dependence, the total vdW interaction potential is the sum of the interaction
potentials for these three different contributions:

V(r) =
Cw

r6 =
Cp

r6 +
Ci

r6 +
Cd

r6 (1.16)

where Cp is the constant for the Keesom force, Ci is the constant for the Debye force,
Cd is the constant for the London force, and Cw is a constant that encompasses all
three terms. Each of these forces is presented below, along with the potential energy
equation used to calculate the corresponding vdW energy of interaction for atoms
and small molecules:

Keesom force. This force is generated through the interaction of two molecules that
each possess permanent dipoles with moments 𝜇A and 𝜇B:

The Keesom force is applicable for dipole–dipole interactions that are not strong
enough to cause alignment of the dipoles, unlike the examples in Section 1.4. This
can occur for relatively weak dipole moments and dipoles with large separation dis-
tances. Instead of a static interaction with fixed dipole orientations, the Keesom force
accounts for the net attractive force that occurs between two freely rotating dipoles
(Figure 1.21). The potential energy for Keesom interactions, V p, is expressed as a
function of separation distance, r:

Vp =
Cp

r6 =
−𝜇A

2𝜇B
2

3(4𝜋𝜀o)2kBTr6 (1.17)
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Figure 1.21 Freely rotating dipole–dipole interaction.

Figure 1.22 Induced
dipole interaction.

where Cp is a constant and T is temperature. This contribution averages the energy
associated with dipole–dipole interactions over all angular orientations. This
interaction is attractive and temperature dependent, since orientation distribution
is weighted toward orientations that have lower energies.

Debye force. This force is generated through an induced dipole interaction
(Figure 1.22), typically between a polar molecule and a nonpolar molecule. The
permanent dipole generates a polarizing electric field that induces a dipole moment
in a neighboring molecule:

The strength of the induced dipole, 𝜇ind, is dependent on the electric polarizability,
𝛼, of the nonpolar molecule, where:

𝜇ind = 𝛼E (1.18)

where E is the electric field generated by the polar molecule. Polarizability is a mea-
sure of how strongly the negatively charged electron cloud of an atom (or molecule)
is displaced relative to its positively charged nucleus in the presence of an applied
electric field, E. It should be noted that α is often expressed as a volume polarizability
in SI units of (m3), where:

𝛼 (m3) = 𝛼 (F ⋅ m2)∕4𝜋𝜀o(F∕m) (1.19)

For two different molecules each possessing a permanent dipole moment of 𝜇1
and 𝜇2, and polarizabilities of 𝛼1 and 𝛼2, the net potential energy is given as:

Vi =
Ci

r6 = −
𝜇A

2𝛼B + 𝜇B
2𝛼A

(4𝜋𝜀o)2r6 (1.20)
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Figure 1.23 Origin of an instantaneous dipole–dipole interaction.

The above expression provides the energy for the dipole-induced dipole interac-
tions that is averaged overall all angles, since Debye forces are usually too weak to
orient molecules.

London force. The London or dispersion force is generated by transient dipole inter-
actions and is quantum–mechanical in origin. These forces are generated by instan-
taneous, fluctuating dipole moments generated by the relative positions of electrons
and atomic nuclei (Figure 1.23).

The expression for the potential energy of this polarization force is given by the
London equation for two dissimilar atoms:

Vd =
Cd

r6 = −
3𝛼1𝛼2

2(4𝜋𝜀o)2r6

I1I2

(I1 + I2)
(1.21)

where 𝛼1 and 𝛼2 are the polarizabilities and I1 and I2 are ionization energies. Unlike
Keesom and Debye forces, dispersion forces are always present and are often the
dominant contribution to the total vdW interaction potential (with the exception of
highly polar molecules).

Worked Example 1.10
Question: Calculate the vdW binding energy for two Ne atoms separated by a dis-
tance of 0.31 nm in vacuum. For Ne, the ionization energy is I = 2080 kJ/mol and the
static polarizability is 𝛼 = 0.392 Å3.
Answer: Because we are dealing with vdW forces between two atoms, we do not
have to consider a dipole force contribution and the binding energy will be domi-
nated by the London equation. Thus, we can plug in these values into the London
equation which, for two identical atoms, simplifies to:

Vd = − 3I𝛼2

4(4𝜋𝜀o)2r6

= −
3
(

2080 kJ
mol

)
(0.392 Å3)2

4(3.1 Å)6

= −270 J
mol

For neutral and nonpolar molecules, vdW forces are always attractive and can
serve as a major driving force for binding. For example, liquified and solidified
gases (e.g. Ar and Ne) and many organic solvents rely on vdW forces for cohesion.
A vdW solid is composed of atoms or molecules that are held together solely by
dispersion forces. Many examples of such solids occur for layered materials whose
two-dimensional layers are held together by strong vdW forces, such as graphite,



26 1 Intermolecular Forces

Figure 1.24 Graphite is composed of atomic layers of graphene that are bound by vdW
forces.

