Contents

Preface IX

1 Analytical Geochemistry 1
1.1 Overview of Analytical Geochemistry 1
1.1.1 Major Element Geochemistry 1
1.1.1.1 X-ray Fluorescence Spectrometer 3
1.1.1.2 Loss on Ignition and Ferric/Ferrous Ratio of Iron 6
1.1.2 Trace Element Geochemistry 6
1.1.2.1 From REE Geochemistry to Trace Element Geochemistry 6
1.1.2.2 Isotope Dilution Method (ID) 12
1.1.2.3 Error Magnification 14
1.1.2.4 Isotope Dilution with Internal Standardization Method (ID-IS) 15
1.1.3 Determination of Mass Fractionation 17
1.1.4 Age Dating 19
1.1.4.1 Types of Radioactive Decay 20
1.1.4.2 Age Dating by Radioactive Isotopes 21
1.1.4.3 Extinct Nuclides 23
1.1.4.4 An Isochron or a Mixing Line? 24
1.1.4.5 A Single Zircon Dating 25
1.1.4.6 Direct Single Zircon Analysis by TIMS 26
1.1.5 Radiogenic Isotopes for Geochemical Tracers 29
1.2 Element Synthesis in Stars 30
1.2.1 Atom, Nucleus, Isotope, and Element 30
1.2.2 Soon after the Big Bang 30
1.2.3 Element Synthesis in Stars 31
1.2.4 Element Syntheses in Other Processes 33
1.2.4.1 The r-Process 33
1.2.4.2 The p-Process 33
1.2.4.3 The s-Process 34
1.2.4.4 The x-Process 34
1.2.4.5 Type Ia Supernova 35
1.2.5 Other Types of Supernovae 35
1.3 Errors 35
2 Basics and Principles of Sample Digestion 41
2.1 Clean Technologies, Powdering, and Weighing of Sample Powder 41
 2.1.1 Clean Room Technologies 41
 2.1.1.1 Clean Rooms 41
 2.1.1.2 Two Types of Clean Rooms 41
 2.1.1.3 Draft Chamber 42
 2.1.1.4 Clean Evaporator 43
 2.1.1.5 Protection to Acids 44
 2.1.1.6 Levels of Cleanness 44
 2.1.1.7 Clean Benches and so on 45
 2.1.2 Powdering of the Sample 45
 2.1.3 Weighing the Sample Powder 46
2.2 Materials Used in Laboratory 47
 2.2.1 Glassware 47
 2.2.2 Plastics 48
 2.2.3 Water 49
 2.2.4 Azeotrope 51
 2.2.5 Physical and Chemical Properties of Acids 52
 2.2.5.1 Hydrofluoric Acid 52
 2.2.5.2 Hydrochloric Acid 54
 2.2.5.3 Hydrobromic Acid 55
 2.2.5.4 Nitric Acid 55
 2.2.5.5 perchloric Acid 55
 2.2.6 Sub-Boiling Purification 56
 2.2.7 Alkali Reagents 58
 2.2.7.1 Ammonia Water 58
 2.2.7.2 TMSC® 58
 2.2.8 TMSC® 58
2.3 Characterization of Elements 58
 2.3.1 Characterization of Elements by Their Behavior in HF Solution 58
 2.3.2 Characterization of Elements by Melting Temperature of Oxides 60
 2.3.3 Characterization of Elements by Volatility of Fluorides and Chlorides 62
2.4 Sample Digestion Techniques 64
 2.4.1 HF+HClO₄ Digestion in Ambient Pressure (an “Ultrasonic Method”) 64
2.4.2 HF Digestion in High Pressure and Temperature (a “Bomb Method”) 66
2.4.3 Microwave Digestion Method 68
2.4.4 Carius Tube Digestion for Os Separation 69
2.4.5 HPA (High-Pressure Asher) Digestion Method 71
