Contents

Preface xvii

1	Application of Stimuli-Responsive and "Non-innocent" Ligands
	in Base Metal Catalysis 1
	Andrei Chirila, Braja Gopal Das, Petrus F. Kuijpers, Vivek Sinha,
	and Bas de Bruin
1.1	Introduction 1
1.2	Stimuli-Responsive Ligands 2
1.2.1	Redox-Responsive Ligands 3
1.2.2	pH-Responsive Ligands 5
1.2.3	Light-Responsive Ligands 7
1.3	Redox-Active Ligands as Electron Reservoirs 8
1.3.1	Bis(imino)pyridine (BIP) 8
1.3.1.1	Ethylene Polymerization with BIP 9
1.3.1.2	Cycloaddition Reactions 10
1.3.1.3	Hydrogenation and Hydro-addition Reactions 12
1.3.2	Other Ligands as Electron Reservoirs 14
1.4	Cooperative Ligands 15
1.4.1	Cooperative Reactivity with Ligand Radicals 16
1.4.1.1	Galactose Oxidase (GoAse) and its Models 16
1.4.1.2	Alcohol Oxidation by Salen Complexes 18
1.4.2	Base Metal Cooperative Catalysis with Ligands Acting as
	an Internal Base 18
1.4.2.1	Fe–Pincer Complexes 19
1.4.2.2	Ligands Containing a Pendant Base 20
1.5	Substrate Radicals in Catalysis 21
1.5.1	Carbene Radicals 22
1.5.2	Nitrene Radicals 25
1.6	Summary and Conclusions 26
	References 27
2	Computational Insights into Chemical Reactivity and Road
2	to Catalyst Design: The Paradigm of CO ₂ Hydrogenation 33
	Bhaskar Mondal, Frank Neese, and Shengfa Ye
2.1	Introduction 33
4.1	IIIII O UUCUOII 33

2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.2 2.3 2.4 2.5	Chemical Reactions: Conceptual Thoughts 33 Motivation Behind Studying CO_2 Hydrogenation 35 Challenges of CO_2 Reduction 35 CO $_2$ Hydrogenation 37 Noble vs Non-noble Metal Catalysis 38 CO $_2$ Hydrogenation: Basic Mechanistic Considerations 38 Reaction Energetics and Governing Factor 39 Newly Designed Catalysts and Their Reactivity 42 Correlation Between Hydricity and Reactivity 43 Concluding Remarks 45 Acknowledgments 46 References 47
3	Catalysis with Multinuclear Complexes 49
	Neal P. Mankad
3.1	Introduction 49
3.2	Stoichiometric Reaction Pathways 50
3.2.1	Bimetallic Binding and Activation of Substrates 50
3.2.1.1	Small-Molecule Activation 51
3.2.1.2	Alkyne Activation 52
3.2.2	Bimetallic Analogs of Oxidative Addition and Reductive
	Elimination 53
3.2.2.1	E—H Addition and Elimination 54
3.2.2.2	C—X Activation and C—C Coupling 56
3.2.2.3	C=O Cleavage 57
3.3	Application in Catalysis 57
3.3.1	Catalysis with Reactive Metal–Metal Bonds 58
3.3.1.1	Bimetallic Alkyne Cycloadditions 58
3.3.1.2	Bimetallic Oxidative Addition/Reductive Elimination Cycling 59
3.3.2	Bifunctional and Tandem Catalysis without Metal–Metal
	Bonds 59
3.3.2.1	Cooperative Activation of Unsaturated Substrates 59
3.3.2.2	Cooperative Processes with Bimetallic Oxidative Addition and/or
	Reductive Elimination 62
3.4	Polynuclear Complexes 64
3.5	Outlook 65
	Acknowledgments 66
	References 66
4	Copper-Catalyzed Hydrogenations and Aerobic N—N Bond Formations: Academic Developments and Industrial
	Relevance 69
	Paul L. Alsters and Laurent Lefort
4.1	Introduction 69
4.1 4.2	Cu-Promoted N—N Bond Formation 70
4.2.1	Noncyclization N—N or N=N Bond Formations 71