MoS2, and black phosphorous (Figure 1.24). Because the intermolecular forces
that hold vdW solids together are weak compared to covalent or ionic solids, they
typically exhibit low melting points.

vdW forces for particles and surfaces. How do we calculate the interaction poten-
tials for vdW solids and other nanoscale materials? Unlike electrostatic interactions,
vdW forces are not additive. For example, the dispersion interactions between two
atoms are affected by other nearby atoms, leading to an interaction potential that
can involve three or more atoms. However, we can assume additivity to provide an
approximation of the interaction potentials for nano to macroscopic bodies – i.e.
objects such as particles, surfaces, and solids that are made up of an infinitesimal
number atoms or molecules. For example, let us consider the molecule in Figure 1.25
that is located a distance, d, away from the surface of a solid slab that is composed
of the same molecules with a density, 𝜌.

Figure 1.25 Molecule–surface
interaction.
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We can define the molecule’s location to be z = 0, and the surface of the slab to be
located at z =D. The total interaction potential energy can be expressed as:

Vmol−surf =
∑ Cw

d6 (1.22)

which sums over the energies for the molecule at z = 0 interacting with each
molecule in the slab. To sum up the relevant interaction potentials, we can first
consider the interaction potential between the molecule and a circular cross-section
of the slab with a radius, r. The total number of molecules in a ring is given by:

total # molecules = 𝜌(2𝜋r)drdz (1.23)

This distance between the molecule and each point in the slab is given by

d =
(

r2 + z2)1/2

such that the total interaction potential can be expressed as the integral:

Vmol−surf = −2𝜋𝜌Cw ∫
z=∞

z=D ∫
r=∞

r=0

rdrdz
(r2 + z2)3

= 𝜋𝜌Cw ∫
z=∞

z=D

[
dz

2(r2 + z2)2

]r=∞

r=0

= 𝜋𝜌Cw ∫
z=∞

z=D

dz
2z4

= 𝜋𝜌Cw

[
1

6z3

]z=∞

z=D

=
−𝜋𝜌Cw

6D3 (1.24)

We can use the derived expression for Emol− surf to calculate the interaction poten-
tial for two parallel surfaces (Figure 1.26) composed of the same material:

Figure 1.26 Surface–surface interaction.

by summing over all the molecules on the second surface. Because the interaction
energy between two infinite surfaces would itself be infinite, we can instead
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calculate the interaction energy, V surf − surf , per unit area. We then solve for the
following expression:

Vsurf−surf = −𝜋𝜌2Cw ∫
z=∞

z=D

dz
6z3

=
[−𝜋𝜌2Cw

12z2

]z=∞

z=D

=
−𝜋𝜌2Cw

12D2 per unit area (1.25)

From our above derivation, we can see the important consequence of summing
vdW pair potentials: the interaction energy for larger objects composed of con-
densed phases decays much more slowly than for individual atoms and molecules.
In this case, the interaction energy for two slabs with infinite thickness decays as
∝ 1/D2, compared to the ∝ 1/D6 scaling law exhibited for two molecules. We
typically characterize the strength of an interaction based on this decay length:
if a force is short-range, it will act on an object at separation distances <1 nm, or
near contact. On the other hand, a long-range force can act on an object at consid-
erable distances >1 nm. Thus, we can readily see how additive vdW forces can be
sufficiently long-range when describing the interactions between nanomaterials.

Worked Example 1.11
Question: Derive an expression for the total vdW interaction energy between two
parallel molecular chains (e.g. two linear polymers) that possess a linear density, 𝜎,
chain length, L, and are separated by a short distance, D (Figure 1.27).
Answer: Since two infinitely long chains will possess an infinite interaction energy,
we must solve for this expression in terms of chain length, L. To start, we first sum
over all of the interaction between one molecule in chain A with all of the molecules
in chain B. We can define the x-axis along the length of chain B and the z-axis orthog-
onal to the two chains (Figure 1.27).

Figure 1.27 Interaction
between two long chains
(A and B) with separation
distance, D.