2.4.6 Fusion 71
2.4.6.1 Alkali Fusion 72
2.4.6.2 Lithium Borate Fusion 72
2.4.6.3 Sodium Peroxide Fusion 72
2.4.6.4 V_{2}O_{5} Fusion 74
2.4.6.5 NiS Fire Assay 76
2.4.7 A Digestion Method Using NH_{4}F 76
2.5 Fluoride Formation in Silicate Digestion and Coprecipitation Issues 77
2.5.1 Formation of Fluorides in Basalt Digestion by HF–HNO_{3} Digestion and Coprecipitation 77
2.5.2 Formation of AlF_{3} in Rhyolite Decomposition by Bomb Digestion and Coprecipitation 78
2.5.3 Determination of Fluorophile/Oxophile Elements Avoiding Coprecipitation 82
2.5.4 Ti Addition Method 84
2.5.5 Summary of Element Determination Methods 84
2.5.6 Application of Lu–Hf Method to Ca-Rich and Al-Rich Samples 88
2.5.6.1 Ca-Rich Samples 88
2.5.6.2 Al-Rich Samples 89
2.5.7 Drawbacks of Al and Mg Addition Methods 90

3 Basics and Principles of Chemical Separation 91
3.1 Ion Exchange Chromatography 91
3.1.1 Cation and Anion Exchange Chromatography 91
3.1.2 Prewash of Ion Exchange Resins 93
3.1.3 Other Reagents and Purification 94
3.1.3.1 The HIBA Solution 94
3.1.3.2 DCTA and Pyridine 95
3.1.4 Eichrom® Resins (Liquid Exchange Chromatographic Resins) 95
3.1.5 Chelating Resin, Chelex 100® 98
3.1.6 Macroporous Resins 99
3.1.7 Ion Chromatography for Halogen Determination 99
3.1.8 Some Tips in the Column Chemistry (Reminder!) 102

4 Mass Spectrometry 103
4.1 Introduction 103
4.2 Vacuum Techniques 103
4.2.1 Basic Knowledge on Vacuum 104
4.2.1.1 Conversion Table of the Vacuum Unit 104
4.2.1.2 When You Touch Vacuum Equipment Such as Mass Spectrometers 104
4.2.1.3 Velocity of Air Molecules 105
4.2.2 Pirani Gauge 105
4.2.3 Penning Gauge 106
4.2.4 Ion Gauge 106
4.2.5 Rotary Pump 107
4.2.6 Oil Diffusion Pump 109
4.2.7 Turbo Molecular Pump 109
4.2.8 Ion Pump 111
4.2.9 Cold Trap (Cryopump) 112
4.3 Basics and Principles of an Ion Source 112
4.3.1 Thermal Ionization (TI) Ion Source 113
4.3.2 Inductively Coupled Plasma (ICP) Ion Source 117
4.3.3 Ion Source by Sputtering Phenomenon (Secondary Ion Generation) 118
4.4 Basics and Principles of Mass Separators 119
4.4.1 Principle of Mass Separation by Sector Magnetic Field 119
4.4.2 Principle of Quadrupole (Q-Pole) Mass Filter 120
4.4.3 Electrostatic Filter (Energy Filter) 121
4.5 Principles and Operation of Ion Detectors 122
4.5.1 Faraday Cup 122
4.5.2 The Daly Knob 125
4.5.3 Photoelectron Multiplier 126
4.5.4 Secondary Electron Multiplier and Ion Counting System 126
4.5.5 Operation of SEM 128
4.5.6 Multiple Channeltrons 129
4.6 Various Mass Spectrometers 130
4.6.1 Thermal Ionization Mass Spectrometer 130
4.6.2 Key Options of TIMS 133
4.6.2.1 RPQ® System 133
