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Using the DiffCorr Package to Analyze and Visualize
Differential Correlations in Biological Networks

Atsushi Fukushima and Kozo Nishida

1.1
Introduction

1.1.1
An Introduction to Omics and Systems Biology

In this century, a high-throughput technology is being harnessed in various
applications to solve a diverse range of biological problems and to explore biolog-
ical phenomena. Next-generation sequencers (NGS) can be used for measuring
and monitoring thousands of small molecules simultaneously [1–4] and large
genomic sequences can be acquired quickly and routinely. RNA sequencing
with NGS (RNA-seq) measures nearly every transcript of cellular systems
(i.e., transcriptome) [5–7]. The term omics refers to the comprehensive analysis
of biological systems and approaches including genomics, transcriptomics, and
metabolomics that have become a promising way to inspect complex network
interactions in cellular systems. To understand the organizing principle of
cellular functions at different levels, an integrative approach with large-scale
omics data including genomics, transcriptomics, proteomics, and metabolomics,
is required [8–10]. Although it means different things to different scientists,
systems biology [11] is the study of the behavior of complex biological processes
using integrated approaches and a collection of omics-based data sets, quan-
titative measurements of the behavior of interacting cellular components, and
mathematical/computational models to predict and describe complex dynamic
behaviors.

1.1.2
Correlation Networks in Omics and Systems Biology

Molecular interactions can be expressed simply as a network bymeasuring associ-
ations amongmolecules in omics data (e.g., see [12, 13]). Typical network analysis
is based on transcriptome data sets obtained from microarray experiments and
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RNA-seq.This is known as gene co-expression analysis (e.g., see reviews [14–17]).
Correlation relationships are special cases of association that can be measured
by correlation-based measures such as the Pearson correlation coefficient, r
(Figure 1.1a), which can range from −1 to 1, where r = 1 represents a perfect
positive linear relationship between gene expressions, while r =−1 indicates a
perfect negative relationship.While r = 0 indicates no linear relationship between
gene expressions, it does not mean that two gene expressions are statistically
independent. Calculation of the Pearson correlation coefficient is not robust
for outliers and assumes that the data are from a standard normal distribution.
On the other hand, the Spearman rank correlation coefficient is more robust
with respect to outliers; it measures a monotonic relationship between gene
expressions. If the correlation between two gene expressions exceeds a threshold,
these genes can be considered as co-expressed. Such associations can be described
as “co-expression networks” or generally as “correlation networks,” where nodes
represent genes and links between nodes represent significant correlations that
are above a given threshold. Typical co-expression network analysis is based on
the correlation coefficient between preselected gene(s) and the rest of the genes
in a data set; this is called a guide-gene approach [18]. Although a correlation does
not always indicate a causal relationship, a network approach can provide clues
about the regulatory mechanisms that underlie the biological processes, and
it has been used to characterize genes involved in plant-specialized secondary
metabolisms [14, 17, 19].

1.1.3
Network Modules and Differential Network Approaches

When assessing gene co-expression network data generated from a high-
throughput microarray system, one can visualize a giant network component
from a large number of interactions (e.g., see [20]).There are many approaches for
summarizing such large-scale networks: graph clustering [21] has been used and
differential co-expressions or differential correlations [22] have been identified by
means of network analysis using omics data. In general, graph clustering such as
Markov clustering [23] and DPClus [24] can be used for detecting co-expressed
modules or clusters in a nonbiased manner. Graph clustering is an algorithm
for efficiently extracting densely connected genes in co-expression networks.
This approach has also provided insights into transcriptional organization in
Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice) as well as Solanum
lycopersicum (tomato) [25–29]. In addition to the mean levels of abundance [the
identification of so-called “differentially expressed genes (DEGs)” between two
samples] and the detection of clustered molecules with similar profile patterns,
changes in the correlation patterns between molecules, referred to as differential
correlations, are also informative [22, 30]. Differential network approaches can
be performed by comparing two different networks, for example, normal and
disease networks (Figure 1.1b). This type of differential network strategy [31]
has been applied to animals and plants [19, 22, 30, 32]. Differential correlation
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Figure 1.1 A gene–gene association mea-
sure and causal inferences in co-expression
analysis. (a) Two kinds of major methods
to measure the association between gene
expressions. Although the Pearson correla-
tion coefficient (PCC) is widely used in co-
expression analysis in plant science, it can
only be used to estimate a linear relationship

between variables. A gene–gene association
is not always a linear correlation. In general,
information-theoretic measures can esti-
mate a nonlinear relationship. Note that the
Spearman correlation coefficient (SCC) can
estimate a nonlinear relationship such as a
monotonic function. (b) A concept of differ-
ential co-expression networks.
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analysis in metabolomics has been used for dissecting complex metabolisms
[33–35].

1.1.4
Aims of this Chapter

This chapter aims to (i) introduce the differential network concept in biological
networks, (ii) demonstrate typical correlation network analysis using transcrip-
tome and metabolome data sets, and (iii) highlight caveats in the correlation
approach including the influence of the experimental setup used to generate cor-
relation networks and the statistical approaches applied to assess these networks.
We illustrate the utility of our DiffCorr package [36] by demonstrating biologically
relevant, differentially correlated molecules in transcriptome co-expression and
metabolite-to-metabolite correlation networks. The R code used in this chapter
can be downloaded from the github repository: http://afukushima.github.io/
diffcorrbook.