The distance, r, between the molecule in chain A with those in chain B is
given by:

d = (x2 + z2)1∕2

and the total number of molecules in chain B with a segment of length dx is
given by:

total # molecules = dx
𝜎
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Thus, integrating each molecule–molecule pair potential over the entire length of
chain B gives the integral:

Vmol−chain = ∫
x=L∕2

x=−L∕2

−Cwdx
𝜎d6

=
−2Cw

𝜎 ∫
x=L∕2

x=0

dx
(x2 + D2)3

Solving for this integral requires some extensive trigonometric substitution
(a computer will help here!), but we end up with final expression:

Vmol−chain =
−2Cw

𝜎

⎡⎢⎢⎢⎣
5D3x + 3(x2 + D2)2 tan−1

(
x
D

)
+ 3Dx3

8D5 (x2 + D2)2

⎤⎥⎥⎥⎦
x=L∕2

x=0

We can approximate this expression for the typical polymer case where L ≫D
to get:

Vmol−chain =
−2Cw

𝜎

⎡⎢⎢⎢⎣
5

D2L3 +
3 tan−1

(
L

2D

)
8D5 + 3

D4L

⎤⎥⎥⎥⎦
=

−Cw

𝜎

3𝜋
8D5 (1.26)

To obtain the interaction energy between the two chains, we then integrate the
pair potentials for each molecule along the length of chain A:

Vchain−chain = 2
𝜎 ∫

x=L∕2

x=0

−Cw

𝜎

3𝜋
8D5 dx

=
−3𝜋Cw

8𝜎2
L

D5 (1.27)

The constants in the expression for V surf − surf can be more generally expressed as:

A = −𝜋𝜌A𝜌BCw (1.28)

for two interacting bodies with densities 𝜌A and 𝜌B, respectively. A is known as the
Hamaker constant, named after the scientist who derived the theory describing
vdW forces between macroscopic objects. The Hamaker constant is characteristic
for an interacting pair of particles within a given medium. In vacuum, the Hamaker
constant for most molecules and materials varies between 10−20 and 10−19 J, with
hydrocarbons at the low end of these values (0.01–5 × 10−20 J) and metals at the high
end (15–45 × 10−20 J). Table 1.2 lists some general values of the Hamaker constants
for some common materials in vacuum. The Hamaker constant is convenient when
describing the vdW interaction potentials between objects with different shapes, for
which expressions can be derived by additive pair potentials. For example, using a
similar approach to the previous worked example, the following expression can be
derived for a sphere approaching a surface composed of the same material:

V(D)sphere−surf =
−AR
6D

(1.29)
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Table 1.2 Hamaker constants used to calculate the energies between
interacting bodies composed of the material listed, in vacuum.

Material Hamaker constant (10−20 J)

Au 45.5
Ag 40.0
Cu 28.4
Si 25.6
Ge 30.0
Al2O3 15.5
TiO2 (anatase) 19.7
TiO2 (rutile) 31.1
CdS 15.3
SiO2 16.4
Graphite 47
Diamond 28.4
Water 4.4
Decane 5.0
Polystyrene 6.2
Polyvinyl alcohol 8.8

Figure 1.28 Sphere–surface and sphere–sphere interaction potentials.

where R is the radius of the sphere and D is the surface-to-surface separation dis-
tance. Similarly, we can derive an expression for two approaching spheres composed
of the same material:

V(D)sphere−sphere =
−ARARB

6D(RA + RB)
(1.30)

where RA and RB are the radii of the spheres. Figure 1.28 depicts these two pairwise
geometries which are commonly found in nanoscale systems.
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Figure 1.29 C60 molecule.

Worked Example 1.12
Question: Shown in Figure 1.29, C60 condenses into solid with a density of
1.65 g/cm3 at room temperature. Molecular C60 possesses a polarizability of
76.5× 10−30 m3, a dipole moment of 𝜇 = 0 D, an ionization energy of IE = 7.5 eV,
and a diameter of 0.7 nm. Using these molecular parameters, estimate the Hamaker
constant for condensed C60.
Answer: The equation for the Hamaker constant can be simplified to:

A = −𝜋𝜌A𝜌BCw = −𝜋(𝜌C60
)2Cd

since molecular C60 is nonpolar and only London dispersion forces contribute to Cw.
First, we transform the density of condensed C60 into a number density:

𝜌C60
= number of molecules

volume

= 1.65 g∕cm3 × 6.02 × 1023 molecules
(12.01 g)(60)

× 1 cm3

10−6 m3

= 1.38 × 1027 m−3

We can then use the London equation to calculate Cd for two C60 molecules:

Cd = − 3𝛼2I
4
(
4𝜋𝜀o

)2

= −3
4
(
76.5 × 10−30m3)2 (1.2 × 10−18 J

)
= −5.3 × 10−75 J ⋅ m6

Putting this altogether, we can calculate A as:

A = −𝜋𝜌A𝜌BCw

= −𝜋
(
1.38 × 1027 m−3)2 (−5.3 × 10−75 J ⋅ m6)