4.6.2.2 Focus Quad® and Dispersion Quad® 134
4.6.2.3 Filament Degassing (Outgassing) Machine 134
4.6.3 Q-Pole Type Inductively Coupled Plasma Mass Spectrometry (ICP-QMS) 135
4.6.4 High-Resolution Sector-Type ICP-MS (ICP-SFMS or HR-ICP-SFMS) 136
4.6.5 Multicollector ICP-MS (MC-ICP-MS) 137
4.6.6 Secondary Ion Mass Spectrometer (SIMS) 141
4.6.7 Multicollector High-Resolution SIMS (High Resolution-SIMS or HR-SIMS) 142
Exercise 144
5 Techniques in TIMS 145
5.1 Data Evaluation in TIMS 145
5.1.1 Mass Resolution 145
5.1.2 Abundance Sensitivity 145
5.1.3 Theoretical Errors of Faraday Cups 145
5.1.4 Amplifiers’ Time Lag or Amplifier’s Time Constant (τ) 147
5.1.5 Importance of Background 148
5.2 Data Acquisition and Calculation in TIMS 149
5.2.1 The Peak-Jumping Method 149
5.2.2 Mass Discrimination Correction 150
5.2.3 Dynamic Multicollection 151
5.2.4 Matrix Amplifier® and Amplifier Rotation® 152
5.2.5 Spike-Ratio Measurement 153
5.2.6 The Double-Spike Technique 156
5.2.7 Total Evaporation (TE) Method 158
5.2.8 V-Shaped Filament 159
5.2.9 Accurate Isotope Ratio Measurement of Two-Isotopic Element by TIMS 159
5.2.10 Running Cost of TIMS 160
5.2.11 Some Tips in TIMS 161

6 Application of TIMS to Isotopic Ratio Analysis of Each Element 163
6.1 Precise Isotopic Measurement of Li 165
6.1.1 Introduction 165
6.1.2 Separation of Li 165
6.1.3 Loading and TIMS of Li 165
6.1.4 Across-Arc Variation of Li Isotopes in Lavas from the Izu arc, Japan 167
6.1.5 MC-ICP-MS of Li 168
6.1.6 The Author’s Monology 168
6.2 Precise Isotopic Measurement of B 168
6.2.1 Introduction 168
6.2.2 Suppression of B Volatilization in HF Solution, and Purification of B with Low Blanks 169
6.2.3 Separation of B from Silicate Samples 169
6.2.4 Measurement of B by P-TIMS 171
6.2.5 Development of Piggyback Faraday Cups for Static Multicollection of Cs₂BO₂⁺ Ions for Precise B Isotope Analysis 171
6.2.6 Application of B Isotope Ratios to Mantle/Crust Recycling at the Izu Subduction Zone 172
6.2.7 MC-ICP-MS of B 173
6.2.8 The Author’s Monology 173
6.3 Precise Isotopic Measurement of Mg 173
6.3.1 Introduction 173
6.3.2 Standard Reference Materials for Mg 174
6.3.3 Separation of Mg 174
6.3.4 Loading and TIMS of Mg 177
6.11.2 Chemical Separation of Fe 202
6.11.3 Loading and P-TIMS of Fe 203
6.11.4 Loading and N-TIMS of Fe 204
6.11.5 MC-ICP-MS of Fe 204
6.11.6 The Author’s Monology 204
6.12 Precise Isotopic Measurement of Ni 204
6.12.1 Introduction 204
6.12.2 Chemical Separation of Ni 205
6.12.3 Loading and TIMS of Ni 207
6.12.4 MC-ICP-MS of Ni 208
6.12.5 The Author’s Monology 208
6.13 Precise Isotopic Measurement of Cu 209
6.13.1 Introduction 209