1.2
What is DiffCorr?

1.2.1
Background

There are a number of algorithms for detecting the differential correlation for
large-scale omics data sets. Typical approaches for identifying differential corre-
lations include topological overlap in a graph [37–40], extension of the traditional
F-statistic [41], an additive model [42], Fisher’s z-test [30, 36], an interaction score
based on Renyi relative entropy [43], the Haar basis [32], the combination of the
graphical Gaussian model and the posterior odds ratio [44], the liquid association
concept [45, 46], a combination of robust correlations and hypothetical testing
(called ROS-DET (RObust Switching mechanisms DETector)) [47], random re-
sampling methods [48], graph-theoretic statistics [49], and an empirical Bayesian
approach [50, 51]. Liu and coworkers implemented several of these methods
to identify differential co-expressions in their R package DCGL [52, 53] (see
also the review by Kayano et al. [54]). A tool to identify differential correlation
patterns in omics data in an efficient and unbiased manner is needed. The
simplest technique, based on Fisher’s z-test of correlation coefficient to identify
differential correlations, is not yet widely used and, to the best of our knowledge,
is not implemented for omics data in the available R packages. We developed
the DiffCorr package [36], a simple method for identifying pattern changes
between two experimental conditions in correlation networks, which builds on
a commonly used association measure, such as Pearson’s correlation coefficient.
DiffCorr calculates correlation matrices for each data set, identifies the first
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principal component-based “eigen-molecules” in the correlation networks, and
tests differential correlations between the two groups based on Fisher’s z-test [36].

1.2.2
Methods

Fisher’s z-test was used to identify significant differences between two correla-
tions based on its stringency test and its provision of conservative estimates of
true differential correlations among molecules between two experimental con-
ditions in the omics data [36]. To test whether the two correlation coefficients
were significantly different, we first transformed the correlation coefficients for
each of the two conditions, rA and rB, into ZA and ZB, respectively. The Fisher’s
z-transformation of coefficient rA is defined by ZA = 1/2[log(1+ rA)/(1− rA)].
Similarly, we transform coefficient rB into ZB. Differences between the two cor-

relations can be tested using the equation

Z =

1
2
log

1 + rA
1 − rA

− 1
2
log

1 + rB
1 − rB√

1
nA − 3

+ 1
nB − 3

(1.1)

where nA and nB represent the sample size for each of the conditions for each
biomolecule pair [29, 33, 34]. The Z value has an approximately Gaussian dis-
tribution under the null hypothesis that the population correlations are equal.
Controlling the false discovery rate (FDR) described by Benjamini and Hochberg
[55] is a stringent and practical method in multiple testing problems. However,
while it assumes all tests to be independent, this is not the case for correlation
tests.We, therefore, used the local FDR derived from the fdrtool package [56]. Dif-
fCorr can explore differential correlations between two conditions in the context
of postgenomics data types, namely transcriptomics and metabolomics. DiffCorr
is simple to use in calculating differential correlations and is suitable for the first
step toward inferring causal relationships and detecting biomarker candidates.
The package can be downloaded from the CRAN repository: http://cran.r-project
.org/web/packages/DiffCorr/.

1.2.3
Main Functions in DiffCorr

Here, we describe the features, functionalities, and structure of the DiffCorr pack-
age [36]. Functions in the DiffCorr package can be divided into three main cate-
gories: (i) module detection, constructing correlation networks, and calculating
the eigen-molecules for each condition; (ii) visualization of eigen-molecule net-
works; and (iii) export of the results of testing based on Fisher’s z-test (Figure 1.2).
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Figure 1.2 An overview of analysis steps and main functions in DiffCorr. An outline of the
DiffCorr approach with the three main processes. HCA, hierarchical cluster analysis.

1) get.eigen.molecule: extracts conditional modules derived from hierarchical
cluster analysis (HCA) using the cluster.molecule function. For the visual-
ization of modules, get.eigen.molecule.graph also provides a graph object of
eigengene [57] using the igraph package (http://igraph.org/).

2) plot.DiffCorr.group: drawsmodulemembers for each condition.This function
is based on the plot function using the igraph package (http://igraph.org/).
This provides profile patterns of module members for each module.

3) comp.2.cc.fdr: exports a list of significantly differential correlations as a
text file. This function uses the fdrtool package [56] to control the FDR.
The resulting file contains molecule IDs (e.g., probe-set ID and metabolite
name), conditional correlation coefficients, the p-values of the correlation
test, the difference of the two correlations, the corresponding p-values, and
the result of Fisher’s z-test with control of the FDR. More detailed statistical
descriptions for identifying differentially correlated molecules are in the next
section.

1.2.4
Installing the DiffCorr Package

If the code is to be run while reading this chapter, the DiffCorr package must be
installed from CRAN.

# If using Ubuntu, run "apt-get install libxml2-dev" first.
source("http://bioconductor.org/biocLite.R")
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biocLite(c("pcaMethods", "multtest"))
install.packages("DiffCorr")
library(DiffCorr)
## Loading required package: pcaMethods
## Loading required package: Biobase
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: ’BiocGenerics’
##
## The following objects are masked from ’package:parallel’:
##
## clusterApply, clusterApplyLB, clusterCall,
## clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply,
## parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
##
## The following object is masked from ’package:stats’:
##
## xtabs
##
## The following objects are masked from ’package:base’:
##
## anyDuplicated, append, as.data.frame, as.vector,
## cbind, colnames, do.call, duplicated, eval, evalq,
## Filter, Find, get,
## intersect, is.unsorted, lapply, Map, mapply, match,
## mget, order, paste, pmax, pmax.int, pmin, pmin.int,
## Position, rank,
## rbind, Reduce, rep.int, rownames, sapply, setdiff,
## sort,
## table, tapply, union, unique, unlist, unsplit
##
## Welcome to Bioconductor
##
## Vignettes contain introductory material; view with
## ’browseVignettes()’. To cite Bioconductor, see
## ’citation("Biobase")’, and for packages ’citation
## ("pkgname")’.
##
##
## Attaching package: ’pcaMethods’
##
## The following object is masked from ’package:stats’:
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##
## loadings
##
## Loading required package: igraph
## Loading required package: fdrtool
## Loading required package: multtest
help(package="DiffCorr")

Please note R version 3.1.*. We use several Bioconductor [58] packages on the
following pages. Someof themwill notwork if your R version is not consistentwith
the Bioconductor version. At the time of this writing (June 2015), Bioconductor
release version (3.1) is not consistent with R release version (3.2).
To get started, install the following packages needed for this chapter.

biocLite("GEOquery")
biocLite("affy")
biocLite("genefilter")
biocLite("GOstats")
biocLite("ath1121501.db")

install.packages("spatstat")
install.packages("igraph")

1.3
Constructing Co-Expression (Correlation) Networks from Omics Data – Transcriptome
Data set

In this section, we demonstrate the construction of co-expression networks
using AtGenExpress development data sets [59]. AtGenExpress is a multinational
project designed to quantify the transcriptome of the model plant A. thaliana;
it contains a lot of Affymetrix ATH1 GeneChip (http://www.affymetrix.com/
support/technical/datasheets/arab_datasheet.pdf). Our procedure described
in this chapter has been applied not only to plants but also to bacteria and
animals.

