Index

a
acetonitrile polymerization 304
active inlet valve (AIV) 233, 304
active pharmaceutical ingredients (API) 313
adaptive thermal effect compensation (ATEC)
parallel dual-piston design 137
piston movement 135
retention time precision 137
adenosine-5’-monophosphate (AMP) 256
Agilent systems 277, 306
Agilent Technologies 288
analytical range enlargement 321
autosampler techniques 319
bio-inert HPLC systems 327
biopharmaceutical applications 327
DAD techniques 319
dedicated and "specialized" UHPLC systems 326
detector linearity 327
established methods 323
faster separations 319
GPC 321
Heart-Cutting 2D LC 322
higher user-friendliness 323
HILIC 321
HPLC systems 319
IEX 321
1290 Infinity II Multisampler 319
ISET 325
laboratory’s efficiency 321
multiple Heart-Cutting 2D-LC system 323
NP 321
“peak parking” technique 323
quaternary gradient systems 325
refractoric and thermal effects, elimination of 319
reversed phase chromatography 321
SEC 321
SFC-UHPLC hybrid system 322
smart software interface 323
software-controlled solutions 326
Allotrope Foundation 277
antineoplastic drugs 287, 295
APCI, see atmospheric pressure chemical ionization (APCI)
ApexTrack Integration Algorithm in Empower 272
atmospheric pressure chemical ionization (APCI) 173, 204
autosampler column compartment module (ACC-3000) 340
autosamplers
advantages and disadvantages 40
design 35
fixed-loop 36
flow-through 38
injection valves 239
materials 238
practical aspects 241
sample needles, vails and closures 238
axial mixing 105
ballistic gradients 137
binary pump 103, 338
Blend Assist 326
bovine serum albumin (BSA) 250, 255
cam driven pumps 124, 125
capillary tubing 243–245
charged aerosol detection (CAD) 344
chromatographic laboratory, UHPLC application
(bio)polymers, separation of 316
2D-HPLC 315
analytes 312
conventional HPLC 312
dissolution tests, pharmaceutical industry 313
LOQs 312
method development and optimization 314
restrictions 313
solid phase extraction 312
typical “classical” liquid chromatographic analysis 314
chromatography data systems (CDS) 333
data exchange 277
ease of use 274
functionality and handling 271
global network solution 278
import and export, data 278
instrument control 273
integration 272
multilingual 276
operating system 274
software placement 278
user interface 275
Chromeleon software 216, 279, 346
Chromeleon’s SmartPeaks Integration 272
ChromSquaresoftware 216
column oven 41
column performance testing 95
column thermostats
equilibration 52
frictional heat
band broadening 68
concentration profiles 67
decompression cooling 67
HPLC separation 65
hydraulic power 62
isocratic UHPLC separation 63
isothermal and adiabatic mode 67
radial temperature gradient 64
retention processes 67
temperature distributions 64
mobile phase temperature 57
radial temperature gradients 54
separation efficiency 53
separation temperature 52
temperature control 53
thermal modes 52, 55
thermostatic control 68
Comma-separated Values (CSV) 283
coupled phase system 294
crevise corrosion 226
cryo-focusing technique 346
cycle time 179
cyclophosphamide 211
dead volumes 2, 20
diamond-like carbon (DLC) 240, 341
diode array detectors (DAD) 309, 319
Dionex 335
Dionex UltiMate 3000 216
direct nano-flow generation technique 335
dispersion volume 2, 177, 288, 297, 345
Dolan method 148
Dual Needle Technology 320
duty cycle time 179
dwell volume, see gradient delay volume
dynamic mixers 150
EASY-nLC system 335
Eksigent control software 216
electrospray ionization (ESI) 86, 204, 297
Empower® 308, 310, 333
enrichment technique 293