6.13.2 Chemical Separation of Cu 209
6.13.3 Loading and TIMS of Cu 210
6.13.4 MC-ICP-MS of Cu 211
6.13.5 The Author’s Monology 211
6.14 Precise Isotopic Measurement of Zn 212
6.14.1 Introduction 212
6.14.2 Chemical Separation of Zn 212
6.14.3 Loading and TIMS of Zn 214
6.14.4 MC-ICP-MS of Zn 214
6.14.5 The Author’s Monology 215
6.15 Purification Methods of Ga, In, and Tl 215
6.15.1 Introduction 215
6.15.2 Chemical Separation of Ga 215
6.15.3 Chemical Separation of In 216
6.15.4 Chemical Separation of Tl 217
6.16 Precise Isotopic Measurement of Ge 219
6.16.1 Introduction 219
6.16.2 Chemical Separation of Ge 219
6.16.3 Loading and TIMS of Ge 221
6.16.4 MC-ICP-MS of Ge 221
6.16.5 The Author’s Monology 221
6.17 Precise Isotopic Measurement of Se 222
6.17.1 Introduction 222
6.17.2 Chemical Separation of Se 223
6.17.3 Loading and N-TIMS of Se 224
6.17.4 MC-ICP-MS of Se 225
6.17.5 The Author’s Monology 226
6.18 Precise Isotopic Measurements for the \(^{87}\text{Rb}–^{87}\text{Sr}\) and \(^{147}\text{Sm}–^{143}\text{Nd}\) Isotope Systems 226
6.18.1 Introduction 226
6.18.2 Sequential Separation Method of Rb, Sr, Sm, and Nd 227
6.18.3 Sequential Separation of Large Amounts of Sr–Nd–Pb 229
6.18.4 Determination of 55 Elements and Sr, Nd, Hf, and Pb Isotope Ratios 229
6.18.5 Rb Determination by ID-TIMS 229
6.18.6 Spike-Ratio Measurement of Sr by TIMS 233
6.18.7 Sm Determination by ID-TIMS. 234
6.18.8 Spike-Ratio Measurement for Nd by TIMS 235
6.18.9 Measurements of 87Sr/86Sr and 143Nd/144Nd Ratios by MC-ICP-MS 235
6.19 Precise Isotopic Measurements of Zr 236
6.19.1 Introduction 236
6.19.2 Chemical Separation of Zr 238
6.19.3 Loading and TIMS of Zr 239
6.19.4 MC-ICP-MS of Zr 241
6.19.5 The Author’s Monology 241
6.20 Precise Isotopic Measurement of Mo 241
6.20.1 Introduction 241
6.20.2 Chemical Separation of Mo 242
6.20.3 Positive-TIMS of Mo 242
6.20.4 Negative-TIMS of Mo 243
6.20.5 MC-ICP-MS of Mo 244
6.20.6 The Author’s Monology 244
6.21 Precise Isotopic Measurement of Ru 245
6.21.1 Introduction 245
6.21.2 Chemical Separation of Ru 245
6.21.3 Loading and N-TIMS of Ru 247
6.21.4 MC-ICP-MS of Ru 247
6.22 Precise Isotopic Measurement for 107Pd–107Ag Isotope System 247
6.22.1 Introduction 247
6.22.2 Chemical Separation of Ag 248
6.22.3 Loading and TIMS of Ag 248
6.22.4 TIMS of Pd 249
6.22.5 Application of MC-ICP-MS to 107Pd–107Ag 250
6.22.6 The Author’s Monology 250
6.23 Precise Isotopic Measurement of Cd 250
6.23.1 Introduction 250
6.23.2 Chemical Separation of Cd 251
6.23.3 Loading and TIMS of Cd 252
6.23.4 MC-ICP-MS of Cd 252
6.23.5 The Author’s Monology 252
6.24 Precise Isotopic Measurement of Sn 253