1.3.1
Downloading the Transcriptome Data set

We use data sets from leaf and flower samples from AtGenExpress development
[59]. (NCBI Gene Expression Omnibus (GEO) [60] Accession: GSE5630 and
GSE5632, respectively). For example, see the web site: http://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE5632. To download the data sets, we accessed
the NCBI GEO database via the GEOquery package [61]. NCBI GEO is a public
repository for a wide range of high-throughput data such as transcriptome data
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sets [60]. It includes microarray-based experiments measuring mRNA, genomic
DNA, and protein abundance, as well as nonarray techniques such as NGS data,
serial analysis of gene expression (SAGE), andmass spectrometry proteomic data.
The GEOquery package has a function getGEOSuppFiles to retrieve supplemental
files to be attached to GEO Series (GSE), GEO platforms (GPL), and GEO samples
(GSM).This function “knows” how to get these files based on the GEO accession.
We can obtain the data sets as a raw CEL file and unpack them in the current
directory or the current folder.

library("GEOquery")
## Setting options(’download.file.method.GEOquery’=’auto’)
## AtGenExpress: Developmental series (flowers and pollen)
## Note that the data size is 143.9 Mb.

data <– getGEOSuppFiles("GSE5632")
untar("GSE5632/GSE5632_RAW.tar", exdir="GSE5632")

## AtGenExpress: Developmental series (leaves)
## Note that the data size is 127.5 Mb.
data <– getGEOSuppFiles("GSE5630")
untar("GSE5630/GSE5630_RAW.tar", exdir="GSE5630")

1.3.2
Data Filtering

Before calculation of the correlation relationships, all CEL files must be normal-
ized to adjust technical variations between the arrays. Here, we use Robust Mul-
tichip Average (RMA) normalization via the affy package [62]. For more informa-
tion, see Bolstad et al. [63].

library(affy)
## target files
tgt <– list.files("./GSE5630", pattern="*.CEL.gz",
full.names=TRUE)

## RMA normalization
eset.GSE5630 <– justRMA(filenames=tgt)
##
eset.GSE5630
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 22810 features, 60 samples
## element names: exprs, se.exprs
## protocolData
## sampleNames: GSM131495.CEL.gz GSM131496.CEL.gz …
## GSM131554.CEL.gz (60 total)
## varLabels: ScanDate
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## varMetadata: labelDescription
## phenoData
## sampleNames: GSM131495.CEL.gz GSM131496.CEL.gz …
## GSM131554.CEL.gz (60 total)
## varLabels: sample
## varMetadata: labelDescription
## featureData: none
## experimentData: use ’experimentData(object)’
## Annotation: ath1121501
dim(eset.GSE5630)
## Features Samples
## 22810 60
tgt2 <– list.files("./GSE5632", pattern="*.CEL.gz",
full.names=TRUE)
## RMA normalization
eset.GSE5632 <– justRMA(filenames=tgt2)
eset.GSE5632
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 22810 features, 66 samples
## element names: exprs, se.exprs
## protocolData
## sampleNames: GSM131576.CEL.gz GSM131577.CEL.gz …
## GSM131641.CEL.gz (66 total)
## varLabels: ScanDate
## varMetadata: labelDescription
## phenoData
## sampleNames: GSM131576.CEL.gz GSM131577.CEL.gz …
## GSM131641.CEL.gz (66 total)
## varLabels: sample
## varMetadata: labelDescription
## featureData: none
## experimentData: use ’experimentData(object)’
## Annotation: ath1121501
dim(eset.GSE5632)
## Features Samples
## 22810 66

Utilization of AFFX spike-in control probes to monitor sample throughout
Affymetrix GeneChip. We discard all control probes. Data for all probe sets with
the prefix “s_at” or “x_at” were also omitted as they may recognize transcripts
from different genes, or cross-hybridization.

## filtering probesets with "AFFX", "s_at", and "x_at"
rmv <– c(grep("AFFX", rownames(eset.GSE5632)),

grep("s_at", rownames(eset.GSE5632)),
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grep("x_at", rownames(eset.GSE5632))
)

## The probe designs are the same between GSE5630 and
GSE5632; ’rmv’ can be re-used for GSE5630.•

eset.GSE5632 <– eset.GSE5632[-rmv,]
dim(eset.GSE5632)
## Features Samples
## 21685 66
eset.GSE5630 <– eset.GSE5630[–rmv, ]
dim(eset.GSE5630)
## Features Samples
## 21685 60

1.3.3
Calculation of the Correlation and Visualization of Correlation Networks

For large-scale data matrices, computation of the correlation coefficient is very
time-consuming and memory-filling. The following filter steps significantly re-
duce the number of targets for further statistical analyses via the genefilter package
[64]. We use a filter function for the expression level and the coefficient of varia-
tion.The ratio of the standard deviation and themean of a gene’s expression values
across all samples must be higher than a given threshold.

library(genefilter)
##
## Attaching package: ’genefilter’
##
## The following object is masked from ’package:base’:
##
## anyNA
## RMA returns normalized expression levels in log2 scale.
## Before applying the filter the values must be un-logged.

