Contents

Foreword XXVII
Industrial Requirement on Nanopharmacy Research XXIX
Introduction XXXI

Volume 1

Part One Entry to the Nanopharmacy Revolution 1

1 History: Potential, Challenges, and Future Development in Nanopharmaceutical Research and Industry 3
Albertina Ariën and Paul Stoffels
1.1 Nanopharmaceuticals in Cancer Therapy 4
1.2 Nanoparticles Actively Using the Host Machinery 5
1.3 Nanopharmaceuticals for Oral Administration and Long-Acting Injectable Therapy 8
1.4 Bridging Future Nanomedicines to Commercialization 10
1.5 Future Outlook 11
Acknowledgments 12
References 12

2 Nanoscale Drugs: A Key to Revolutionary Progress in Pharmacy and Healthcare 17
Simon Sebastian Raesch, Marina Poettler, Christoph Alexiou, and Claus-Michael Lehr
2.1 Introduction 17
2.1.1 Setting the Stage 17
2.1.2 Definition and Size Aspects 18
2.1.3 Nanopharmacy: Interdisciplinary Medicine 19
2.2 Nanopharmacy Concepts to Improve the Safety and Efficacy of Medicines 20
2.2.1 Overcoming the Solubility Barrier 20
2.2.2 Controlling Drug Release 20
2.2.2.1 Sustained Release 21
2.2.2.2 Stimuli-Responsive Release 21
2.2.3 Overcoming Biological Barriers 22
2.2.3.1 Epithelial–Endothelial Barriers 23
2.2.3.2 Noncellular Barriers 27
2.2.4 Targeting 29
2.2.4.1 Active Targeting 30
2.2.4.2 Passive Targeting 30
2.3 Technical Realization of Nanopharmaceuticals 30
2.3.1 Nanosized APIs 31
2.3.2 Organic Nanocarriers 32
2.3.2.1 Lipid-Based Nanocarriers 32
2.3.2.2 Polymer-Based Nanocarriers 32
2.3.2.3 Protein-Based Nanoparticles 33
2.3.3 Inorganic Nanoparticles 33
2.4 Safety of Nanopharmaceuticals 34
2.5 Present and Future of Nanopharmacy 35

References 37

3 The Emergence of Nanopharmacy: From Biology to Nanotechnology and Drug Molecules to Nanodrugs 43
Marilena Hadjidemetriou, Zahraa Al-Ahmady, Mariarosa Mazza, and Kostas Kostarelos
3.1 Introduction 43
3.2 First Generation of Nanopharmaceuticals: From Drug Molecules to Nanodrugs 45
3.2.1 Making New Therapies Happen: The Example of Nucleic Acid Therapeutics 47
3.2.1.1 Making Nanodrugs Smarter: Multifunctional Nanodrugs 49
3.3 Conclusion 55
References 56

4 Understanding and Characterizing Functional Properties of Nanoparticles 63
Ester Polo, Valentina Castagnola, and Kenneth A. Dawson
4.1 Introduction 63
4.1.1 Key Concepts: Size Matters, Biological Interactions 65
4.1.2 Link Between Material Properties and Characterization for Differing Timescales of Biological Interaction 67
4.1.2.1 Early Times 67
4.1.2.2 Degradation of Surface 68
4.1.2.3 Long Timescales 69
4.1.2.4 Priorities 70
4.2 The Approach to Characterization 70
4.2.1 The Nature of Early-Stage Biological Recognition 70
4.2.1.1 Epitope and Recognition Motif Mapping 71
5 Omics-Based Nanopharmacy: Powerful Tools Toward Precision Medicine
Daniel Rosenblum and Dan Peer
5.1 Introduction 81
5.2 Precision Medicine 82
5.2.1 Precision Oncology 83
5.2.2 Therapeutic mAbs 83
5.2.3 Therapeutic Small-Molecules Inhibitors 84
5.2.4 Chimeric Antigen Receptors (CARs) 85
5.3 ”OMICS” – New Era in Understanding Pathology 86
5.3.1 Next-Generation Sequencing (NGS) 86
5.3.2 The Identification of “Clear-Cut” Biomarkers Using State-of-the-Art Proteomics 87
5.3.3 Personal OMICS Profiling 88
5.3.4 Single-Cell Sequencing 89
5.4 Nanomedicine 90
5.4.1 Personalized Oncology Using Nanomedicine 90
5.4.1.1 Passive Tissue Targeting vs. Active Cellular Targeting 90
5.4.2 RNAi: A powerful Approach for Cancer Personalized Therapy 92
5.5 Future Outlook 93
Acknowledgments 96
References 96