6.24.1 Introduction 253
6.24.2 Chemical Separation of Sn 253
6.24.3 Loading and TIMS of Sn 255
6.24.4 MC-ICP-MS of Sn 256
6.24.5 The Author’s Monology 256
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25</td>
<td>Precise Isotopic Measurement of Sb</td>
<td>256</td>
</tr>
<tr>
<td>6.25.1</td>
<td>Introduction</td>
<td>256</td>
</tr>
<tr>
<td>6.25.2</td>
<td>Chemical Separation of Sb</td>
<td>256</td>
</tr>
<tr>
<td>6.25.3</td>
<td>Loading and N-TIMS of Sb</td>
<td>258</td>
</tr>
<tr>
<td>6.25.4</td>
<td>MC-ICP-MS of Sb</td>
<td>259</td>
</tr>
<tr>
<td>6.25.5</td>
<td>The Author’s Monology</td>
<td>259</td>
</tr>
<tr>
<td>6.26</td>
<td>Precise Isotopic Measurement of Te</td>
<td>259</td>
</tr>
<tr>
<td>6.26.1</td>
<td>Introduction</td>
<td>259</td>
</tr>
<tr>
<td>6.26.2</td>
<td>Chemical Separation of Te</td>
<td>260</td>
</tr>
<tr>
<td>6.26.3</td>
<td>Loading and N-TIMS of Te</td>
<td>261</td>
</tr>
<tr>
<td>6.26.4</td>
<td>MC-ICP-MS of Te</td>
<td>262</td>
</tr>
<tr>
<td>6.26.5</td>
<td>The Author’s Monology</td>
<td>262</td>
</tr>
<tr>
<td>6.27</td>
<td>Precise Isotopic Measurement for 138La–138Ba and 138La–138Ce Isotope Systems</td>
<td>263</td>
</tr>
<tr>
<td>6.27.1</td>
<td>Introduction</td>
<td>263</td>
</tr>
<tr>
<td>6.27.2</td>
<td>La–Ba Separation</td>
<td>264</td>
</tr>
<tr>
<td>6.27.3</td>
<td>Ba Isotope Analysis by TIMS</td>
<td>264</td>
</tr>
<tr>
<td>6.27.4</td>
<td>La–Ce Separation</td>
<td>264</td>
</tr>
<tr>
<td>6.27.5</td>
<td>Ce Isotope Analysis by TIMS</td>
<td>264</td>
</tr>
<tr>
<td>6.27.6</td>
<td>The Author’s Monology</td>
<td>265</td>
</tr>
<tr>
<td>6.28</td>
<td>Ultra-Precise Isotopic Measurement for 146Sm–142Nd Isotope System</td>
<td>266</td>
</tr>
<tr>
<td>6.28.1</td>
<td>Introduction</td>
<td>266</td>
</tr>
<tr>
<td>6.28.2</td>
<td>Chemical Separation of Nd</td>
<td>266</td>
</tr>
<tr>
<td>6.28.3</td>
<td>High-Precision TIMS of Nd</td>
<td>268</td>
</tr>
<tr>
<td>6.28.4</td>
<td>The Author’s Monology</td>
<td>269</td>
</tr>
<tr>
<td>6.29</td>
<td>Precise Isotopic Measurements of REEs by TIMS</td>
<td>269</td>
</tr>
<tr>
<td>6.29.1</td>
<td>Introduction</td>
<td>269</td>
</tr>
<tr>
<td>6.29.2</td>
<td>Separation REEs</td>
<td>269</td>
</tr>
<tr>
<td>6.29.3</td>
<td>TIMS of La</td>
<td>269</td>
</tr>
<tr>
<td>6.29.4</td>
<td>TIMS of Ce</td>
<td>270</td>
</tr>
<tr>
<td>6.29.5</td>
<td>TIMS of Nd and Sm</td>
<td>270</td>
</tr>
<tr>
<td>6.29.6</td>
<td>TIMS of Eu</td>
<td>270</td>
</tr>
<tr>
<td>6.29.7</td>
<td>TIMS of Gd</td>
<td>270</td>
</tr>
<tr>
<td>6.29.8</td>
<td>TIMS of Dy, Er, Yb, and Lu</td>
<td>271</td>
</tr>
<tr>
<td>6.29.9</td>