environmental screening analyses 214
erosion corrosion 226
erucamide 230
ESI, see electrospray ionization (ESI)
ethylene chloro-trifluoroethylene copolymer (ECTFE) 230
ethylene diaminetetraacetic acid (EDTA) 256, 260
ethylene-tetrafluoroethylene (ETFE) 240
evaporative light scattering detectors (ELSD) 344
extra column volume 2, 30, 34, 43, 46
extra-column dispersion, UHPLC systems
column peak volume 76
column efficiency and resolution 74
column performance testing factors 73
fast gradient separations 96
fittings and connections 83
gradient separations 92
heat exchangers 84
high gradient separations 96
injection system 79
isocratic separations 90, 95
mass spectrometers 86
optical detectors 85
sources 78
tubing 81
volume with column 89
volume without column 88

f
fast chromatography 316
fast gradient separations 96
fast separation 2, 12
ferrule-based systems 338
fixed-loop autosamplers 36, 40, 41
flow-through autosamplers 38, 40, 41
flow-through-needle (FTN) design 79, 80, 89, 90, 95, 340
fluorinated ethylene propylene (FEP) 230
forced air principle 342
forced air thermostats 55, 56
gas osmosis 301
GC Image software 216, 217
gel permeation chromatography (GPC) 321
“gel plot” 346
good separation 2
gradient delay volume (GDV) 34, 102, 342
autosampler fluidics 156
axial vs. longitudinal mixing 158
binary pumps 103
Dolan test 148, 156, 158
dwell volumes 161
dynamic mixers 150
gradient shaping 156
inlet-weaver 153
longitudinal mixing 152
marker pulse method 145
microfluidic mixers 153
mixer damping effectiveness 159
pump blocks 154
quaternary pumps 103
radial mixing 151, 152
rules 144
SpinFlow™ mixer 158
static mixers 150
trifluoroacetic acid (TFA) gradient amplitude 163
baseline detector for mixers 164
baseline ripple amplitude 165
HPG pump 165, 166
LPG pumps 167
pre-mixing 166
UV-spectra 162
UHPLC system
acetone 284
backpressure regulator 282
chromatogram 282
CSV 283
elevated temperatures 290
fused silica capillary 284
high pressure mixing system 281
high throughput separations 285
inline degasser 284
LVI 293
method transfer 287
gradient delay volume (GDV) (contd.)
 no-injection option 282
 signal intensity 283
 switching points 284
 UHPLC separation 1 mm ID columns 296
 UV-absorbing substance 281
 variable flow-through autosampler 282
gradient dwell volume, see gradient delay volume (GDV)
gradient elution
 cam driven pump 124, 125
 column stress and wear 115
 discontinuous movement 126
 excess volume in mixing solvents 107, 109
HPG pump
 loop pre-compression 131
 pulse damper 128, 129
 stroke cycles 127
instrumental effects on outside pump 112
linear driven pump 124
LPG pump, immanent discontinuous generation 132
physicochemical effects, high pressure on liquids 117
protein with mobile phase mixing ripples 168
serial 1 1/2-cylinder pump 122
 single cylinder pumps 122
 solvent degassing 120
 speed up and down cycles 126
 thermal effects in pumps 135
 ultrafast method, steep/ballistic gradients 137
gradient mixers 103, 126, 141, 150
gradient peak compression 115
gradient proportioning valve (GPV) 229, 231, 305
gradient separations 6, 9, 92
graphical user interface technique (GUI) 276

h
 heat exchangers 84
 helium sparging 301
Hewlett Packard 1090 system 305
High Dynamic Range (HDR) 327
high gradient separations 96
high performance liquid chromatography (HPLC)
 autosampler, principles 306
 conventional LC system 330
 data processing 331
 degasser, principles 301
 different manufacturers and concepts 302
Ion Mobility 330
mass spectroscopic detectors 329
Peak Tracking 332
photodiode array detectors 330
