Contents

Preface to the Second Edition xv

1 Solid State and Polymorphism of the Drug Substance in the Context of Quality by Design and ICH Guidelines Q8–Q12 1 Markus von Raumer and Rolf Hilfiker |v

- 1.1 Introduction 1
- 1.2 A Short Introduction to Polymorphism and Solid-State Development *1*
- 1.3 A Short Introduction to Quality by Design (QbD) 3
- 1.4 The Solid State in the Context of Pharmaceutical Development 7
- 1.4.1 Typical Drug Discovery and Development 7
- 1.4.2 The Solid State at the Interface of Drug Substance and Drug Product *10*
- 1.4.3 Biopharmaceutics and Bioavailability of Solids 11
- 1.4.4 Pharmaceutical Quality Assessment 14
- 1.5 Solid-State Development at Various Stages of the Pharmaceutical Development Process *15*
- 1.5.1 The Solid State in the Discovery Phase *16*
- 1.5.2 Salt and Co-crystal Screening and Selection 16
- 1.5.3 Polymorph Screening, Polymorph Landscape, and Polymorph Transformations *17*
- 1.5.4 Crystallization and Downstream Processes 20
- 1.5.5 Formulation 21
- 1.5.6 Analytical Methods for Characterization and Physical Purity Determination 22
- 1.6 Conclusions 23 References 23

2 Alternative Solid Forms: Salts 31

P.H. Stahl, Bertrand Sutter, Arnaud Grandeury, and Michael Mutz

- 2.1 Introduction 31
- 2.2 Salt Formation and Polymorphism in Pharmaceutical Development *31*
- 2.3 Target Properties of Active Substances for Drug Products 33
- 2.3.1 Injectables 34

- vi Contents
 - 2.3.2 Solid Dosage Forms 35
 - 2.3.3 Dosage Forms for Other Routes of Application 36
 - 2.3.3.1 Inhalation 36
 - 2.3.3.2 Topical Products and Transdermal Route 36
 - 2.4 The Basics of Salt Formation 37
 - 2.4.1 Dissociation Constant 37
 - 2.4.2 Ionization and pH 39
 - 2.4.3 Solubility 40
 - 2.4.4 Disproportionation 43
 - 2.5 Approaches to Salt Preparation and Characterization 45
 - 2.5.1 Initial Data 45
 - 2.5.2 Selection of Salt Formers 45
 - 2.5.3 Salt Preparation Procedures 46
 - 2.6 Selection Strategies 49
 - 2.6.1 Points to be Considered 49
 - 2.6.2 Final Decision 51
 - 2.6.3 Salt Form and Life Cycle Management of Drug Products 52
 - 2.7 Case Reports 53
 - 2.7.1 Overview of Salt Forms Selected 53
 - 2.7.2 The Salt Selection Process 53
 - 2.7.3 Case 1: NVP-BS001 53
 - 2.7.4 Case 2: NVP-BS002 54
 - 2.8 Discussion and Decision 56 References 56

3 Alternative Solid Forms: Co-crystals 61

Johan Wouters, Dario Braga, Fabrizia Grepioni, Luc Aerts, and Luc Quéré

- 3.1 Introduction 61
- 3.2 Types of Pharmaceutical Co-crystals 62
- 3.2.1 Salts vs Co-crystals 62
- 3.2.2 Ionic Co-crystals of API 63
- 3.2.3 Polymorphism and Co-crystals 65
- 3.3 Relevant Pharmaceutical Co-crystal Properties 65
- 3.3.1 Solubility 66
- 3.3.2 Dissolution Rate 67
- 3.3.3 Bioavailability 69
- 3.3.4 Melting Point 69
- 3.3.5 Stability 70
- 3.3.6 Challenges and Undesired Effect of Co-crystallization 71
- 3.4 Analytical Tools to Characterize Co-crystals 73
- 3.4.1 Microscopy 74
- 3.4.2 X-Ray Diffraction 75
- 3.4.3 Thermal Analysis 77
- 3.4.4 Vibrational Spectroscopy 77
- 3.4.5 Solid-State NMR 78
- 3.5 Patent Literature Review 79
- 3.6 Current View on Regulatory Aspects of PCCs 83

- 3.6.1 Rules Governing Manufacturing (API GMP) 84
- 3.6.2 ICH Tripartite Guidelines on Specifications for New Drug Substances and New Drug Products 85
- 3.7 Conclusions 85 Acknowledgment 85 References 86