Part Two Fundamentals of Nanotechnology in Pharmacy 101

6 Nanostructures in Drug Delivery 103
Salma Nabil Tammam and Alf Lamprecht
6.1 Introduction 103
6.2 Nanocarrier Classification 103
6.2.1 Inorganic Nanostructures 104
6.2.2 Organic Nanostructures 106
6.2.2.1 Drug Nanocrystals 106
6.2.2.2 Matrix Systems 108
6.2.2.3 Vesicular Systems 112
6.3 Drug Loading and Release 116
6.3.1 Hydrophobic Drugs 117
6.3.2 Hydrophilic Drugs 119
6.3.3 Macromolecular Drugs 121
9 Overview of Techniques and Description of Established Processes 175

Jan Henrik Finke, Michael Juhnke, Arno Kwade, and Heike Bunjes

9.1 Introduction 175

9.2 Processing of Liquid Drug Carrier Formulations 176

9.2.1 Colloidal Lipid Emulsions 176

9.2.1.1 General Aspects and Composition 176

9.2.1.2 Preparation Process of Intravenous Fat Emulsions 177

9.2.1.3 Preparation of the Adjuvant Emulsion MF59 180

9.2.2 Liposomes 181

9.2.2.1 General Aspects and Composition 181

9.2.2.2 Preparation of Liposomal Dispersions 183

9.2.2.3 Drug Incorporation into Liposomes and Other Colloidal Lipid Structures 185

9.2.2.4 DepotFoam® Technology 187

9.2.2.5 Sterilization of Liposomes 188

9.2.2.6 Drying of Liposomal Dispersions 188

9.2.3 Polymeric Nanoparticles 189

9.2.3.1 General Aspects 189

9.2.3.2 Abraxane® 192

9.3 Drug Nanoparticles and Process Chains to Solid Formulations 192

9.3.1 Drug Particle Size-Determining Processes 193

9.3.1.1 Comminution Processes (Top-Down Methods) 193

9.3.1.2 Bottom-Up Processes 204

9.3.1.3 Hybrid/Combinative Methods 205

9.3.2 Drying Methods and Further Processing 207

9.3.2.1 Freeze-Drying 207

9.3.2.2 Spray-Drying 208

9.3.2.3 Spray-Coating, Granulation, and Pelletization 210

9.3.2.4 Other Conversion Methods 212

9.3.3 Marketed Products Containing Drug Nanoparticles 212

9.3.3.1 Rapamune® 214

9.3.3.2 Emend® 215

9.4 Industrial Status and Framework 215

9.5 Perspectives for Academia, Industry, and Regulatory Authorities 216

References 217

10 Nanopharmacy: Exploratory Methods for Polymeric Materials 231

Kuldeep Bansal, Luana Sasso, Hiteshri Makwana, Sahar Awwad, Steve Brocchini, and Cameron Alexander