= 3.2 × 10−20 J

This value comes reasonably close to the value of the Hamaker constant
(7.5× 10−20 J) derived from experimental measurements of C60 interactions in
water.
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Worked Example 1.13
Question: Graphite is a layered solid that is held together only through vdW inter-
actions. The Hamaker constant for graphite interacting across air is A = 47× 10−20 J.
Calculate the binding energy between two slabs of graphite separated by 1 nm.
Answer: Using Eq. 1.31, we calculate:

Vsurf−surf =
−A

12D2 per unit area

= −47 × 10−20 J
12(1 × 10−9 m)2

= −39 × 10−3 J∕m2

1.5 Hydrophobic Forces

Hydrophobic forces refer to the attraction between nonpolar molecules, particles,
and surfaces in the presence of water. These hydrophobic (a word derived from the
ancient Greek words for “water-fearing”) bodies experience a strong mutual attrac-
tion that is responsible for a wide range of phenomena, including the formation of
surfactant micelles, cell membranes, and protein folding. This strong attraction often
results in spontaneous ordering or assembly of hydrophobic molecules, as depicted
for surfactants in Figure 1.30, such that water is expelled into the bulk.

However, unlike the intermolecular forces discussed in previous sections, there is
no universal force law to describe the multitude of experimental observations that
are attributed to hydrophobic forces. Hydrophobic forces have been observed to oper-
ate over both long-range (20–300 nm) and short-range (<20 nm). The derivation of a
force law is also complicated by the knowledge that water molecules hydrate small
versus large hydrophobic solutes in very different ways.

At the molecular scale, hydrophobic forces are attributed to the restructuring
of H2O molecules around hydrophobic solutes. In the bulk liquid state, H2O has
a strong tendency to form hydrogen bonds with four other neighboring H2O
molecules, giving rise to tetrahedral coordination (Figure 1.31). However, this
coordination is labile since the lifetimes of these hydrogen bonds are short (<10−11

s), allowing the intermolecular H2O bonds to associate and dissociate rapidly.
Hydrogen bond length in bulk liquid water also depends strongly on temperature
and pressure. (It should be noted that there is still debate over what constitutes a
“broken” hydrogen bond in water, as defined by either a critical bond length and/or
bond angle.)

When a hydrophobic solute is introduced into liquid water, attractive forces
between the solutes arise primarily due to a change in entropy. Let’s consider
a simple hydrocarbon – an organic compound composed entirely of H and C
atoms – such as the hexane molecule, C6H14, shown in Figure 1.32. To solvate
hexane, H2O molecules must break their tetrahedral coordination and reorganize
to accommodate C6H14 molecules. In effect, this forms a cavity in bulk water due to
H2O–H2O hydrogen bond-breaking:
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Figure 1.30 Surfactants such as sodium dodecyl sulfonate are amphiphilic molecules that
can spontaneously order into spherical structures called micelles.

Figure 1.31 The
tetrahedral structure of
hydrogen-bonded water
molecules in ice.

The H2O molecules directly around the solute can compensate for this change in
enthalpy (ΔH) by forming extra hydrogen bonds with its nearest H2O neighbors to
generate a cage-like H2O structure. In our example, ΔH = 0 kJ/mol for transferring a
C6H14 from a nonpolar solvent to water; in other words, there is no enthalpic cost for
mixing hexane and water. However, the entropic cost for forming the ordered H2O
cage is significant (ΔS = 28 kJ/mol). The driving force for C6H14 to self-segregate is
the reduction in the number of H2O molecules participating in these cage structures,
which are entropically unfavored.

These short-range hydrophobic interactions are typically considered the main
driving force for the formation of a variety of self-assembled structures, such as
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Figure 1.32 Water
molecules form ordered,
cage-like structures around
nonpolar molecules like
hexane.

Figure 1.33 Self-assembled monolayers (SAMS) are formed by the spontaneous
organization of alkanethiols in the presence of a metal surface, such as Ag or Au.

self-assembled monolayers (often abbreviated as SAMs) and liposomes. SAMs consist
of molecules that organize into packed layers that are only a single-molecule
thick (Figure 1.33). They are commonly used to passivate a variety of solid sur-
faces and nanoscale materials, such as metal nanoparticles, since the molecular
monolayer forms a physical barrier against further chemical interactions or reac-
tions. They typically comprise molecules that contain a hydrophobic component
and a head group – a functional group located at the end of the molecule. The
head group serves as a molecular anchor, forming a coordination or covalent
bond to the solid surface. For example, alkanethiols are commonly used to form
SAMs on metal Au and Ag surfaces. The thiol (–SH) head group serves as a
ligand that deprotonates and binds to metal atoms to form a strong Au—S or
Ag—S bond. However, the hydrophobic forces derived from the long alkane
chain are the driving force for molecular organization into a dense hydrophobic
layer.