## GSE5632
e.mat <– 2 ̂ exprs(eset.GSE5632)
## filter: keep genes with cv between .5 and 10,
## and where 20% of samples had exprs. > 100
ffun <– filterfun(pOverA(0.2, 100), cv(0.5, 10))
filtered <– genefilter(e.mat,ffun)
# apply filter, and put expression back on log scale
eset.GSE5632.sub <– log2(e.mat[filtered, ])
dim(eset.GSE5632.sub)
## [1] 4262 66
## GSE5630
e.mat <– 2 ̂ exprs(eset.GSE5630)
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ffun <– filterfun(pOverA(0.2, 100), cv(0.5, 10))
filtered <– genefilter(e.mat,ffun)
# apply filter, and put expression back on log scale
eset.GSE5630.sub <– log2(e.mat[filtered, ])
dim(eset.GSE5630.sub)
## [1] 1905 60

Next, we identify common probe sets between the two data sets.

#### common probesets between GSE5632 and GSE5630
comm <– intersect(rownames(eset.GSE5632.sub),
rownames(eset.GSE5630.sub))•

head(comm)
## [1] "244977_at" "245005_at" "245035_at" "245041_at"
"245052_at" "245088_at"•

length(comm)
## [1] 1224
eset.GSE5632.sub <– eset.GSE5632.sub[comm, ] ## flowers
eset.GSE5630.sub <– eset.GSE5630.sub[comm, ] ## leaves
dim(eset.GSE5630.sub)
## [1] 1224 60
dim(eset.GSE5632.sub)
## [1] 1224 66

We can obtain the correlation matrices for each data set by Spearman’s rank-
order correlation, as in

## corr
GSE5632.cor <– cor(t(eset.GSE5632.sub), method="spearman")
GSE5630.cor <– cor(t(eset.GSE5630.sub), method="spearman")

Visualization on a pseudo-color heatmap is performed as follows (Figure 1.3).

library(spatstat)
##
## spatstat 1.41-1 (nickname: ’Ides of March’)
## For an introduction to spatstat, type ’beginner’
##
## Note: spatstat version 1.41-1 is out of date by more
than 3 months; we recommend upgrading to the latest•
version.•

##
## Attaching package: ’spatstat’
##
## The following object is masked from ’package:genefilter’:
##
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Figure 1.3 Heatmaps of the correla-
tion matrices. Heatmaps of the gene
expression correlation matrices. Hor-
izontal and vertical show the probe

set identifiers in each experiment.
Pink=positive correlation, blue=negative
correlation between the two probe
sets.

## area
##
## The following object is masked from ’package:affy’:
##
## intensity
##
## The following objects are masked from ’package:igraph’:
##
## diameter, edges, vertices
##
## The following object is masked from ’package:pcaMethods’:
##
## leverage
par(mfrow=c(1,2))
plot(im(GSE5632.cor[nrow(GSE5632.cor):1,]),

col=cm.colors(256), main="GSE5632")•
plot(im(GSE5630.cor[nrow(GSE5630.cor):1,]),

col=cm.colors(256), main="GSE5630")•

Construction of the co-expression networks can be started via the igraph pack-
age (http://igraph.org/) and they can be visualized (Figure 1.4a). The threshold
value, rs ≥ 0.95, is set, as in

library(igraph)
## co-expression networks with GSE5632
# SCC >= 0.95
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Figure 1.4 Correlation network visualiza-
tion with the igraph package and Cytoscape.
(a) Correlation networks with the igraph
package. Nodes are the probe sets, and
the edges mean that there are correlation
coefficients over 0.95 between the connected
nodes. We colored the nodes that are in the

degree over 20 (magenta) and those that are
not (green). (b) Correlation networks with
Cytoscape [65]. Cytoscape has functionality
to change the layout of the network interac-
tively. Here, we applied yFiles [66] “Organic”
layout to the network.



1.3 Constructing Co-Expression (Correlation) Networks from Omics Data – Transcriptome Data set 15

g1 <– graph.adjacency(GSE5632.cor, weighted=TRUE,
mode="lower")•

g1 <– delete.edges(g1, E(g1)[ weight < 0.95 ])
g1 <– igraph::simplify(g1, remove.multiple = TRUE, re-
move.loops = TRUE)
g1 <– delete.vertices(g1, which(igraph::degree(g1)<1))
plot(g1, vertex.size=3, edge.width=3, vertex.color=ifelse

(igraph::degree(g1)>20,"Magenta","Green"),•
vertex.label="", layout=layout.kamada.kawai)•

## co-expression networks with GSE5630
# SCC >= 0.95

g2 <– graph.adjacency(GSE5630.cor, weighted=TRUE,
mode="lower")•

g2 <– delete.edges(g2, E(g2)[ weight < 0.95 ])
g2 <– igraph::simplify(g2, remove.multiple = TRUE,

remove.loops = TRUE)•
g2 <– delete.vertices(g2, which(igraph::degree(g2)<1))
plot(g2, vertex.size=3, edge.width=3, vertex.color=ifelse

(igraph::degree(g2)>20,"Magenta","Green"),•
vertex.label="", layout=layout.kamada.kawai)•

The current plot function in the igraph package (http://igraph.org/) generates a
static image and lacks interactivity. To explore the co-expression network in detail
(e.g., zooming, panning, and viewing the weights by clicking), we put aside the R
console for now and use Cytoscape [65]. Cytoscape is an open source software
for visualizing networks and integrating the networks with any type of attribute
data. By using Cytoscape, you can interactively explore the network and change
the visual style (e.g., edge color and width) corresponding to the attribute data
(e.g., edge weight).The igraph package can export igraph object to several types of
graph formats.Here, we export igraph object asGML (GraphModeling Language)
and import GML to Cytoscape.

write.graph(g1, "g1forcy.gml", format="gml")
write.graph(g2, "g2forcy.gml", format="gml")

To import this GML, click the “Import Network From File” toolbar button in
Cytoscape. You can easily change the network layout; here, we applied the yFiles
[66] “Organic” layout to these two networks (Figure 1.4b).