4 Thermodynamics of Polymorphs and Solvates 91 Gerard Coquerel

- 4.1 Basic Notions *91*
- 4.1.1 Chemical Purity 92
- 4.1.2 Isotopic Purity 92
- 4.1.3 Structural Purity 92
- 4.1.4 Stability of the Component 93
- 4.1.5 Polymorphism, Desmotropy, Allotropism, and Chirality 93
- 4.1.6 Gibbs Phase Rule 93
- 4.1.7 Unary System or Unary Section Without Polymorphism 94
- 4.2 Unary System or Unary Section with Polymorphism 95
- 4.2.1 Access to Polymorphs 97
- 4.2.2 Mechanisms of Polymorphic Transition 98
- 4.3 Polymorphism in Binary Systems 98
- 4.3.1 No Mixed Crystals 98
- 4.3.1.1 Polymorphism of One Component Only 98
- 4.3.1.2 Three Enantiotropic Polymorphs 100
- 4.3.1.3 Two Enantiotropic Polymorphs and One Form with Monotropic Character *100*
- 4.3.1.4 One Stable Polymorph and Two Forms with a Monotropic Character *100*
- 4.3.1.5 Polymorphism of a Stoichiometric Compound 100
- 4.3.2 Polymorphism and Mixed Crystals 102
- 4.3.2.1 Polymorphism of One Component Only 102
- 4.3.2.2 Two Stable Polymorphic Forms for One Component with Full Miscibility in the Solid State (at a Certain Temperature) 105
- 4.3.2.3 Two Stable Polymorphic Forms for One Component with Limited Miscibility in the Solid State *108*
- 4.3.2.4 One Stable Form and One Metastable Form (Monotropic Character) with Full Miscibility for the Metastable Form *109*
- 4.3.2.5 One Stable Form and One Metastable Form (Monotropic Character) with Full Miscibility for the Metastable Form *111*
- 4.3.2.6 Two Isostructural Monotropic Forms When Mixed Could Lead to an Enantiotropy *112*
- 4.3.2.7 Limitations of the Concept of Polymorphism and Other Solid(s) to Solid(s) Transitions *112*
- 4.3.3 Solvates 114
- 4.3.3.1 Differentiation Between Stoichiometric and Nonstoichiometric Solvates *116*
- 4.3.3.2 Hygroscopicity, Deliquescence, and Efflorescence 117

4.4	Ternary Systems 119
4.4.1	Chiral Discrimination via the Formation of Solvates 121
4.5	Temperature of Desolvation – T_{a} and New Polymorphs Only
	Accessible Through a Smooth Solvation – Desolvation Process 123
4.6	Concluding Remarks 126
	Acknowledgments 127
	References 127
5	Toward Computational Polymorph Prediction 122
5	Sarah L. Price and Louise S. Price
51	Could a Computer Predict Polymorphs for the Pharmaceutical
5.1	Industry? 133
5.1.1	Predicting the Thermodynamically Most Stable Structure from
01111	the Chemical Diagram 134
5.1.2	Using Crystal Structure Prediction Studies as a Complement to
	Solid-form Screening 134
5.2	Methods of Calculating the Relative Energies of Crystals 136
5.2.1	Lattice Energy 136
5.2.2	Free Energy 139
5.3	Searching for Possible Crystal Structures 140
5.4	Comparing Crystal Structures 141
5.5	Calculation of Properties from Crystal Structures 142
5.5.1	Spectroscopic – PXRD, IR, ss-NMR 142
5.5.2	Other Properties: Solubilities, Morphologies, and Mechanical Properties 143
5.6	Crystal Energy Landscapes 145
5.6.1	Interpretation of Crystal Energy Landscapes 145
5.6.2	Example of Tazofelone 146
5.7	Potential Uses of Crystal Energy Landscapes in
	the Pharmaceutical Industry 148
5.7.1	Confirming the Most Stable Structure is Known 148
5.7.2	Suggesting Experiments to Find New Polymorphs 148
5.7.3	Aiding Structural Characterization from Limited Experimental
	Data 149
5.7.4	Anticipating Disorder 149
5.7.5	Understanding Crystallization Behaviors 149
5.8	Outlook 150
	References 151
6	Hygroscopicity and Hydrates in Pharmaceutical Solids 159
	Susan M. Reutzel-Edens, Doris E. Braun, and Ann W. Newman
6.1	Introduction 159
6.2	Thermodynamics of Water–Solid Interactions 160
6.3	Hygroscopicity 161
6.3.1	Moisture Sorption Analysis 162
6.3.2	Hygroscopic Behaviors in Pharmaceutical Solids 166