Liposomes are an example of a self-assembled nanostructure that results largely
from hydrophobic interactions (Figure 1.34). Liposomes are typically formed from
phospholipids, the same molecules that comprise cell membranes:
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Figure 1.34 A transmission electron microscope image of the region where two cells
touch (left). The dark regions show the electron-dense portion (circled, right) of the
phospholipid comprising the cell membrane. Lecithin (right) is a representative
phospholipid and a chief component of cell membranes.

While a cell membrane is considered a two-dimensional assembly of phos-
pholipids, a liposome is a three-dimensional artificial vesicle that consists of
fluid enclosed within a lipid bilayer (Figure 1.35). Unlike a micelle, a liposome
possesses both hydrophilic interior and exterior surfaces. They are extensively used
as encapsulants in the cosmetic and pharmaceutical industries because they can
be employed to deliver both hydrophobic and hydrophilic molecules and because
the phospholipid bilayer can be embedded with biological targeting groups. The
liposome, similar to a SAM, forms a physical barrier around its contents that allow
molecular payloads to be protected from oxidation and degradation processes.

While short-range hydrophobic interactions are relatively well understood, the
fundamental mechanism behind long-range hydrophobic forces is still an active
area of research. Long-range forces can be categorized as the attractive force
that develops between hydrophobic surfaces, leading to phenomena such as the
self-assembly of hydrophobic nanoparticles, with examples shown in Figure 1.36.

In some experimental cases, the observed attractions are not considered
purely hydrophobic in nature and result from a combination of electrostatic and

Figure 1.35 Liposomes are spherical structures composed of lipid bilayers. They can be
used to encapsulate payloads in different regions and can be chemically modified to target
specific biological entities.
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Figure 1.36 Au nanoparticles modified with hydrophobic ligands can undergo
spontaneous self-organization into superstructure due to hydrophobic forces. Top: Spherical
nanoparticle form nanoparticle micelles. Source: Reproduced from ACS Nano 2012, 6, 12,
11059–11065. Bottom: Hydrophobic tetrahedral nanocrystals form a herringbone
superstructure. Source: Reproduced from J. Am. Chem. Soc. 2022, 144, 30, 13538–13546.

hydrophobic interactions that contribute to a long interaction distance. In other
cases, it is proposed that H2O molecules near the hydrophobic solute cause a
local change in the Hamaker constant, enhancing the vdW interaction between
hydrophobic surfaces by a significant amount. In the coming years, it is likely
that advances in multiscale modeling – theoretical models that span multiple
time and length scales – will pave the way in understanding how these various
molecular-level effects contribute to long-range hydrophobic interactions and their
corresponding phenomena.

1.6 Steric Forces

Steric repulsion results from the overlap in electron clouds for two approaching
atoms or molecules at very short (interatomic, <1 nm) distances. This force can be
both quantum–mechanical and electrostatic in nature. The quantum–mechanical
component stems from the Pauli exclusion principle, which dictates that no two
electrons share the same quantum state. The electrostatic component arises from
Born repulsion between similarly charged electrons or from the repulsive interaction
between two positively charged nuclei. As such, there is no universal force law that
describes how steric interactions change with respect to distance. However, several
empirical functions have been developed that adequately describe the behavior of
this short-range repulsive potential.
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One of the most well-known empirical functions is the power-law potential, of the
form:

V =
(
𝜎

r

)n
(1.31)

where n is an integer usually between 9 and 16. The power-law potential is the form
of the repulsive potential used in the Lennard-Jones or “6–12” potential:

V = A
r12 − B

r6 (1.32)

where A and B are integers, and r is the intermolecular distance. The Lennard-Jones
potential combines the attractive pair potential resulting from vdW interactions with
a repulsive pair potential describing steric interactions. The total potential plotted in
Figure 1.37 shows the appearance of a potential well:

Figure 1.37 The
Lennard-Jones potential.

where energy is minimized at a separation distance that is typically associated
with equilibrium bond length. The equilibrium bond length obtained for the
Lennard-Jones potential can be used to determine the van der Waals radius of a
molecule, which is defined as the radius of the imaginary hard sphere surrounding
the molecule.