1.3.4
Graph Clustering

Various graph clustering algorithms including Markov clustering [23] and
DPClus [24] were applied in Arabidopsis and rice microarray data sets to find
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co-expression modules, clusters consisting of densely connected co-expressed
genes [25–29]. Graph clustering algorithms include hierarchical clustering,
density-based and local searches, and other optimization-based clustering [21].
Such network-module-based approaches are now widely used in attempts to
predict new genes involved in biological processes [17, 67]. Other network-based
approaches have been applied to annotate unknown genes [68], to explore
possible genes involved in carbon/nitrogen-responsive machineries [69], and to
prioritize candidate genes for a wide variety of traits [70]. We use a Fast Greedy
modularity optimization algorithm [71] for finding gene co-expression modules.
The igraph package implements this algorithm as a fastgreedy.community func-
tion. The algorithm runs in essentially linear time, O(n log2n), on a network with
n vertices and reduces computation time.

g1.fc <– fastgreedy.community(g1)

sizes(g1.fc)

## Community sizes

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

## 41 43 23 5 4 3 3 3 3 2 2 2 4 5 2 2 2 2 2 2 2 2 3 2 2

## 26 27 28 29 30 31 32 33 34

## 3 3 2 4 2 2 2 4 2

g2.fc <– fastgreedy.community(g2)

sizes(g2.fc)

## Community sizes

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

## 195 63 112 12 16 15 11 5 5 2 2 2 2 5 2 2 2 2

## 19 20 21 22 23 24 25 26 27 28

## 2 2 3 2 3 2 2 2 2 2

We can access each module member easily as in

## accessing module 1 in GSE5632
mod1 <– membership(g1.fc)[membership(g1.fc)==1]
## extracting probeset names in module 1
mod1.p <– names(mod1)
## accessing module 2 in GSE5632
mod2 <– membership(g1.fc)[membership(g1.fc)==2]
mod2.p <– names(mod2)
## accessing module 3 in GSE5632
mod3 <– membership(g1.fc)[membership(g1.fc)==3]
mod3.p <– names(mod3)

We detected 34 modules (or communities) in the co-expression networks with
GSE5632 (flower samples) and 28 modules in the co-expression networks with
GSE5630 (leaf samples). We focus on subnetworks in the top three clusters of the
graph clustering results. To assess cluster fidelity, Gene Ontology (GO) term en-
richment analyses were performed.
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Figure 1.5 Workflow for constructing a co-expression network from microarray data and for
evaluating detected network modules by Gene Ontology (GO) term enrichment analysis.

1.3.5
Gene Ontology Enrichment Analysis

Enrichment analysis can be combined with pathway analysis to evaluate whether
a particular molecular group is significantly over- or underrepresented. Examples
are gene set enrichment analysis [72] and other functional enrichment analyses
usingGO and biochemical pathways (for comprehensive reviews, see [73] or [74]).
Here, we use theGOstats package [75] to performGO term enrichment analysis of
the detected co-expressionmodules (Figure 1.5). GOstats provides an easy-to-use
set of functions for such enrichment analysis for GO terms.

library(GOstats)
## Loading required package: Category
## Loading required package: stats4
## Loading required package: Matrix
## Loading required package: AnnotationDbi
## Loading required package: GenomeInfoDb
## Loading required package: S4Vectors
##
## Attaching package: ’S4Vectors’
##
## The following object is masked from ’package:igraph’:
##
## compare
##
## Loading required package: IRanges
##
## Attaching package: ’IRanges’
##
## The following object is masked from ’package:Matrix’:
##
## expand
##



18 1 Using the DiffCorr Package to Analyze and Visualize Differential Correlations

## The following objects are masked from ’package:spatstat’:
##
## reflect, shift
##
## The following object is masked from ’package:igraph’:
##
## simplify
##
## Loading required package: GO.db
## Loading required package: DBI
##
## Loading required package: graph
##
## Attaching package: ’graph’
##
## The following object is masked from ’package:spatstat’:
##
## edges
##
## The following objects are masked from ’package:igraph’:
##
## degree, edges
##
##
## Attaching package: ’GOstats’
##
## The following object is masked from
’package:AnnotationDbi’:•

##
## makeGOGraph
library(GO.db)
library(ath1121501.db)
## Loading required package: org.At.tair.db
ls("package:ath1121501.db")
## [1] "ath1121501" "ath1121501.db"
## [3] "ath1121501_dbconn" "ath1121501_dbfile"
## [5] "ath1121501_dbInfo" "ath1121501_dbschema"
## [7] "ath1121501ACCNUM" "ath1121501ARACYC"
## [9] "ath1121501ARACYCENZYME" "ath1121501CHR"
## [11] "ath1121501CHRLENGTHS" "ath1121501CHRLOC"
## [13] "ath1121501CHRLOCEND" "ath1121501ENZYME"
## [15] "ath1121501ENZYME2PROBE" "ath1121501GENENAME"
## [17] "ath1121501GO" "ath1121501GO2ALLPROBES"
## [19] "ath1121501GO2PROBE" "ath1121501MAPCOUNTS"
## [21] "ath1121501ORGANISM" "ath1121501ORGPKG"
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## [23] "ath1121501PATH" "ath1121501PATH2PROBE"
## [25] "ath1121501PMID" "ath1121501PMID2PROBE"
## [27] "ath1121501SYMBOL"
?ath1121501ACCNUM
## starting httpd help server … done
## gene universe
x <– ath1121501ACCNUM
mapped.probes <– mappedkeys(x)
length(mapped.probes)
## [1] 20335
geneUniv <– AnnotationDbi::as.list(x[mapped.probes])

## target probes
mod1.p.gene <– unique(unlist(AnnotationDbi::as.list

(x[mod1.p])))•
mod2.p.gene <– unique(unlist(AnnotationDbi::as.list

(x[mod2.p])))•
mod3.p.gene <– unique(unlist(AnnotationDbi::as.list

(x[mod3.p])))•

## mod1
hgCutoff <– 0.0001
params <– new("GOHyperGParams",

geneIds=mod1.p.gene,
universeGeneIds=geneUniv,
annotation="ath1121501",
ontology="BP",
pvalueCutoff=hgCutoff,
conditional=FALSE,
testDirection="over")