pump, principles 303
‘ready to use’ solution 331
stationary phases 329
supercritical fluid chromatography 331
UV detector, principles 308
web based application 333
high pressure gradient (HPG) pump 103, 105
high pressure mixing system 30, 32
human serum albumin (HSA) 255
hydrophilic interaction liquid chromatography (HILIC) 293, 321
HyperCarb 205, 293
HyperCarb precolumn 294

i
 ifosfamide 211, 285
 immobilized metal affinity chromatography (IMAC) 256
1290 Infinity II Multicolumn Thermostat 320
inlet-weaver 153
inline degasser 302
Instrument Control Frameworks (ICF) 273
integrated modularity 336
intelligent compensation algorithm, see adaptive thermal effect compensation (ATEC)
Intelligent System Emulation Technology (ISET) 325
ion trap mass spectrometry 213
isocratic separations 5, 90, 95
JetWeaver 153
Laboratory Information Management System (LIMS) 278
LabSolutions software 216
large volume direct injection (LVDI) 205
large volume injection (LVI) 293
LC-MS hyphenation 176, 183, 185, 190
linear driven pump 124
liquid baths 54, 55
liquid chromatographic laboratory, UHPLC application 316
loop time 179
low pressure gradient (LPG) pump 103, 105
low pressure mixing system 30, 32
lower limits of quantification (LOQ) 33, 312
LVDI, see large volume direct injection (LVDI)
marker pulse method 145
matrix effect chromatogram 194
metering pump 307
microfluidic mixers 153
Microsoft System Center Server 279
mobile Chromeleon software app 337
mobile vs. column phase temperature 57
monolithic nano-HPLC column 190
MRM, see multiple reaction monitoring (MRM)
multi-channel gradient valve (MCGV) 305
multiple reaction monitoring (MRM) 175, 179, 182, 185, 193
multiple wave detector (MWD) 309
Multiwash technology 320
Nexera method scouting system 332
Nexera series 216
non-target screening 172
normal phase chromatography (NP) 203, 253, 321
OpenLab Laboratory Software Suite 327
OpenLAB® 333
“Open Source Software” 276
optical detectors 85
orthogonal separation system 215
outgassing 121
parallel pump 124, 125, 340
passive layer
BSA 250
chromium alloys
MP35N 252
stainless steel 251
corrosion resistance 249
titanium alloys 252
PGC, see porous graphitic carbon (PGC)
phosphate buffered saline (PBS) 251
pitting corrosion 226
poly aryl ether ketone (PAEK) 240
polyether ether ketone (PEEK) 230, 246
polytetrafluoroethylene (PTFE) 230
porous graphitic carbon (PGC) 205, 293
pre-column filters 114
Proxeon 335
pulled loop design 36, 37
pumps
higher compression heat 231
inlet- and outlet valves 231
piston seal 236
pistons 236
practical aspects 237
pump head
stainless steel 233
titanium alloys 235
pushed loop design 36, 37

q
quality by design (QbD) models 332
quaternary pump 103

r
radial mixing 105
radial temperature gradients 54, 59
retention time dependent MRM mode 181
retention time independent MRM mode 180
reversed-phase chromatography 293
Rheodyne 304, 306, 307
Ribbon Design 275

s
screening approach, UHPLC with mass spectrometry 185
serial 1 1/2-cylinder pump 122
shifted gradients 215, 323
Shimadzu i-Series/Controller Screen 333
single piston pumps 122
size exclusion chromatography (SEC) 321
SmartMix™ device 152
"software-islands" 273
solid phase extraction (SPE) 293, 348
solvent degassing 121
SpinFlow mixer 158, 160
static mixers 150
steep gradients 138
still air principle 343
stop-flow technique 202, 214
SunShell 205
supercritical fluid chromatography (SFC) 322
Supercritical Fluid Extractor (SFE) 332
suspected-target screening 172, 185
target analysis 171
multicomponent method 179
multiple reaction monitoring (MRM) mode 179