Worked Example 1.14
Question: C60 is a nonpolar molecule with no net charge, whose intermolecular
interactions can be described by the Lennard-Jones potential (with constants
A = 34.8 × 103 eV Å12 and B = 20 eV Å6). Calculate the equilibrium bond length and
binding energy for two C60 molecules in vacuum.
Answer: The pair potential between two C60 molecules is described by

V(r) = A
r12 − B

r6

The bond length can be found by calculating the separation distance between the
molecules at equilibrium, when the net force between two C60 molecules is zero:
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F = −dV(r)
dr

= 0

= d
dr

( A
r12 − B

r6

)
= −6A

r11 + 6B
r5

Solving for r and substituting the Lennard-Jones constants, we get:

r =
(2A

B

)1∕6
=

(
2 ⋅ 34.8 × 103eV ⋅ Å12

20 eV ⋅ Å6

)1∕6

= 3.89 Å

To calculate the binding energy, we plug this value back into our equation for V(r):

V(3.89 Å) = 34.8 × 103eV ⋅ Å12

(3.89 Å)12
− 20 eV ⋅ Å6

(3.89 Å)6

= −2.87 meV

= −2.77 kJ∕mol
Steric forces determine how close atoms and molecules can be situated from one

another. This can have a profound effect on the chemical reactivity of molecules,
nanomaterials, and surfaces. For example, steric hindrance occurs when chemical
reactions are slowed due to the presence of bulky side groups or substituents of
molecules. In chemical synthesis, steric hindrance can be engineered to block
unwanted side reactions. In a similar manner, steric repulsion also has important

Figure 1.38 Polymer-grafted nanoparticle experience steric repulsion as they approach
each other.
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consequence for nanomaterials that are passivated by bulky molecules, such as
polymers or SAMs. Molecular passivation layers control access to the surface, and
thus contribute greatly to the thermodynamic, chemical, and physical properties of
a nanomaterial.

Let us consider two nanoparticles that are grafted (i.e. chemically bound or
anchored) with several polymer chains, as drawn in Figure 1.38. As the nanopar-
ticles approach each other, they experience an increasing repulsive force due to
steric overlap between the polymer chains that are trapped between the particles.
This is usually described by two regions: (i) the interpenetration domain and
(ii) the compression domain. The interpenetration domain is typically charac-
terized by polymer–solvent interactions and occurs at interparticle distances of
1–2 polymer chain lengths. The compression domain occurs at shorter interpar-
ticle distances; in this regime, steric overlap causes the polymer grafts to adopt
“compressed” configurations. This results in a decrease in the free volume –
the unfilled void space associated with a molecule – of the polymer chains as
the particles approach. This compression is entropically unfavorable and, thus,
increases the free energy of the system. As a result, such nanoparticles are con-
sidered entropically stabilized because the polymer grafts generate this entropic
steric repulsion upon close approach. The magnitude of this repulsive force
is dependent on both the surface density and the free volume of the polymer
grafts.

Worked Example 1.15
Question: Consider a dispersion of polymer-grafted nanoparticles in water that are
stabilized mainly due to entropic interactions. How do you expect the aggregation
state of these nanoparticles to change upon heating or cooling?
Answer: We can consider the overall Gibbs free energy of the nanoparticle
system as

ΔG = ΔH − TΔS

where an increase or decrease in temperature modifies the entropic contribution
in the second term. Heating the system increases the overall entropic contribution,
and we would expect the nanoparticles to remain in a stable dispersion. Cooling
decreases the overall entropic contribution and would likely destabilize the disper-
sion toward an aggregated or metastable state.

1.7 Particle Stability and Aggregation

Let us revisit our example of nanoparticles dispersed in a liquid medium from
Figure 1.1. How do different intermolecular forces contribute to the behavior of
such a nanoscale system? We can consider the case where our nanoparticles are
subject to both repulsive and attractive interactions. The resulting pair potential
would be the sum of multiple contributing pairwise potentials. The graphs in
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Figure 1.39 show two very different cases that result from the addition of repulsive
and attractive potential energy terms with varying magnitudes:

Figure 1.39 Two examples of pairwise potentials (solid line) that result from summing
different repulsive and attractive interactions (dashed lines). A weak repulsive interaction
leads to aggregated particles (left), while a weak attractive interaction leads to dispersed
particles (right).

As we can see, the overall behavior of the nanoparticle dispersion will depend
entirely on the relative strengths of the two forces at play. For the plot on the left,
the pair potential exhibits a relatively weak repulsive interaction but a strong attrac-
tive interaction. Because the energy minimum occurs at r = 0, the nanoparticles will
likely aggregate to form dimers or larger clusters. For the plot on the right, the pair
potential exhibits a relatively strong repulsive interaction and only weak attraction.
The minimum potential energy is achieved at r →∞; hence, the nanoparticles will
stay suspended in the medium as a dispersed system.