## Warning in makeValidParams(.Object): converting univ
from list to atomic•

## vector via unlist
## Warning in makeValidParams(.Object): removing

duplicate IDs in•
## universeGeneIds
hgOver <– hyperGTest(params)

df <– summary(hgOver)
names(df)
## [1] "GOBPID" "Pvalue" "OddsRatio" "ExpCount"

"Count" "Size"•
## [7] "Term"
pvalues(hgOver)[1:3]
## GO:0006334 GO:0034728 GO:0006325
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## 5.932371e-15 5.932371e-15 8.885765e-15
## reporting the results by GO term enrichment analysis
htmlReport(hgOver, file="res_mod1.html")
## enriched gene with "nucleosome assembly" terms in mod1

## mod2
params <– new("GOHyperGParams",

geneIds=mod2.p.gene,
universeGeneIds=geneUniv,
annotation="ath1121501",
ontology="BP",
pvalueCutoff=hgCutoff,
conditional=FALSE,
testDirection="over")

## Warning in makeValidParams(.Object): converting univ
from list to atomic•

## vector via unlist
## Warning in makeValidParams(.Object): removing duplicate
IDs in
## universeGeneIds
hgOver <– hyperGTest(params)
## reporting the results by GO term enrichment analysis
htmlReport(hgOver, file="res_mod2.html")
## enriched gene with "cell proliferation" terms in mod2

## mod3
params <– new("GOHyperGParams",

geneIds=mod3.p.gene,
universeGeneIds=geneUniv,
annotation="ath1121501",
ontology="BP",
pvalueCutoff=hgCutoff,
conditional=FALSE,
testDirection="over")

## Warning in makeValidParams(.Object): converting univ
from list to atomic•

## vector via unlist
## Warning in makeValidParams(.Object):
removing duplicate IDs in•

## universeGeneIds
hgOver <– hyperGTest(params)
## reporting the results by GO term enrichment analysis
htmlReport(hgOver, file="res_mod3.html")
## enriched gene with "RNA methylation" terms in mod3
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Figure 1.6 HTML report of Gene Ontology (GO) enrichment analysis. Results of network
Module 1 by GO enrichment analysis (filename: res_mod1.html). GO biological process on-
tology terms are listed in order of predominance in the cluster module.

Please see the resultant HTML files by using a web browser. The predominant
function in the biological process within the three modules was assessed. Mod-
ule# 1 using flower samples (GSE5632) was involved in “nucleosome assembly”
within the “Biological Process” domain. Modules 2 and 3 were related to “cell pro-
liferation” and “RNA methylation,” respectively (Figure 1.6).

1.4
Differential Correlation Analysis by DiffCorr Package

1.4.1
Calculation of Differential Co-Expression between Organs in Arabidopsis

We calculate differential co-expression between leaf and flower samples in
AtGenExpress development [59]. To test whether two correlated modules in
co-expression networks are significantly different, we first calculate the eigen-
molecule or “eigengene” [57] in the network as a representative correlation
pattern within each module. The eigen-molecule is based on the first principal
component (PC) of a data matrix of a module extracted from HCA using the
hclust function in R. The get.eigen.molecule function uses the pcaMethods pack-
age [76] to perform principal component analysis (PCA) and returns the top 10
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PCs (default). Using these eigen-molecule modules, we can also test differential
correlations between modules in addition to pairwise differential correlations
between molecules (Figure 1.7a).

## Clusters on each subset
dim(eset.GSE5632.sub)
## [1] 1224 66
dim(eset.GSE5630.sub)
## [1] 1224 60
data <– cbind(eset.GSE5632.sub, eset.GSE5630.sub)
hc.flowers <– cluster.molecule(data[, 1:66],
method="pearson", linkage="average") ## 66•
flowers samples•

hc.leaves <– cluster.molecule(data[, 67:126],
method="pearson", linkage="average") ## 60•
leaves samples•

## Cut the tree at a correlation of 0.6 using cutree
function•

#library(dynamicTreeCut)
g1 <– cutree(hc.flowers, h=0.4)
g2 <– cutree(hc.leaves, h=0.4)

table(g1[table(g1)!=1])
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

## 2 185 242 4 6 121 104 2 4 39 6 12 5 3 8 2 2 4

## 19 20 21 22 23 24 25 28 29 30 31 32 33 34 35 36 37 38

## 7 1 7 2 10 9 4 1 5 1 8 1 1 1 2 4 3 1

## 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54 55 57 58

## 3 3 9 2 3 2 2 3 1 1 2 3 11 3 1 3 2 1

## 59 60 61 62 63 64 65 66 67 68 69 70 71 73 75 76 77

## 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 2

table(g1)

## g1

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

## 3 251 339 5 8 162 133 2 6 52 7 14 6 6 11 6 2 6

## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

## 7 1 11 2 16 10 8 2 2 1 7 1 9 3 1 3 2 5

## 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

## 3 2 4 7 17 2 4 3 3 4 1 2 2 2 5 15 4 1

## 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

## 4 1 2 2 1 1 2 1 1 2 2 1 1 1 1 2 1 1

## 73 74 75 76 77

## 1 1 1 1 2

table(g2)

## g2

## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

## 3 1 279 10 271 392 13 1 4 13 3 45 4 40 3 7 10 2

## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
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## 3 10 7 9 1 9 1 8 6 3 2 4 4 4 2 3 3 4

## 37 38 39 40 41 42 43 44 45 46 47 48 49

## 2 6 2 2 1 6 1 7 3 4 3 1 2

##
res1 <– get.eigen.molecule(data, groups=g1,

whichgroups=c(1:10), methods="svd", n=2)•
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
res2 <– get.eigen.molecule(data, groups=g2,

whichgroups=c(11:20), methods="svd", n=2)•
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
###################################
## Visualizing module networks
###################################
gg1 <– get.eigen.molecule.graph(res1)
plot(gg1, layout=layout.fruchterman.reingold(gg1))

write.modules(g1, res1, outfile="module1_list.txt")

gg2 <– get.eigen.molecule.graph(res2)
plot(gg2, layout=layout.fruchterman.reingold(gg2))

write.modules(g2, res2, outfile="module2_list.txt")

