Contents

List of Contributors XI
Preface XV
A Personal Foreword XVII

1 Introduction 1
Marianne Isabelle Martic-Kehl, Michael F.W. Festing, Carlos Alvarez, and P. August Schubiger
1.1 Animal Models in Biomedical Research 1
1.2 Animals in the Drug Development Process: Historic Background 2
1.3 Problems with Translation of Animal Data to the Clinic 5
1.4 Animal Studies in Anti-cancer Drug Development 6
1.5 Toward Relevant Animal Data 7
1.6 Aim of the Book 8
References 8

2 Ethical Aspects of the Use of Animals in Translational Research 11
Karin Blumer
2.1 Introduction 11
2.2 Today’s R&D Environment 11
2.2.1 Four Emerging Trends Shaping Today’s Debate 13
2.2.1.1 Growing Lack of Awareness of the Nature of Science and Research 13
2.2.1.2 Increased Pressure on Basic Research 14
2.2.1.3 Pressure to Assign “Special” Animals a Special Moral and Legal Status 15
2.2.1.4 A Reductionist Approach to the 3Rs 16
2.2.2 Preliminary Conclusions 17
2.3 “Do No Harm”: the Essential Dilemma of Animal Research 17
2.4 Man and Animals in Philosophy: an Overview of Key Concepts 18
2.4.1 Anthropocentrism 19
2.4.2 Physiocentric Positions 19
2.4.2.1 Holistic Concepts 19
2.4.2.2 Radical Biocentrism 20
Contents

2.4.2.3 Pathocentrism 21
2.4.2.4 Moderate Biocentrism 22
2.5 Conclusions: Solving the Dilemma 23
References 24

3 Study Design 27
Michael F.W. Festing
3.1 Introduction 27
3.2 Design Principles 28
3.3 Experimental Design 28
3.3.1 The Five Characteristics of a Well-Designed Experiment 29
3.3.2 The Determination of Sample Size 34
3.3.2.1 Power Analysis for the Determination of Sample Size 34
3.3.2.2 The Resource Equation Method of Determining Sample Size 36
3.3.3 Formal Experimental Designs 36
3.4 Conclusion 39
References 39

4 Improving External Validity of Experimental Animal Data 41
S. Helene Richter, Chiara Spinello, and Simone Macrì
4.1 Introduction 41
4.1.1 Individual Phenotype Is the Result of Genetic and Environmental Influences 41
4.1.2 Why Do Living Organisms Vary? 42
4.2 Variation in the Laboratory 43
4.2.1 How Is Inter-individual Variability Generally Dealt With? 43
4.2.1.1 Genetic Standardization 44
4.2.1.2 Environmental Standardization 44
4.2.1.3 Standardization of the Test Situation 46
4.3 The Fallacies 46
4.3.1 The Standardization Fallacy 46
4.3.2 The Developmental Match Fallacy 47
4.4 Future Perspectives: an Experimental Strategy Integrating Adaptive Plasticity and Fundamental Methodology 48
4.4.1 A Way Out of the Standardization Fallacy? 48
4.4.2 Favoring Adaptive Plasticity through the Provision of Test Strategies Matching Developmental Cues 53
References 55

5 How to End Selective Reporting in Animal Research 61
Gerben ter Riet and Lex M. Bouter
5.1 Introduction 61
5.2 Definition and Different Manifestations of Reporting Bias 63
5.3 Magnitude of Reporting Biases 63
5.4 Consequences 65
5.4.1 Consequences of Reporting Bias in Human Randomized Trials 65
5.4.2 Consequences of Reporting Bias in Experimental Animal Research 66
5.5 Causes of Reporting Bias 66
5.6 Solutions 68
References 73

6 A Comprehensive Overview of Mouse Models in Oncology 79
Divya Vats
6.1 Introduction 79
6.2 Xenograft Mouse Models 81
6.2.1 Cell-Line Xenograft Model 81
6.2.2 Patient-derived Xenografts 82
6.3 Genetically Engineered Mouse Models 83
6.3.1 Limitations 85
6.3.2 Chemical Carcinogenesis: N-ethyl-N-nitrosourea Mutagenesis 86
6.3.2.1 Alkyl nitrosamide Compounds 86
6.3.3 Generation of a Transgenic Mouse Using Pronuclear Injections: Direct Insertion of DNA into Fertilized Zygote 87
6.3.4 Gene Targeting via Homologous Recombination in Embryonic Stem Cells: Gene Knockouts and Knock-Ins 87
6.3.5 Conditional Inactivation (or Activation) of Genes 89
6.3.6 Inducible Systems for Gene Targeting 90
6.3.7 RNA Interference for Gene Knockdown 92
6.4 Applications for GEMMs in Compound Development 93
6.4.1 Target Validation and Compound Testing 93
6.4.2 Chemoresistance and Toxicity 94
6.4.3 In vivo Imaging 94
6.5 Humanized Mouse Models: toward a More Predictive Preclinical Mouse Model 95
6.6 Conclusions: Potentials, Limitations, and Future Directions for Mouse Models in Cancer Drug Development 98
6.6.1 Potentials and Limitations 98
6.6.2 Future Directions 100
References 101