10.1 Introduction 231

10.2 Rationale for the Use of Polymers in Nanomedicines 232

10.3 Polymer Structures and Properties 234

10.3.1 Polymer Morphology 234

10.3.2 Polymer Structures for Drug Delivery – Micelles and Vesicles 236
10.4 Formulation of Copolymers into Micelles, Vesicles, and Nanoparticles 236
10.4.1 Investigational Formulations – Stimuli-Responsive Polymers 238
10.5 Conjugation of Polymers to Drugs and Proteins 240
10.5.1 Polymer–drug Conjugates 240
10.5.2 PEG-Protein Conjugates 242
10.5.3 Properties of PEGylated Proteins 242
10.5.4 Preparation of PEGylated Proteins 243
10.5.5 Moving Beyond Protein PEGylation 247
10.6 Recent Advances in Polymer Synthesis for Therapeutic Applications 248
10.6.1 Biodegradable Polymers for Nanomedicines 249
10.6.2 Classification of Biodegradable Polymers 249
10.6.2.1 Naturally Occurring Biodegradable Polymers for Nanomedicine 249
10.6.2.2 Synthetic Biodegradable Polymers for Nanomedicine 250
10.6.3 Mechanisms of Polycondensation Reactions 251
10.6.3.1 Fischer Esterification 251
10.6.3.2 Transesterification 251
10.6.4 Ring-Opening Polymerization 251
10.6.4.1 Anionic ROP 252
10.6.4.2 Cationic ROP 252
10.6.4.3 Coordination–Insertion ROP 252
10.6.5 Examples of Synthetic Polyesters as Investigational Nanomedicines 253
10.6.5.1 Poly(caprolactone) 253
10.6.5.2 Poly(anhydrides) 253
10.6.5.3 Poly(trimethylene Carbonate) 253
10.6.5.4 Polyesters in Development 254
10.6.5.5 Poly(esters) of Lactide and Glycolide 254
10.7 Controlled Radical Polymerization (CRP) 259
10.7.1 Atom Transfer Radical Polymerization (ATRP) 260
10.7.2 Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization 260
10.8 Concluding Remarks 260
References 261

11 Overview and Presentation of Exploratory Methods for Manufacturing Nanoparticles/“Inorganic Materials” 271
Xavier Le Guevel
11.1 Introduction 271
11.2 Gold NPs 272
11.2.1 Different Shapes and Optical Properties 272
11.2.2 Conjugated (Covalent and Noncovalent) 276
11.2.3 Polymer/Polyelectrolyte Coating 277
11.2.4 Lipids 277
11.2.5 Composite 279
11.3 Magnetic NPs 279
11.3.1 Synthesis 279
11.3.2 Stabilization/Protection of Magnetic NPs 280
11.3.3 Hybrid Magnetic Nanosystem for Delivery 280
11.4 Metal Oxide NPs 282
11.4.1 Silica/Silicon 282
11.4.2 Calcium Phosphate, Hydroxyapatite 283
11.4.3 Others: Titanium Oxide and Aluminum Oxide 283
11.5 Others (Silver, Quantum Dots, and Lanthanides) 284
11.6 Conclusion and Perspective 285
Acknowledgment 285
References 285

12 Scale-Up and cGMP Manufacturing of Nanodrug Delivery Systems for Clinical Investigations 295
Mostafa Nakach and Jean-René Authelin
12.1 Introduction 295
12.2 Presentation of Major Manufacturing Processes of Different Nanodrug Delivery Systems 296
12.2.1 Process Including a Precipitation Step: The So-Called Bottom-Up Process 296
12.2.2 Process Including a Communion Step: The So-Called Top-Down Process 297
12.2.2.1 Manufacturing of Nanocrystalline Suspension Using Direct Communion 297
12.2.2.2 Manufacturing of Nanocrystalline, Nanoamorphous, or Nanopolymeric Suspension Using Emulsification Technique 298
12.2.2.3 Manufacturing of Lipid Emulsions 298
12.2.3 Manufacturing of Liposomes 299
12.2.4 Conversion of Nanosuspensions into Solid Intermediate for Downstream Processing into Final Drug Product 301
12.3 Nanodrug Delivery Systems as Marketed Products 302
12.4 Particle/Vesicle Size Reduction Technologies 302
12.4.1 High-Pressure Homogenization 302
12.4.1.1 Different High-Pressure Homogenizer Design 304
12.4.2 Stirred Bead Milling 306
12.4.2.1 Different Mill Designs 307
12.4.2.2 Conclusions: Size Reduction 307
12.5 Process Development and Scale-Down/Scale-Up Strategy 308
12.5.1 API x Case Study 309
12.5.1.1 Drug Product Definition 309
12.5.1.2 Study Context of the Laboratory-Scale Process 309
12.5.1.3 Scaling Up of the Bangham Manufacturing Technique 309
12.5.1.4 Development and Scaling Up of Direct Injection Method 311
12.5.1.5 Lessons Learned 318
12.5.2 Scale-Up and Scale-Down Strategies 318
12.5.2.1 Scaling Up of Bead Milling Technology 319
12.5.2.2 Scaling Up of High-Pressure Homogenization 319
12.5.2.3 Generic Development Methodology 320
12.6 Technological Concept for Manufacture of Drug Product for Human Use (GMP Unit) 322
12.6.1 Process Technology Configuration for Manufacturing of Nanocrystalline Suspension Using Top-Down Process 323
12.6.2 Process Technology Configuration for Manufacturing of Nanocrystalline Suspension Using Bottom-Up Process or for Nanoemulsion, Liposomes, or Polymeric Nanoparticles 324
12.6.3 Equipment Design Requirements 325
12.6.3.1 Equipment Sterilization 326
12.6.3.2 Equipment Cleaning 326
12.6.3.3 Equipment Drying 326
12.6.4 Facility Requirements 327
12.7 Conclusion 327
References 327