R plot function still lacks interactivity here. However, you might want to see
the nodes in the modules in the same network view. Here, we also use Cytoscape
[65] to visualize the module network with nested network file format (NNF).
For more details about NNF, please refer to the Cytoscape user manual (http://
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GSE5630GSE5632

(a)

(b)

Figure 1.7 Module network visualization
with the DiffCorr package and Cytoscape.
(a) Differentially co-expressed module net-
works with the DiffCorr package. Nodes are
the probe set modules; the edges mean
that there is a significant difference in

co-expression between two nodes. (b) Dif-
ferentially co-expressed module networks
with Cytoscape. To explore panel (a) inter-
actively, we imported panel (a) to Cytoscape
and applied yFiles “Hierarchic” layout to the
network.

manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#nnf).
You can see the nodes in the modules and change the layout when you import the
NNF to Cytoscape (Figure 1.7b).

write.graph(gg1, "tmp1.ncol", format="ncol")
write.graph(gg2, "tmp2.ncol", format="ncol")
tmp1 <– read.table("tmp1.ncol")
tmp2 <– read.table("tmp2.ncol")
tmp1$V3 <– "pp"
tmp2$V3 <– "pp"
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tmp1$V4 <– "gg1forcy"
tmp2$V4 <– "gg2forcy"
tmp1 <– tmp1[, c("V4", "V1", "V3", "V2")]
tmp2 <– tmp2[, c("V4", "V1", "V3", "V2")]
write.table(tmp1, file="gg1forcy.nnf", row.names=FALSE,

col.names=FALSE)•
write.table(tmp2, file="gg2forcy.nnf", row.names=FALSE,

col.names=FALSE)•
module1_list <– read.table("module1_list.txt", skip=1)
module2_list <– read.table("module2_list.txt", skip=1)
module1_list$V1 <– sub(" ̂ ", "Module", module1_list$V1)
module2_list$V1 <– sub(" ̂ ", "Module", module2_list$V1 -
10)
write.table(module1_list, file="gg1forcy.nnf", append=TRUE,

row.names=FALSE, col.names=FALSE)•
write.table(module2_list, file="gg2forcy.nnf", append=TRUE,

row.names=FALSE, col.names=FALSE)•

You can inspect groups of interest graphically. For example, we look at groups
21 and 24.

plotDiffCorrGroup(data, g1, g2, 21, 24, 1:66, 67:126,
scale.center=TRUE, scale.scale=TRUE,
ylim=c(−5,5))

The genes were grouped according to their expression patterns in each
subtype (flower or leaf samples) using the cluster.molecule function. We used
(1− correlation coefficient) as a distance measure (the cutoff value was a coeffi-
cient of 0.6) based on the cutree function.We then visualized the module network
using the get.eigen.molecule and get.eigen.molecule.graph functions (Figure 1.8).
The comp.2.cc.fdr function provides the resulting pairwise differential

co-expressions from a data set.

## Export the results (FDR < 0.05)
comp.2.cc.fdr(output.file="Transcript_DiffCorr_res.txt",

data[,1:66], data[,67:126], threshold=0.05)•
## Step 1… determine cutoff point
## Step 2… estimate parameters of null distribution and

eta0•
## Step 3… compute p-values and estimate empirical

PDF/CDF•
## Step 4… compute q-values and local fdr
## Step 5… prepare for plotting

##
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Gene expression patterns between two conditions

Figure 1.8 An example of gene expression patterns between two conditions.

## Step 1… determine cutoff point
## Step 2… estimate parameters of null distribution and
eta0•

## Step 3… compute p-values and estimate empirical
PDF/CDF•

## Step 4… compute q-values and local fdr
## Step 5… prepare for plotting

##
## Step 1… determine cutoff point
## Step 2… estimate parameters of null distribution and
eta0•

## Step 3… compute p-values and estimate empirical
PDF/CDF•

## Step 4… compute q-values and local fdr
## Step 5… prepare for plotting

Regarding local fdr methods, see the original paper [56].

1.4.2
Exploring the Metabolome Data of Flavonoid-Deficient Arabidopsis

Flavonoid-deficient and wild-type Arabidopsis has been investigated using gas
chromatography coupled with mass spectrometry (GC–MS)-based metabolite
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profiling [33, 77]. The mutant lacks gene encoding chalcone synthase (CHS, EC
2.3.1.74), a key enzyme of the flavonoid biosynthesis pathway. The CHS mutant
transparent testa 4 (tt4) cannot synthesize any flavonoids, plant secondary
metabolites that function as protectants against ultraviolet B (UV-B) irradiation.
This data set from Kusano et al. [77] consists of the metabolite profiles of 37
aerial part samples, including two genotypes: 17 Columbia-0 wild-type (Col-0)
and 20 tt4 plants. The data also contain a wide-range of primary metabolites
including amino acids, organic acids, fatty acids, sugars, and sugar alcohols. The
metabolome data set is available in the DiffCorr package, as in

data(AraMetLeaves)
dim(AraMetLeaves)
## [1] 59 50

The data matrix, AraMetLeaves, contains 59 metabolites (rows) and 50 obser-
vations (columns). For a comparison with data from the aerial parts [77], we se-
lected 59 commonly detectedmetabolites in both data sets usingMetMask (http://
metmask.sourceforge.net) [78]. Note that another genotype, called mto1 (methio-
nine overaccumulation 1), exists in the data matrix. For more details, see also the
help page of AraMetLeaves.

colnames(AraMetLeaves)