6.4 Hydrates 168

- 6.4.1 Statistics of Hydrate Appearance 168
- 6.4.2 Hydrate Crystallization 170
- 6.4.3 Structures and Properties 174
- 6.5 Significance and Strategies for Developing Hydrate-Forming Systems *180*
- 6.6 Conclusions 184 References 184

```
7 The Amorphous State 189
```

- Marc Descamps, Emeline Dudognon, and Jean-François Willart
- 7.1 Introduction 189
- 7.2 Amorphous/Crystalline Solids: Terminology and Brief Confrontation *190*
- 7.2.1 Structural Aspects 190
- 7.2.2 The Concept(s) of Solid State: Rheological Aspect 191
- 7.2.3 Crystal Melting vs Glass Softening 192
- 7.3 Order and Disorder: Structural Identification of Amorphous and Crystal States *193*
- 7.3.1 How Disordered can a Crystal Be? 193
- 7.3.1.1 Crystallinity: Definition, Experimental Identification 193
- 7.3.1.2 Small or Disordered "Perfect" Crystals 193
- 7.3.2 Structure of Glassy and Amorphous Compounds. How Ordered can They be? *194*
- 7.4 Amorphous Stability, Crystallization Avoidance, and Glass Formation *198*
- 7.4.1 Metastability, Driving Force for Crystallization *198*
- 7.4.2 Kinetics of Crystallization via Nucleation and Growth 198
- 7.4.3 Conventional Glass Formation 201
- 7.4.4 Notes on the Assessment and Prediction of Amorphous Stability 202
- 7.4.4.1 Role of Molecular Mobility 202
- 7.4.4.2 Role of the Liquid/Crystal Interface Energy and Structural Similarity 202
- 7.4.4.3 Role of Polymorphism 203
- 7.4.4.4 Heterogeneous Nucleation 204
- 7.4.4.5 Confinement and Size Effect 204
- 7.4.4.6 To Summarize 205
- 7.5 The Glass Transition 205
- 7.5.1 Calorimetric Signature at $T_{\rm g}$ 205
- 7.5.2 Calorimetric Glass Transition: Signification 206
- 7.5.3 The C_p Jump at T_q : *Fragile* and *Strong* Glass Formers 207
- 7.5.4 Glass Transition and Entropy Crisis: The Kauzmann Paradox 207
- 7.5.5 Glassy Amorphous State: Instability and Energy Landscape 208
- 7.6 Molecular Mobility for $T > T_g$ 210
- 7.6.1 Mobility of Fragile and Strong Glass Formers 210
- 7.6.2 Link Between Mobility and Entropy 212
- 7.6.3 Cooperative Rearrangement Regions (CRR) 213

x Contents

- 7.6.4 Dynamic Heterogeneity: Non-exponentiality of the Relaxation 213
- 7.7 Molecular Mobility and Instability for $T < T_g$ 214
- 7.7.1 The Aging Phenomenon 214
- 7.7.2 Approximate Assessment of Stability 215
- 7.7.2.1 Fictive Temperature 216
- 7.7.3 Nonlinearity 217
- 7.7.4 Secondary Relaxations 218
- 7.8 Multicomponent Amorphous Systems: Solubility and Stability Issues 220
- 7.8.1 Solubility: Comparison of Crystalline and Amorphous States 220
- 7.8.2 T_{g} of Amorphous Multicomponent System 223
- 7.8.3 Improved Dissolution Properties 224
- 7.8.4 Mixing and Stabilization 224
- 7.9 Methods of Amorphization 226
- 7.10 Influence of Processing on Properties 230
- 7.11 Concluding Remarks 231 References 232
- 8 Approaches to Solid-Form Screening 241

Rolf Hilfiker, Fritz Blatter, Martin Szelagiewicz, and Markus von Raumer

- 8.1 Screening for Salts and Co-crystals 242
- 8.1.1 Example of a Co-crystal Screen 243
- 8.2 Polymorphs, Hydrates, and Solvates 245
- 8.3 Screening for Polymorphs, Hydrates, and Solvates 245
- 8.3.1 Crystallization Methods 248
- 8.3.2 Choice of Solvent 250
- 8.3.3 Types of Polymorph Screens 251
- 8.3.4 Characterization and Selection 253
- 8.4 Conclusion 255 References 256