Orbitraps 178
retention time dependent MRM mode 181
retention time independent MRM mode 180
target scan time 182
Teflon AF technology 345
thermal effect compensation 135
thermal modes 55
Thermo 277
Thermo Chromeleon software 274
Thermo Fisher Scientific individual instrument components
column thermostatting 342
fast and ultra-efficient UHPLC separations 344
flow delivery device 339
injector and liquid handling devices 340
2D-LC and alternative ways 346
total system requirements
nanoLC systems 335
UltiMate 3000, Vanquish 336
viper based system tubing 338
thermostatic control 68
total ion current (TIC) chromatogram 186, 207
triple quadrupole mass spectrometers 178, 185
two-dimensional liquid chromatography HPLC 193
instrument manufacturers
Agilent 216
Sciex 216
Shimadzu 216
Thermo/Dionex 216
waters 216
method development and gradient programming 215
miniaturized LC x LC system
 column dimension and modulation 205
 gradient programming and overall analysis time 206
 mass spectrometry 206
 mobile phase and temperature 205
 stationary phase 204
 technical platform 204
 modulation
 comprehensive online 2D LC 200
 online heart-Cut 2D LC 200
 stop-flow and offline LC x LC 202
 MS/MS functionality 211
multiple heart cut/selected LC x LC approach 214
offline LC x LC vs. online LC x LC 211
online LC x LC, practical problems of
dilution 203
 high flowrate 203
 mass spectrometry 203
 solvent systems 203
peak capacity
 comprehensive 2D LC (LC x LC) 197
 Heart-Cut 2D LC (LC–LC) 196
 one-dimensional liquid chromatography 195
 peak vs. 218
real sample measurement 209
reference standard 207
software 217
stop flow LC x LC 214
system set-up 217

U
UHPLC hyphenation with mass spectrometry
 chromatographic parameter 174
 column selection and dimension 176
 interface and flow rate 173
 miniaturization 189
 MS parameter optimization 174
 non-target screening 172
 screening approach
 acquisition cycle 187
 data dependent experiments 186
 Orbitraps 186
 source databases 186
 system designs 187, 188
 workflow 186
 suspected-target screening 172
 system design 177
 target analysis 171
 multicomponent method 179
 multiple reaction monitoring (MRM) mode 179
 Orbitraps 178
 retention time dependent MRM mode 181
 retention time independent MRM mode 180
UHPLC systems, see ultra high performance liquid chromatography (UHPLC)
UltiMate 3000 Corona Veo model 344
UltiMate 3000 RSLCnano 335
UltiMate 3000 system 346
 ultra high performance liquid chromatography (UHPLC)
 advantages 6, 22
 analyte and chemical modification 257
 fused-silica and PAEK/PEEK 257
 metal ions 256
 phosphorylated analytes 256
 protein adsorption 255
autosamplers
 advantages and disadvantages 40
 design 35
 fixed-loop 36
 flow-through 38
 injection valves 239
 materials 238
 practical aspects 241
 sample needles, vails and closures 238
 baseline separation 4
 capillaries and fittings 47
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ultra high performance liquid chromatography (UHPLC) (contd.)</td>
<td>74</td>
</tr>
<tr>
<td>column oven</td>
<td>41</td>
</tr>
<tr>
<td>dead volumes</td>
<td>2, 20</td>
</tr>
<tr>
<td>delay volume</td>
<td>34</td>
</tr>
<tr>
<td>detection method requirements</td>
<td>254</td>
</tr>
<tr>
<td>detectors</td>
<td>44</td>
</tr>
<tr>
<td>disadvantages</td>
<td>22</td>
</tr>
<tr>
<td>dissatisfied users</td>
<td>18</td>
</tr>
<tr>
<td>extra-column-band-broadening</td>
<td>76</td>
</tr>
<tr>
<td>column peak volume</td>
<td>74</td>
</tr>
<tr>
<td>column efficiency and resolution</td>
<td>74</td>
</tr>
<tr>
<td>column performance testing</td>