## [1] "Col0.1" "Col0.2" "Col0.3" "Col0.4" "Col0.5" "Col0.6" "Col0.7"

## [8] "Col0.8" "Col0.9" "Col0.10" "Col0.11" "Col0.12" "Col0.13" "Col0.14"

## [15] "Col0.15" "Col0.16" "Col0.17" "tt4.1" "tt4.2" "tt4.3" "tt4.4"

## [22] "tt4.5" "tt4.6" "tt4.7" "tt4.8" "tt4.9" "tt4.10" "tt4.11"

## [29] "tt4.12" "tt4.13" "tt4.14" "tt4.15" "tt4.16" "tt4.17" "tt4.18"

## [36] "tt4.19" "tt4.20" "mto1.1" "mto1.2" "mto1.3" "mto1.4" "mto1.5"

## [43] "mto1.6" "mto1.7" "mto1.8" "mto1.9" "mto1.10" "mto1.11" "mto1.12"

## [50] "mto1.13"

?AraMetLeaves

The differential correlation between tt4 and Col-0 can be obtained as follows:

comp.2.cc.fdr(output.file="Met_DiffCorr_res.txt",
log10(AraMetLeaves[,1:17]),

## Col-0 (17 samples)•
log10(AraMetLeaves[,18:37]),

## tt4 (20 samples)•
method="pearson",
threshold=1.0)

## Step 1… determine cutoff point
## Step 2… estimate parameters of null distribution and

eta0•
## Step 3… compute p-values and estimate empirical

PDF/CDF•
## Step 4… compute q-values and local fdr
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## Step 5… prepare for plotting

##
## Step 1… determine cutoff point
## Step 2… estimate parameters of null distribution and
eta0•

## Step 3… compute p-values and estimate empirical
PDF/CDF•

## Step 4… compute q-values and local fdr
## Step 5… prepare for plotting

##
## Step 1… determine cutoff point
## Step 2… estimate parameters of null distribution and
eta0•

## Step 3… compute p-values and estimate empirical
PDF/CDF•

## Step 4… compute q-values and local fdr
## Step 5… prepare for plotting

As shown in the result, ASCII file “Met_DiffCorr_res.txt,” the DiffCorr package
detected significant differential correlations between sinapate and aromatic
metabolites in tt4 and wild-type plants (Figure 1.9). As reported previously
[77], aromatic metabolites in the shikimate pathway, namely sinapate, pheny-
lalanine (Phe), and tyrosine (Tyr), were significantly correlated in tt4 but not in
wild-type plants. This implies a linkage with the role of sinapoyl-malate against
UV-B irradiation in the flavonoid-less tt4 mutant (Figure 1.10). We showed
that Arabidopsis attempts to compensate for a deficiency in either flavonoid
or sinapoyl-malate production by over-accumulating alternative protectants
[79]. These results suggest that DiffCorr can be applied to not only transcrip-
tomic data, but also to other postgenomics data types including metabolomic
data.

Correlation 
coefficient in 
condition 1

A typical result of pair-wise differential correlations from DiffCorr

Correlation 
coefficient in 

condition 2

Difference 
of two 

correlations

Local FDR of 

differential
correlations

Figure 1.9 A typical result of pairwise differential correlations from the DiffCorr package.
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Figure 1.10 Interconnections in the path-
ways of central metabolism and aromatic
amino acids for WT (a) and tt4 plants (b).
The metabolites whose levels changed less
than 10% (p< 0.05) in tt4/WT are indicated
with orange characters in (b); the metabo-
lites with black characters in (b) exhibited
no significant changes; the metabolites
with gray characters were undetectable.
The gray arrows indicate the metabolic
pathways. The curved lines show correla-
tions between metabolite pairs. The thick-
ness of the edges between the metabolites
represents the significance of correlations

(rMet > 0.88). Although the sinapoylmalate
level in tt4 did not increase, correlations of
malate with aromatic compounds were in-
tensified in the tt4 mutant, indicating a pos-
sible adaptive response to UV stress by the
flavonoid-deficient tt4 mutant by reconfig-
uration of the networks in tt4. Inset photo
images show that tt4 plants exhibit yellow
seed color due to the nonaccumulation of
proanthocyanidins in the seed coat. Abbrevi-
ations: CHS, chalcone synthase; p-coumarate,
4-hydroxycinnamic acid; Phe, phenylalanine;
and Tyr, tyrosine.

1.4.3
Avoiding Pitfalls in (Differential) Correlation Analysis

The methods described here may allow researchers to gain a deeper understand-
ing of condition-associated changes in molecular expression patterns (e.g., a gene
co-expression) beyond the differential expression seen under two conditions. In
transcriptome analysis using microarrays and RNA-seq, typical experiments are
performed with a small number, for example, three biological replicates. In gen-
eral, correlation analysis including differential correlation requires large sample
sizes (e.g., larger than 10). The significance level (e.g., p- or local fdr values) of the
correlation should be calculated to remove unreliable correlations because Pear-
son correlation outliers can have a strong effect on the estimation. Scatter plots
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must be used to visualize the overall pattern of correlations and each scatter plot
must be inspected carefully. The correlation value must NEVER be used to show
causation, because a correlation does not guarantee causation. Although it is a
nontrivial task to identify causal regulatory systems from correlation patterns, the
changes in correlation patterns provide a clue for important aspects of cellular reg-
ulations, indicating changes in regulatory systems across different physiological
states.

1.5
Conclusion

With these example cases, we have described the power of the R package Dif-
fCorr [36] to estimate differential networks in postgenomic data. This package
affords users a simple and effective framework to detect differential correlations
between two conditions in omics data. It is based on Fisher’s z-test and makes it
simple to calculate differential correlations. In this chapter, the concept of dif-
ferential correlation approaches was introduced. We have described the back-
ground of our and some related works. We also highlighted the potential pitfalls
in the correlation approach. The differential network approach is useful for the
first step toward inferring causal relationships and for detecting biomarker can-
didates. DiffCorr based on the concept of “differential network biology” [22, 31]
is suitable not only for transcriptomic and metabolomic data, but also for pro-
teomic data, genome-wide association studies, and integrated omics data [8, 80].
In the near future,mining differential correlation patternsmay bemore significant
biologically.
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