<td>The Author’s Monology</td>
<td>271</td>
</tr>
<tr>
<td>6.30</td>
<td>Precise Isotopic Measurement for 176Lu–176Hf Isotope System</td>
<td>271</td>
</tr>
<tr>
<td>6.30.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>6.30.2</td>
<td>Separation Method of Lu and Hf (Plus Sm and Nd)</td>
<td>272</td>
</tr>
<tr>
<td>6.30.3</td>
<td>176Hf/177Hf Ratio Measurement by MC-ICP-MS</td>
<td>273</td>
</tr>
<tr>
<td>6.30.4</td>
<td>Lu Measurement by MC-ICP-MS</td>
<td>274</td>
</tr>
<tr>
<td>6.30.5</td>
<td>Isotopic Measurement of Hf by TIMS</td>
<td>275</td>
</tr>
<tr>
<td>6.31</td>
<td>Chemical Separation of Ta</td>
<td>275</td>
</tr>
<tr>
<td>6.31.1</td>
<td>Introduction</td>
<td>275</td>
</tr>
<tr>
<td>6.31.2</td>
<td>Chemical Separation of Ta</td>
<td>276</td>
</tr>
<tr>
<td>6.31.3</td>
<td>Author's Monology</td>
<td>277</td>
</tr>
<tr>
<td>6.32</td>
<td>Precise Isotopic Measurement for $^{182}\text{Hf} - ^{182}\text{W}$ Isotope System</td>
<td>277</td>
</tr>
<tr>
<td>6.32.1</td>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>6.32.2</td>
<td>Tungsten Separation from Metal Phases</td>
<td>278</td>
</tr>
<tr>
<td>6.32.3</td>
<td>Tungsten Separation from W-Poor Materials (Silicate Phases)</td>
<td>279</td>
</tr>
<tr>
<td>6.32.4</td>
<td>Tungsten Measurement by N-TIMS</td>
<td>281</td>
</tr>
<tr>
<td>6.32.5</td>
<td>Hafnium Measurement by P-TIMS</td>
<td>281</td>
</tr>
<tr>
<td>6.32.6</td>
<td>The Author's Monology</td>
<td>282</td>
</tr>
<tr>
<td>6.33</td>
<td>Precise Isotopic Measurement for $^{187}\text{Re} - ^{187}\text{Os}$ and $^{190}\text{Pt} - ^{186}\text{Os}$ Isotope Systems</td>
<td>282</td>
</tr>
<tr>
<td>6.33.1</td>
<td>Introduction</td>
<td>282</td>
</tr>
<tr>
<td>6.33.2</td>
<td>Overview of Chemical Separation of Os</td>
<td>283</td>
</tr>
<tr>
<td>6.33.3</td>
<td>Os Purification by Micro-Distillation</td>
<td>283</td>
</tr>
<tr>
<td>6.33.4</td>
<td>Re Purification</td>
<td>284</td>
</tr>
<tr>
<td>6.33.5</td>
<td>N-TIMS of Os</td>
<td>285</td>
</tr>
<tr>
<td>6.33.6</td>
<td>N-TIMS of Re</td>
<td>285</td>
</tr>
<tr>
<td>6.33.7</td>
<td>Separation of Re and Pt, and Determination of the $^{186}\text{Os}/^{188}\text{Os}$ Ratio</td>
<td>286</td>
</tr>
<tr>
<td>6.33.8</td>
<td>The Author's Monology</td>
<td>286</td>
</tr>
<tr>
<td>6.34</td>
<td>Precise Isotopic Measurement of Ir</td>
<td>287</td>
</tr>
<tr>
<td>6.34.1</td>
<td>Introduction</td>
<td>287</td>
</tr>
<tr>
<td>6.34.2</td>
<td>Chemical Separation of Ir</td>
<td>287</td>
</tr>
<tr>
<td>6.34.3</td>
<td>Loading and Mass Spectrometry of Ir</td>
<td>287</td>
</tr>
<tr>
<td>6.35</td>
<td>Precise Isotopic Measurement of Pb</td>