9 Nucleation 261

Marco Mazzotti, Thomas Vetter, David R. Ochsenbein, Giovanni M. Maggioni, and Christian Lindenberg

- 9.1 Introduction 261
- 9.2 Homogeneous Nucleation 262
- 9.2.1 Classical Nucleation Theory 264
- 9.2.2 Two-Step Nucleation Theory 266
- 9.3 Heterogeneous and Secondary Nucleation 268
- 9.3.1 Heterogeneous Nucleation 268
- 9.3.2 Secondary Nucleation 268
- 9.4 Characterization of Nucleation 270
- 9.4.1 Deterministic Nucleation Rates 270
- 9.4.2 Stochastic Nucleation Rates 272
- 9.5 Order of Polymorph Appearance Ostwald's Rule of Stages 275
- 9.6 To Seed or Not to Seed? 277
- 9.6.1 Process Control 277

- 9.6.2 Polymorphism Control 279
- 9.6.3 Impurity Control 279 References 280

10 Crystallization Process Modeling 285

- Marco Mazzotti, Thomas Vetter, and David R. Ochsenbein
- 10.1 Introduction 285
- 10.1.1 Population Balance Equations 286
- 10.1.2 Notes Regarding Population Balance Models 288
- 10.1.2.1 Energy Balances and Fluid Dynamics 288
- 10.1.2.2 Solution of Population Balance Equations 288
- 10.1.2.3 Applications 289
- 10.2 System Characterization and Optimization 289
- 10.2.1 Crystal Growth 290
- 10.2.2 Polymorph Transformation 291
- 10.2.3 Agglomeration 292
- 10.2.4 Optimization 295
- 10.3 Multidimensional Population Balance Modeling 297
- 10.4 Conclusion 300 References 301
- 11 Crystallization Process Scale-Up, a Quality by Design (QbD) Perspective 305 Andrei A. Zlota
- 11.1 Introduction 305
- 11.2 API Critical Quality Attributes (CQAs) 306
- 11.3 Statistical Design of Experiments (DoE) for Crystallization Process Development 306
- 11.3.1 Example: DoE Methodology to Develop a Robust Crystallization Process, a Case of an API Developed as a Polymorphic Mixture 307
- 11.4 Process Analytical Technology (PAT) for Polymorph Control 314
- 11.5 Mixing and Scale-Up Investigations *316*
- 11.5.1 Scale-Up Factors, Mass Transfer 316
- 11.5.2 Scale-Up Factors in Crystallization Processes 318
- 11.5.3 Mixing Impact on the Metastable Zone Width (MSZW) 324
- 11.5.4 Disappearing Polymorphs During Scale-Up 324
- 11.5.5 Polymorph Control Methods Based on Mixing 324
- 11.5.6 Heat Transfer 325
- 11.6 Conclusions and Outlook 326 References 326
- 12 Processing-Induced Phase Transformations and Their Implications on Pharmaceutical Product Quality 329 Seema Thakral, Ramprakash Govindarajan, and Raj Suryanarayanan
- 12.1 Introduction 329
- 12.2 Pharmaceutical Processes Causing Unintended Phase Transformations 333