In some cases, the pairwise potential exhibits multiple potential energy minima,
such as the plot shown in Figure 1.40. These nanoparticle systems can exist
in metastable states. For example, in the plot shown in Figure 1.40, the energy
minimum occurs at r = 0. However, the nanoparticles may stay trapped in a local
potential energy minimum by maintaining a separation distance greater than r1.
For r > r1, the potential energy is negative and stability is achieved as r →∞,
even though it does not represent the absolute minimum energy that could be
attained. This is often referred to as a metastable dispersion, since aggregation
is limited by the energy barrier located at r2, depending on its height (ΔV). If
ΔV is small, the particles will aggregate (r → 0); if ΔV is large, the particles will
stay dispersed (r →∞). ΔV is typically measured in units of thermal energy, kBT
(where kBT = 4.11× 10−21 J at room temperature) and serves as a gauge for whether
aggregation will occur.

Aggregation becomes an increasingly important consideration as particle size
decreases. At the nanoscale, attractive vdW forces become competitive with steric
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Figure 1.40 The sum of attractive and repulsive interactions (dashed lines) can lead to a
pairwise potential that exhibits metastability.

and electrostatic repulsion, leading to different types of aggregation phenomena.
This is not often the case for macroscopic objects (e.g. particles of sand), which
require different long-range forces (such as gravity or capillary forces) to generate
adhesion.

Worked Example 1.16
Question: Consider a dispersion of nanoparticles that exhibit the pairwise potential
below (Figure 1.41). Describe the aggregation behavior of the nanoparticles for the
two different cases: (i) ΔV ≫ 0 and for (ii) ΔV ≈ 0.

Figure 1.41 Possible pair
potential for nanoparticles.
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Answer: The pairwise potential above is characterized by an energy minimum at
r1, an energy barrier at r2, and a deep energy well as r approaches 0. For case (i),
the nanoparticles would likely come into stable equilibrium to form clusters with an
interparticle separation distance of r1. The presence of a large energy barrier would
cause the nanoparticles to remain kinetically stable at this separation distance. For
case (ii), the nanoparticles would likely adhere into structures with a separation dis-
tance of r1 (a metastable state) and then slowly aggregate.

Worked Example 1.17
Question: Two perfectly spherical silica (SiO2) nanoparticles with a diameter of
30 nm are coated with a negatively charged surface coating and are separated by
a distance of 5 nm. For what surface charge density does the repulsive electrostatic
potential become equal but opposite to the attractive vdW potential?
Answer: First, we can calculate the pairwise potential for the vdW interaction
between the two nanoparticles. From Table 1.2, we see that ASiO2

= 16.4 × 10−20 J.
Plugging this into the vdW expression for two interacting spheres, we get:

V = −AR
12D

= −(16.4 × 10−20 J)(15 × 10−9 m)
12(5 × 10−9 m)

= −41 × 10−21 J

We can then plug this binding energy into the expression for electrostatic potential
between two point charges to calculate the total charge, Q, for each nanoparticle.
Recall that in this expression, r is the center-to-center distance between the parti-
cles.

V = Q2

4𝜋𝜀𝜀or
= 41 × 10−21 J

Q2

4𝜋
(

8.85 × 10−12 C2

J ⋅ m

)
(35 × 10−9 m)

= 41 × 10−21 J

Q = −4.0 × 10−19 C

We can then plug this total charge into the equation for surface charge density, 𝜎:

𝜎 = Q
A

= −4.0 × 10−19 C
4𝜋(15 × 10−9 m)2

= −1.4 × 10−4 C∕m2

To put this in context, this surface charge density is equivalent to one negative
ion per every 1000 nm2 or equivalently a rough separation distance of 30 nm on the
surface of the nanoparticle.
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Problems and Discussion Topics

1.1 List the intermolecular forces that you would expect to occur between
ethanol (C2H5OH) and water (H2O) molecules, in order of increasing
strength.

1.2 List the following liquids in order of lowest to highest boiling points and
briefly explain the reasoning behind your answer: H2O, H2S, H2Se, and H2Te.

1.3 List the following molecules in order of dipole moment, from smallest to
largest: CO, CO2, CHCl3, C6H6, and CH3OH.

1.4 NH3 has a dipole moment of 1.47 D. Consider the interaction energy between
Na+ and NH3 in an aqueous solution with a separation distance of 0.2 nm
(𝜀H2O = 80.10). Calculate the interaction potential for each of the ion–dipole
orientations shown below (Figure 1.42) and determine the orientation with
the lowest potential energy.

Figure 1.42 Dipole-ion interactions.