13 Occupational Safety and Health 331
Thomas H. Brock
13.1 Nanomaterials at the Workplace 331
13.2 Legal Aspects 335
13.3 Management of Uncertainty 336
13.4 Risks of Nanomaterials for Researchers and Workers 336
13.5 Prudent Practices and Proven Concepts for Controlling Risks 338
13.5.1 Risk Assessment 338
13.5.2 Workplace Measurements 341
13.5.3 Protective Measures 344
13.6 Instruction and Training 351
13.7 Summary 352
References 352

Volume 2

Part Three Development of Nanopharmaceuticals 355

14 Micro- and Nano-Tools in Drug Discovery 357
Andreas Dietzel, Monika Leester-Schädel, and Stephan Reichl
14.1 Introduction 357
14.2 General Concepts of Miniaturization 357
14.3 Micro- and Nanofabrication 359
14.3.1.1 Photolithography 359
14.3.1.2 Depth Lithography 360
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.1.3</td>
<td>Soft Lithography</td>
<td>360</td>
</tr>
<tr>
<td>14.3.1.4</td>
<td>Wet Chemical and Dry Etching</td>
<td>360</td>
</tr>
<tr>
<td>14.3.1.5</td>
<td>Thin Film Deposition</td>
<td>362</td>
</tr>
<tr>
<td>14.3.1.6</td>
<td>Bonding Techniques</td>
<td>363</td>
</tr>
<tr>
<td>14.3.1.7</td>
<td>3D Printing</td>
<td>364</td>
</tr>
<tr>
<td>14.3.1.8</td>
<td>Microelectrical Discharge Machining (μEDM)</td>
<td>365</td>
</tr>
<tr>
<td>14.3.1.9</td>
<td>Laser Fabrication</td>
<td>366</td>
</tr>
<tr>
<td>14.3.1.10</td>
<td>Surface Functionalization</td>
<td>366</td>
</tr>
<tr>
<td>14.4</td>
<td>Nanoformulation</td>
<td>367</td>
</tr>
<tr>
<td>14.4.1</td>
<td>High-Pressure Nanonization Systems</td>
<td>367</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Low-Pressure Nanonization Systems</td>
<td>369</td>
</tr>
<tr>
<td>14.5</td>
<td>Organ-on-a-Chip</td>
<td>372</td>
</tr>
<tr>
<td>15</td>
<td>Computational Predictive Models for Nanomedicine</td>
<td>379</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>379</td>
</tr>
<tr>
<td>15.2</td>
<td>Molecular Modeling in Nanomedicine</td>
<td>381</td>
</tr>
<tr>
<td>15.3</td>
<td>Computational Approaches for Predicting Nanotoxicology</td>
<td>384</td>
</tr>
<tr>
<td>15.4</td>
<td>Simulation of Nanoparticle Pharmacokinetics</td>
<td>386</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Nanoparticle Absorption</td>
<td>386</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Nanoparticle Distribution</td>
<td>388</td>
</tr>
<tr>
<td>15.4.3</td>
<td>Nanoparticle Elimination</td>
<td>389</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Physiologically Based Pharmacokinetic Models (PBPK)</td>
<td>389</td>
</tr>
<tr>
<td>15.4.5</td>
<td>Integration of Experimental Data in PBPK Models</td>
<td>391</td>
</tr>
<tr>
<td>15.4.6</td>
<td>Examples of PBPK Models</td>
<td>391</td>
</tr>
<tr>
<td>15.4.7</td>
<td>Limitations of the PBPK Approach</td>
<td>394</td>
</tr>
<tr>
<td>15.4.8</td>
<td>Future Perspective of PBPK Modeling</td>
<td>394</td>
</tr>
<tr>
<td>15.5</td>
<td>Conclusion</td>
<td>395</td>
</tr>
<tr>
<td>15.6</td>
<td>References</td>
<td>397</td>
</tr>
<tr>
<td>16</td>
<td>Drug Targeting in Nanomedicine and Nanopharmacy: A Systems Approach</td>
<td>403</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>403</td>
</tr>
<tr>
<td>16.2</td>
<td>A Systems Approach to Drug Delivery and Drug Targeting</td>
<td>405</td>
</tr>
<tr>
<td>16.3</td>
<td>Current Nanomedicine Products</td>
<td>407</td>
</tr>
<tr>
<td>16.4</td>
<td>Transformation of a Discovery of Disease Target to a Therapeutic Product</td>
<td>410</td>
</tr>
<tr>
<td>16.5</td>
<td>The Role of Targeted Nanoformulations and a Systems Approach in Drug Development</td>
<td>412</td>
</tr>
<tr>
<td>16.6</td>
<td>Targeting Drugs to Sites of Action</td>
<td>413</td>
</tr>
<tr>
<td>16.7</td>
<td>A Size-Dependent Targeting to Tissues and Cells</td>
<td>414</td>
</tr>
<tr>
<td>16.8</td>
<td>Ligand–Receptor-Based Targeting: Active Drug Targeting</td>
<td>417</td>
</tr>
<tr>
<td>16.8.1</td>
<td>Target Selected Delivery of a Toxin with an Antibody</td>
<td>418</td>
</tr>
</tbody>
</table>
Part Four Pharmaceutical Applications of Nanomaterials 533