- 12.2.1 Milling 333
- 12.2.2 Granulation and Drying Hydration and Dehydration 336
- 12.2.2.1 Hydrate Formation 337
- 12.2.2.2 Dehydration 338
- 12.2.3 Compression 342
- 12.2.4 Freezing Aqueous Solutions 345
- 12.3 Pharmaceutical Processes Causing Intended Phase Transformations – Obtaining the Desired Physical Form 346
- 12.3.1 Spray-drying 346
- 12.3.2 Freeze-drying 347
- 12.3.3 Hot Melt Extrusion 349
- 12.3.4 Co-milling/Co-grinding 350
- 12.4 Phase Transformations During Pharmaceutical Processing Implications 351
- 12.4.1 Creating Disorder Amorphization 352
- 12.4.1.1 Altered Particulate and Bulk Properties 352
- 12.4.1.2 Implications on Chemical Stability 353
- 12.4.1.3 Solubility and Bioavailability Enhancement 356
- 12.4.2 Formation of Crystalline Mesophases 357
- 12.4.3 Restoring Order Promoting In-process Recrystallization 358
- 12.4.3.1 In Frozen Solutions 358
- 12.4.3.2 Miscellaneous Processes 359
- 12.4.4 Amorphization and Crystallization During Freeze-drying 359
- 12.4.5 Changes in Chemical Composition 364
- 12.4.5.1 Hydrate Formation and Dehydration 364
- 12.4.5.2 "Co-amorphization" 365
- 12.4.5.3 Co-crystal Formation 366
- 12.4.5.4 Salt Formation and Disproportionation 366
- 12.5 Conclusion 368 References 369
- 13 Surface and Mechanical Properties of Molecular Crystals 381 M. Teresa Carvajal and Xiana Kou
- 13.1 Introduction 381
- 13.2 Surface Properties 382
- 13.2.1 Structure–Property–Response/Performance 385
- 13.2.2 Case Study #1 Milling-Induced Agglomeration 386
- 13.2.3 Case Study #2 Batch-to-batch Variability 390
- 13.2.4 Case Study #3 Hydration–Dehydration 393
- 13.2.5 Case Study #4 Surface Interactions and Bulk Properties 395
- 13.3 Remarks 399
- 13.4 Impact of Polymorphism on Powder Flow 401
- 13.5 Impact of Polymorphism on Mechanical Properties of Molecular Crystals *402*
- 13.6 Impact of Polymorphism on Size Reduction by Milling 405
- 13.7 Impact of Polymorphism on Powder Compaction Properties 406 References 409

- **14 Analytical Tools to Characterize Solid Forms** *415 Rolf Hilfiker, Susan M. De Paul, and Timo Rager*
- 14.1 Crystal Structure 415
- 14.1.1 X-ray Diffraction (XRD) 416
- 14.1.2 Vibrational Spectroscopy (Raman, mid-IR, NIR, and THz) 417
- 14.1.3 Solid-State NMR (ssNMR) Spectroscopy 424
- 14.2 Thermodynamic Properties 431
- 14.2.1 Differential Scanning Calorimetry (DSC) 431
- 14.2.2 Isothermal Microcalorimetry (IMC) 436
- 14.2.3 Solution Calorimetry (SolCal) 438
- 14.3 Composition Solvate/Hydrate Stoichiometry 439
- 14.3.1 Thermogravimetry (TGA, TG-FTIR, and TG-MS) 439
- 14.3.2 Dynamic Vapor Sorption (DVS) 440
- 14.4 Conclusion 443 References 443

15 Industry Case Studies 447

Ralph Diodone, Pirmin C. Hidber, Michael Kammerer, Roland Meier, Urs Schwitter, and Jürgen Thun

- 15.1 Introduction 447
- 15.1.1 Screening and Selection of Solid Forms 447
- 15.1.2 Control Strategy for the Solid Form 448
- 15.2 Case Study #1: Holistic Control Strategy for Solid Form 449
- 15.2.1 Solid-Form Control for Drug Substance 449
- 15.2.2 Solid-Form Control for Drug Product 450
- 15.3 Case Study #2: Solid-Form Control of API for Low-Dose Drug 451
- 15.4 Case Study #3: Development of Crystallization Process and Unexpected Influence of Impurity 453
- 15.5 Case Study #4: Hydrate/Anhydrate Dilemma 456
- 15.6 Case Study #5: *Quality by Design* by Selecting a Cocrystal 458
- 15.7 Case Study #6: Dealing with the Consecutive Appearance of New Polymorphs 460
- 15.8 Case Study #7: Amorphous API: Issues to be Considered in Drug Development 464
- 15.9 Case Study #8: Computational Prediction of Unknown Polymorphs and Experimental Confirmation 466 References 467
- 16 Pharmaceutical Crystal Forms and Crystal-Form Patents: Novelty and Obviousness 469
 - Joel Bernstein and Jill MacAlpine
- 16.1 Introduction 469
- 16.2 Novelty and Obviousness 470
- 16.3The Scientific Perspective471
- 16.3.1 Novelty from a Scientific Perspective 471
- 16.3.2 Obviousness from a Scientific Perspective 472
- 16.4 The Role of Serendipity in Crystal Forms 475

xiv Contents

- 16.5 History of Crystal-Form Patents 477
- 16.6 Typical *Ex Post Facto* Arguments on Obviousness 478

16.7 Conclusion 482 Acknowledgment 482 References 482

Index 485