1.5 If there is a uniformly spaced line of alternating anions and cations with a
distance, d, between the centers of the ions, show that the interaction energy
is given by:

E = 𝜀2

4𝜋𝜀o

ZAZB

d
2 ln 2

1.6 Plot the interaction potential for a Na+ ion and Cl− ion as a function of sep-
aration distance in three different solvents:
(a) Water (𝜀 = 80.2)
(b) Ethylene glycol (𝜀 = 37)
(c) Chloroform (𝜀 = 4.8)
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1.7 Calculate the Debye lengths and compare the screened electric fields, V(r),
for a nanoparticle dispersed in 10 mM CaCl2 versus 10 mM MgSO4.

1.8 Calculate the Debye length for phosphate-buffered saline (PBS), which is a
commonly used medium to mimic the physiological conditions of the human
body. PBS is composed of the following electrolytes: 137 mM NaCl, 2.7 mM
KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4. How does Debye screening in
PBS impact nanoscale devices designed to go into the human body?

1.9 The electric polarizability of a fullerene molecule of C60 has been measured
as 76.5 Å3. Calculate the induced dipole moment, 𝜇ind, on C60 in the presence
of a Na+ ion located at a center-to-center distance of 2 nm away. How do you
expect this value of 𝜇ind to compare to a molecule of methane (CH3)? How
about a carbon nanotube?

1.10 The pairwise potential in Figure 1.43 describes the aggregation behavior of
positively charged nanoparticles dispersed in a NaCl solution.

Qualitatively plot how you would expect the pairwise potential to change
under the following experimental conditions:
(a) Large increase in [NaCl]
(b) Large decrease in [NaCl]
(c) Change in electrolyte to CaCl2 with equivalent molar concentration.

Figure 1.43 Possible pair potential
for charged nanoparticles.

1.11 The heat of sublimation for Ne can be used to measure the bond dissociation
energy for pure Ne, which is approximately 2 kJ/mol. Explain this discrep-
ancy with the vdW pair potential for two Ne atoms calculated in the worked
example.

1.12 Spontaneous opening of DNA’s double helix structure to form single-
stranded DNA is a rare event, but double-stranded DNA can be readily
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“melted” to form single-stranded DNA by heating. Using your knowledge
of base-pair interactions, formulate a simple expression for calculating the
melting temperature of a DNA strand with a given sequence.

1.13 Derive the following expression for the induced dipole imparted by a polar
molecule with a fixed orientation, 𝜗, and dipole moment, 𝜇, and a nonpolar
molecule with polarizability, 𝛼, located at a separation distance of r:

𝜇ind =
𝜇𝛼

√
(1 + 3cos2 𝜃)
4𝜋𝜀𝜀or3

1.14 Consider a spherical particle with a radius, R, and a flat surface made of
identical material separated at some distance, D, and held together only by
vdW interactions. The effective area of interaction is defined as the area for
which two flat surfaces at the same separation distance would have the same
interaction force. Calculate the effective area of interaction of the spherical
particle.

1.15 In a solution of polymer, a poor solvent can turn into a good solvent by
increasing the temperature to a critical point called the theta temperature.
Explain why miscibility is temperature dependent.

1.16 The bond strength of an H2 molecule is 436 kJ/mol. The distance at which
the bond breaks (V = 0) is 2.93 Å. Using the Lennard-Jones potential:
(a) Calculate the equilibrium bond distance for H2.
(b) Calculate the maximum adhesion force between the two H atoms.

1.17 For the Lennard-Jones potential, what is the predicted equilibrium separa-
tion distance for the minimum energy of interaction? What is the predicted
separation distance when the adhesive force, F is maximum?

1.18 The diameter of C60 is 0.71 nm and the Lennard-Jones potential constants are
A = 34.8× 103 eV Å12 and B = 20 eV Å6.
(a) What are the intermolecular forces that drive fullerene crystallization?
(b) Estimate the binding energy between two C60 molecules with a separa-

tion distance of 2 nm.
(c) Do you expect the binding energy to be smaller or larger for two

molecules of C70? Briefly explain your answer.

1.19 Stable dispersions of C60 in water can be obtained by modifying the C60 sur-
face with negative charges. Calculate the surface charge required to separate
two C60 molecules by a distance of 5 nm.

1.20 Films composed of crystallized C60 can be intercalated with Li+ to serve as
anodes for lithium-ion batteries. Li+ ions have a radius of 6 Å. The diameter
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of C60 is 0.71 nm and the Lennard-Jones potential constants are A = 20 eV Å6

and B = 34.8× 103 eV Å12.
(a) Determine whether there is volume expansion in crystallized C60 when

a Li+ ion occupies the space between two C60 molecules.
(b) The Hamaker constant for crystallized C60 is 4.02× 10−21 J. How do you

expect the binding energy of solid C60 to change when Li+ ions are intro-
duced into the crystal? Briefly explain.