<td>95</td>
</tr>
<tr>
<td>extra-column volume without column</td>
<td>88</td>
</tr>
<tr>
<td>factors</td>
<td>73</td>
</tr>
<tr>
<td>fast gradient separations</td>
<td>96</td>
</tr>
<tr>
<td>fittings and connections</td>
<td>83</td>
</tr>
<tr>
<td>frictional heating impact</td>
<td>73</td>
</tr>
<tr>
<td>gradient separation impact</td>
<td>92</td>
</tr>
<tr>
<td>heat exchangers</td>
<td>84</td>
</tr>
<tr>
<td>high gradient separations</td>
<td>96</td>
</tr>
<tr>
<td>injection system</td>
<td>79</td>
</tr>
<tr>
<td>isocratic separation impact</td>
<td>90</td>
</tr>
<tr>
<td>isocratic separations</td>
<td>95</td>
</tr>
<tr>
<td>mass spectrometers</td>
<td>86</td>
</tr>
<tr>
<td>mass spectrometric detection</td>
<td>74</td>
</tr>
<tr>
<td>optical detectors</td>
<td>85</td>
</tr>
<tr>
<td>sample dilution</td>
<td>73</td>
</tr>
<tr>
<td>solvent consumption</td>
<td>74</td>
</tr>
<tr>
<td>sources</td>
<td>78</td>
</tr>
<tr>
<td>tubing system</td>
<td>80</td>
</tr>
<tr>
<td>volume with column</td>
<td>89</td>
</tr>
<tr>
<td>extra column volume</td>
<td>2</td>
</tr>
<tr>
<td>factors</td>
<td>7</td>
</tr>
<tr>
<td>fast separation</td>
<td>2, 12</td>
</tr>
<tr>
<td>fitting systems</td>
<td>246</td>
</tr>
<tr>
<td>flow paths</td>
<td></td>
</tr>
<tr>
<td>low-pressure and high-pressure</td>
<td>227</td>
</tr>
<tr>
<td>mobile phase and sample flow path</td>
<td>228</td>
</tr>
<tr>
<td>good separation</td>
<td>2</td>
</tr>
<tr>
<td>high-pressure flow path</td>
<td></td>
</tr>
<tr>
<td>pumps, see Pumps</td>
<td></td>
</tr>
<tr>
<td>high pressure mixing system</td>
<td>30, 31</td>
</tr>
<tr>
<td>inertness</td>
<td>223</td>
</tr>
<tr>
<td>analyte-specific inertness</td>
<td>249</td>
</tr>
<tr>
<td>general inertness</td>
<td>248</td>
</tr>
<tr>
<td>isocratic and gradient separations</td>
<td>5, 6</td>
</tr>
<tr>
<td>low-pressure flow path</td>
<td>229</td>
</tr>
<tr>
<td>low pressure mixing system</td>
<td>31</td>
</tr>
<tr>
<td>mass sensitivity</td>
<td>13</td>
</tr>
<tr>
<td>material requirements</td>
<td></td>
</tr>
<tr>
<td>analyte compatibility/biocompatibility</td>
<td>226</td>
</tr>
<tr>
<td>chemical stability</td>
<td>225</td>
</tr>
<tr>
<td>mechanical stability</td>
<td>225</td>
</tr>
<tr>
<td>mechanical and physical integrity</td>
<td>253</td>
</tr>
<tr>
<td>microfluidic optimized Jet Weaver mixer</td>
<td>32</td>
</tr>
<tr>
<td>parameters and requirements</td>
<td>21</td>
</tr>
<tr>
<td>passivation strategies and methods</td>
<td>258</td>
</tr>
<tr>
<td>quality of separation</td>
<td>3</td>
</tr>
<tr>
<td>resolution</td>
<td>4</td>
</tr>
<tr>
<td>robust separations</td>
<td>15</td>
</tr>
<tr>
<td>satisfied users</td>
<td>18</td>
</tr>
<tr>
<td>solvent</td>
<td>33</td>
</tr>
<tr>
<td>tubing system</td>
<td></td>
</tr>
<tr>
<td>fused-silica tubing</td>
<td>246</td>
</tr>
<tr>
<td>materials</td>
<td>243</td>
</tr>
<tr>
<td>metal-based tubing</td>
<td>244</td>
</tr>
<tr>
<td>polymer-based tubing</td>
<td>246</td>
</tr>
<tr>
<td>wetted materials</td>
<td>223</td>
</tr>
<tr>
<td>ultra-high-molecular weight polyethylene (UHMW-PE)</td>
<td>230</td>
</tr>
<tr>
<td>ultrasonic degassing technique</td>
<td>301</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vanquish system</td>
<td>336–338</td>
</tr>
<tr>
<td>various wavelength detector (VWD)</td>
<td>309</td>
</tr>
<tr>
<td>Viper technology</td>
<td>338</td>
</tr>
<tr>
<td>ViscoJet™ micro-mixer</td>
<td>152</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>zero dead volume union (ZDV)</td>
<td>281, 283</td>
</tr>
</tbody>
</table>