<td>289</td>
</tr>
<tr>
<td>6.35.1</td>
<td>Introduction</td>
<td>289</td>
</tr>
<tr>
<td>6.35.2</td>
<td>Separation Method of Pb</td>
<td>289</td>
</tr>
<tr>
<td>6.35.3</td>
<td>Pb Isotope Ratio Determination Using the Double Spike Method by TIMS</td>
<td>290</td>
</tr>
<tr>
<td>6.35.4</td>
<td>Pb Isotope Ratio Determination by MC-ICP-MS Using the Double Spike Method</td>
<td>292</td>
</tr>
<tr>
<td>6.35.5</td>
<td>Double Spikes Using Radioactive Pb</td>
<td>292</td>
</tr>
<tr>
<td>6.36</td>
<td>^{228}Ra Determination by Total Evaporation TIMS (TE-TIMS)</td>
<td>293</td>
</tr>
<tr>
<td>6.36.1</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>6.36.2</td>
<td>Separation of Ra</td>
<td>293</td>
</tr>
<tr>
<td>6.36.3</td>
<td>Total Evaporation TIMS (TE-TIMS) of Ra</td>
<td>295</td>
</tr>
<tr>
<td>6.36.4</td>
<td>Calculation of ^{226}Ra Abundance</td>
<td>296</td>
</tr>
<tr>
<td>6.36.5</td>
<td>MC-ICP-MS for $^{228}\text{Ra}/^{226}\text{Ra}$ Determination Using Multi-Ion Counting (MIC) Detection</td>
<td>296</td>
</tr>
<tr>
<td>6.36.6</td>
<td>The Author's Monology</td>
<td>297</td>
</tr>
<tr>
<td>6.37</td>
<td>Precise Isotopic Measurement for $^{230}\text{Th}/^{232}\text{Th}$</td>
<td>298</td>
</tr>
<tr>
<td>6.37.1</td>
<td>Introduction</td>
<td>298</td>
</tr>
<tr>
<td>6.37.2</td>
<td>Sequential U, Th, and Pb Separation Method</td>
<td>299</td>
</tr>
<tr>
<td>6.37.3</td>
<td>Measurements of $^{230}\text{Th}/^{232}\text{Th}$ and $^{229}\text{Th}/^{232}\text{Th}$ Ratios by TIMS</td>
<td>299</td>
</tr>
<tr>
<td>6.37.4</td>
<td>MC-ICP-MS for Determination of $^{230}\text{Th}/^{232}\text{Th}$ and $^{229}\text{Th}/^{232}\text{Th}$ Ratios</td>
<td>300</td>
</tr>
</tbody>
</table>
6.3.7.5 The Author’s Monology 301
6.38 Precise Isotopic Measurement for $^{235}\text{U} - ^{231}\text{Pa}$ Disequilibrium Studies 302
6.38.1 Introduction 302
6.38.2 ^{233}Pa Spike Preparation 303
6.38.3 Separation Method of Pa in the Sample 304
6.38.4 TIMS of Pa 305
6.38.5 The Author’s Monology 305
6.39 Precise Isotopic Measurement of U 305
6.39.1 Introduction 305
6.39.2 Separation of U 306
6.39.3 Determination of $^{234}\text{U}/^{238}\text{U}$ and $^{233}\text{U}/^{238}\text{U}$ by TIMS 306
6.39.4 Determination of $^{234}\text{U}/^{238}\text{U}$ by Total Evaporation-TIMS (TE-TIMS) 307
6.39.5 MC-ICP-MS for Determination of $^{234}\text{U}/^{238}\text{U}$ and $^{233}\text{U}/^{238}\text{U}$ 307
6.39.6 The Author’s Monology 309

7 Conclusions 311

Appendix A: Bulk Analysis and Spot Analysis 313

Appendix B: Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 315

References 319

Index 339