7 Mouse Models of Advanced Spontaneous Metastasis for Experimental Therapeutics 109
Karla Parra, Irving Miramontes, Giulio Francia, and Robert S. Kerbel
7.1 Mouse Tumor Models in Cancer Research 109
7.2 The Evolution of Metronomic Chemotherapy 110
7.3 Development of Highly Aggressive and Spontaneously Metastatic Breast Cancer Models 112
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 Is There Any Evidence that Models of Advanced Metastatic Disease</td>
<td>113</td>
</tr>
<tr>
<td>Have the Potential to Improve Predicting Future Outcomes of a Given</td>
<td></td>
</tr>
<tr>
<td>Therapy in Patients?</td>
<td></td>
</tr>
<tr>
<td>7.5 Metronomic Chemotherapy Evaluation in Preclinical Metastasis</td>
<td>116</td>
</tr>
<tr>
<td>Models</td>
<td></td>
</tr>
<tr>
<td>7.6 Experimental Therapeutics Using Metastatic Her-2 Positive Breast</td>
<td>116</td>
</tr>
<tr>
<td>Cancer Xenografts Models</td>
<td></td>
</tr>
<tr>
<td>7.7 Examples of Recently Developed Orthotopic Models of Human Cancers</td>
<td>119</td>
</tr>
<tr>
<td>7.8 Factors that Can Affect the Usefulness of Preclinical Models in</td>
<td></td>
</tr>
<tr>
<td>Evaluating New Therapies</td>
<td>120</td>
</tr>
<tr>
<td>7.9 Monitoring Metastatic Disease Progression in Preclinical Models</td>
<td>120</td>
</tr>
<tr>
<td>7.10 Alternative Preclinical Models: PDX and GEMMs</td>
<td>121</td>
</tr>
<tr>
<td>7.11 Recommendations for the Evaluation of Anti-cancer Drugs Using</td>
<td>122</td>
</tr>
<tr>
<td>Preclinical Models</td>
<td></td>
</tr>
<tr>
<td>7.12 Summary</td>
<td>123</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
</tr>
</tbody>
</table>

8 **Spontaneous Animal Tumor Models** 129

Andreas Pospischil, Katrin Grünzig, Ramona Graf, and Gianluca Boo

8.1 Introduction 129

8.2 Advantages of Spontaneous Canine/Feline Cancer Registries 130

8.2.1 Effective and Relevant Canine/Feline Cancer Registries – Necessary Steps and Existing Registries 131

8.2.1.1 Regional/National/International Population-based Human Cancer Registry with Sufficient Case Numbers and Patient Data 131

8.2.1.2 Regional/National Population-based Canine/Feline Cancer Registries 132

8.2.1.3 Comparative (Human/Canine/Feline) Geographic and Environmental Risk Assessment of Tumor Incidences 133

8.2.1.4 Tissue/Bio-bank Containing Canine/Feline Tumor Samples (Fresh Frozen, FFPE) for Necessary Re-Evaluation, and Further Testing 133

8.2.1.5 Comparative Testing of Genetic/Proteomic Tumor Markers on Different Tumor Tissue from Human and Animal Patients 134

8.3 Spontaneous Animal Tumors as Suitable Models for Human Cancers 134

8.3.1 Canine Tumors 134

8.3.2 Feline Tumors 134

8.4 The Swiss Canine/Feline Cancer Registry 1955–2008 135

8.4.1 Swiss Canine Cancer Registry 1955–2008 135

8.4.1.1 Tumor Location 135

8.4.1.2 Malignancy of the Most Common Tumor Diagnoses 136

8.4.1.3 Sex Distribution 136
8.4.1.4 Breed Distribution 138
8.4.1.5 Sample Catchment Area 140
8.4.2 The Swiss Feline Cancer Registry 1964–2008 140
8.4.2.1 Malignancy of the Most Common Tumor Diagnoses 141
8.4.2.2 Breed Distribution 141
8.4.2.3 Sex Distribution 142
8.4.2.4 Most Common Locations of Tumors (1%) 144
8.4.2.5 Catchment Area 144
8.4.3 Comparison of Swiss Canine, Feline, and Human Cancer Registry Data 146
8.4.4 Conclusion 147
References 148

9 Dog Models of Naturally Occurring Cancer 153

9.1 Introduction 153
9.1.1 Animal Models of Human Disease and the Need for Alternatives to the Mouse 153
9.2 Advantages of Spontaneous Cancer Models in Dogs 155
9.2.1 High Level of Evolutionary Conservation with Humans 156
9.2.2 Reduced Heterogeneity within Breeds and Increased Variation across Breeds 157
9.2.3 Potential for Comprehensive Genotyping 163
9.2.4 Understanding Both Somatic and Germline Cancer Genetics 164
9.2.5 Translational Models 169
9.3 Dog Cancer Models 170
9.3.1 Canine Cancer Incidence 170
9.3.2 Genetics of Breed-Specific Cancer Models 177
9.3.2.1 Lymphoma 177
9.3.2.2 Osteosarcoma 181
9.4 Preclinical and Veterinary Translational Investigations in Dogs with Cancer 184
9.4.1 Preclinical Investigations in Dogs with Spontaneous Cancer 184
9.4.2 Conduct of Preclinical and Translational Studies in Pet Dogs with Cancer 186
9.4.3 Examples of Successful Preclinical Investigations in Pet Dogs with Cancer 190
9.5 Necessary Developments for Realizing the Potential of Canine Models 196
9.5.1 Epidemiology, Longitudinal Cohorts, Tissue Repositories, and Integrative Genomics 196
9.5.2 Improved Genome Annotation and Development of Key Research Areas 196