22 Nanoparticles for Imaging and Imaging Nanoparticles:
State of the Art and Current Prospects 535
 Thomas Maldiney and Nathalie Mignet
22.1 Introduction 535
22.2 Conception of Nanotechnologies for Imaging 536
 22.2.1 Nanoparticles Designed for Optical Imaging 536
 22.2.2 Particles Designed for Ultrasound Imaging 540
 22.2.3 Particles Designed for Magnetic Resonance Imaging 543
22.3 \(\text{In Vivo} \) Nanoparticle Imaging to Gain Insight into
Nanomedicine Biodistribution and Stability 544
 22.3.1 Nanoparticle Biodistribution 544
 22.3.2 Imaging Nanoparticles to Optimize Surface and Size
with Reference to Their Biodistribution and Clearance 545
 22.3.3 Imaging Nanoparticle to Optimize Their Intrinsic
Stability 547
22.4 Translational Interest of Nanoparticles for Medical Imaging 548
 22.4.1 Macrophage Imaging by Nanoparticle Uptake 548
 22.4.2 Blood Pool Agent 549
 22.4.3 Targeted Nanoparticles 550
22.5 Conclusion 553
References 553

23 Nanoparticle-Based Physical Methods for Medical Treatments 561
 Christine Ménager
23.1 Photothermal Therapy 561
 23.1.1 Gold Nanoparticles 561
 23.1.2 Carbon Nanomaterials 564
 23.1.2.1 Carbon Nanotubes 564
 23.1.2.2 Nanographene 565
23.2 Photodynamic Therapy 565
 23.2.1 \(\text{TiO}_2 \) Nanoparticles 565
 23.2.2 Upconversion Nanoparticles (UCN) 567
23.3 Magnetic Hyperthermia 567
 23.3.1 Magnetic Iron Oxide Nanoparticles 568
23.4 Radiotherapy 571
 23.4.1 Hafnium Oxide Nanoparticles 571
23.5 Sonodynamic Therapy 572
23.6 Cryosurgery 573
23.7 Future Perspectives 574
References 575
24 Nanodrugs in Medicine and Healthcare: Oral Delivery 579
Alejandro Sosnik

24.1 General Aspects and Challenges of Oral Drug Delivery 579
24.2 Pure Drug Micronization as a Conceptual Preamble to More Complex Drug Delivery 580
24.3 Nanotechnology Platforms for Improved Oral Drug Delivery 581
 24.3.1 Pure Drug Nanoparticles 581
 24.3.2 Dendrimers and Other Branched Nanocarriers 585
 24.3.3 Polymeric Micelles 585
 24.3.4 Nanoemulsions 587
 24.3.5 Solid Lipid Nanoparticles 587
 24.3.6 Polymeric Nanoparticles 590
24.4 Conclusive Remarks 591
Acknowledgments 591
References 591

25 Steroidal Nanodrugs Based on Pegylated Nanoliposomes Remote Loaded with Amphipathic Weak Acids Steroid Prodrugs as Anti-Inflammatory Agents 603
Keren Turjeman and Yechezkel Barenholz

25.1 A Short Relevant Background on Inflammatory and Autoimmune Diseases 603
25.2 Drug Delivery Systems (DDS) Based on Nanoparticles (NP) for the Treatment of Diseases That Involve Inflammation 605
25.3 Glucocorticosteroid as Anti-Inflammatory Agents 607
25.4 Steroidal Nanodrugs Based on Pegylated Nanoliposomes Remote Loaded with Amphipathic Weak Acids Steroid Prodrugs as Anti-Inflammatory Agents 609
25.5 Methods for Loading Drugs into Liposomes 610
 25.5.1 Passive Drug Loading 610
 25.5.2 Remote (Active) Drug Loading 611
25.6 Comparing Various Approaches Used for Formulating Liposomal GCs 612
25.7 The Use of Liposomes Loaded with Steroids as Anti-Inflammatory Agents: A Brief Historical Perspective 615
25.8 Lessons Learned from Experimental Animal Models of Diseases That Involve Inflammation 618
 25.8.1 Pharmacokinetics (PK) and Biodistribution (BD) Advantages of Steroidal Nanodrugs 619
 25.8.2 NSSL-Based Steroidal Nanodrugs Improve Significantly the Anti-Inflammatory Therapeutic Efficacy over the Same Steroids Given “As Is” 623
 25.8.3 Treatment with Liposomal Steroids Affects Cytokines Secretion and Tissue Pathology 624
28.2 Irreproducible Preclinical Research: A Bottleneck for Translation? 673
28.3 Protecting Inventions via Patents: The Cornerstone of Translation 678
28.4 Terminology and Nomenclature: Lost in Translation 680
28.5 Gaps in Regulatory Guidance 682
28.6 Conclusions and Outlook 683
28.7 Disclosures and Conflict of Interest 694
References 694

29 Development and Commercialization of Nanocarrier-Based Drug Products 697
Marianne Ashford
29.1 Drivers for New Medicines 697
29.2 Current Marketed Nanomedicines 699
29.2.1 Amphotericin B Liposomal Products 699
29.2.2 Doxil 700
29.2.3 Other Liposomal Products in Oncology 702
29.2.4 ABRAXANE® 702
29.2.5 Genexol-PM 703
29.2.6 Pegylated Proteins 703
29.2.7 Antibody Drug Conjugates 704
29.3 Developing Nanomedicines 705
29.3.1 The Development Process 705
29.3.2 Improving Translation of Nanomedicines into Clinical Use 706
29.3.2.1 Lessons Learnt from Traditional Research and Development 706
29.3.2.2 Support from Specialist Groups 708
29.3.3 Preclinical Development 709
29.3.3.1 In Vitro Preclinical Development Testing 709
29.3.3.2 In Vivo Preclinical Development 712
29.3.3.3 Formulation and Process Optimization 714
29.3.3.4 Analytical Considerations 719
29.3.5 Lessons Learnt from NCL 719
29.3.4 Regulatory Considerations 720
29.4 Commercialization of Nanomedicines 722
29.4.1 Nanotechnology Investment 723
29.4.2 The Nanomedicine Market 724
29.4.3 Challenges and Initial Solutions for Nanomedicine Commercialization 726
29.4.4 Key Players in Nanomedicines 730
29.5 Conclusions 732
References 732
30 Future Outlook of Nanopharmacy: Challenges and Opportunities 735
Dan Peer and Marcel Van de Voorde

30.1 Matching the NC’s Delivery Mode of Action (MoA) to the Tumor Type 736

30.2 Nonpredictive Animal Models 737

30.3 The Lack of Reliable Techniques that can Efficiently Characterize NCs and Measure their Stability in the Human Body 737

30.4 The Challenge of Scaling Up NCs 738

References 740

Index 743