4.2.1.1	N—N Single-Bond-Forming Reactions 71
4.2.1.2	N=N Double Bond-Forming Reactions 72
4.2.2	Cyclization N—N Bond Formations 74
4.2.2.1	Dehydrogenative Cyclizations 77
4.2.2.2	Eliminative Cyclizations 80
4.2.2.3	Eliminative Cyclizations 81
4.3	Cu-Catalyzed Homogeneous Hydrogenation 82
4.3.1	Hydrogenation of CO ₂ to Formate and Derivatives 84
4.3.2	, e =
4.3.3	Hydrogenation of Clofus and Allamas 86
	Hydrogenation of Olefins and Alkynes 89 Conclusions 91
4.4	
	References 92
5	C=C Hydrogenations with Iron Group Metal Catalysts 97
,	Tim N. Gieshoff and Axel J. von Wangelin
5.1	Introduction 97
5.2	Iron 99
5.2.1	
5.2.2	Pincer Complexes 100
5.2.3	Others 106
5.3	Cobalt 107
5.3.1	Introduction 107
5.3.2	Pincer Complexes 108
5.3.3	Others 115
5.4	Nickel 118
5.4.1	Introduction 118
5.4.2	Pincer Complexes 119
5.4.3	Others 121
5.5	Conclusion 122
	Acknowledgments 123
	References 123
_	
6	Base Metal-Catalyzed Addition Reactions Across C—C Multiple
	Bonds 127
	Rodrigo Ramírez-Contreras and Bill Morandi
6.1	Introduction 127
6.2	Catalytic Addition to Alkenes Initiated Through Radical
	Mechanisms 128
6.2.1	Hydrogen Atom Transfer as a General Approach to
	Hydrofunctionalization of Unsaturated Bonds 128
6.2.2	Hydrazines and Azides via Hydrohydrazination and
	Hydroazidation of Olefins 128
6.2.2.1	Co- and Mn-Catalyzed Hydrohydrazination 128
6.2.2.2	Cobalt- and Manganese-Catalyzed Hydroazidation of Olefins 130
6.2.3	Co-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide 133
6.2.4	Co-Catalyzed Hydrochlorination of Olefins with Tosyl
	Chloride 133

/iii	Contents

viii	Contents	
	6.2.5	Fe ^{III} /NaBH ₄ -Mediated Additions of Unactivated Alkenes 134
	6.2.6	Co-Catalyzed Markovnikov Hydroalkoxylation of Unactivated Olefins 135
	6.2.7	Fe-Catalyzed Hydromethylation of Unactivated Olefins 137
	6.2.8	Hydroamination of Olefins Using Nitroarenes to Obtain Anilines 137
	6.2.9	Dual-Catalytic Markovnikov Hydroarylation of Alkenes 139
	6.3	Other Catalytic Additions to Unsaturated Bonds Proceeding Through Initial R: $(R \neq H)$ Attack 139
	6.3.1	Cu-Catalyzed Trifluoromethylation of Unactivated Alkenes 139
	6.3.2	Mn-Catalyzed Aerobic Oxidative Hydroxyazidation of Alkenes 139
	6.3.3	Fe-Catalyzed Aminohydroxylation of Alkenes 141
	6.4	Catalytic Addition to Alkenes Initiated Through Polar Mechanisms 143
	6.4.1	Cu-Catalyzed Hydroamination of Alkenes and Alkynes 143
	6.4.2	Ni-Catalyzed, Lewis-acid-Assisted Carbocyanation of Alkynes 147
	6.4.3	Ni-Catalyzed Transfer Hydrocyanation 148
	6.5	Hydrosilylation Reactions 150
	6.5.1	Fe-Catalyzed, Anti-Markovnikov Hydrosilylation of Alkenes with Tertiary Silanes and Hydrosiloxanes 150
	6.5.2	Highly Chemoselective Co-Catalyzed Hydrosilylation of Functionalized Alkenes Using Tertiary Silanes and Hydrosiloxanes 151
	6.5.3	Alkene Hydrosilylation Using Tertiary Silanes with α -Diimine Ni Catalysts 151
	6.5.4	Chemoselective Alkene Hydrosilylation Catalyzed by Ni Pincer Complexes 154
	6.5.5	Fe- and Co-Catalyzed Regiodivergent Hydrosilylation of Alkenes 155
	6.5.6	Co-Catalyzed Markovnikov Hydrosilylation of Terminal Alkynes and Hydroborylation of α-Vinylsilanes 155
	6.5.7	Fe and Co Pivalate Isocyanide-Ligated Catalyst Systems for Hydrosilylation of Alkenes with Hydrosiloxanes 157
	6.6	Conclusion 159 References 160
	7	Iron-Catalyzed Cyclopropanation of Alkenes by Carbene
		Transfer Reactions 163 Daniela Intrieri, Daniela M. Carminati, and Emma Gallo
	7.1	Introduction 163
	7.2	Achiral Iron Porphyrin Catalysts 165
	7.3	Chiral Iron Porphyrin Catalysts 172
	7.4	Iron Phthalocyanines and Corroles 176
	7.5	Iron Catalysts with N or N,O Ligands 180
	7.6	The $[Cp(CO)_2Fe^{II}(THF)]BF_4$ Catalyst 184

7.7	Conclusions 186
	References 187
8	Novel Substrates and Nucleophiles in Asymmetric
	Copper-Catalyzed Conjugate Addition Reactions 191
	Ravindra P. Jumde, Syuzanna R. Harutyunyan, and Adriaan J. Minnaard
8.1	Introduction 191
8.2	Catalytic Asymmetric Conjugate Additions to α-Substituted
	α,β-Unsaturated Carbonyl Compounds 192
8.3	Catalytic Asymmetric Conjugate Additions to
	Alkenyl-heteroarenes 196
8.3.1	A Brief Overview of Asymmetric Nucleophilic Conjugate
	Additions to Alkenyl-heteroarenes 197
8.3.2	Copper-Catalyzed Asymmetric Nucleophilic Conjugate
	Additions to Alkenyl-heteroarenes 198
8.4	Conclusion 205
	References 207
0	Assume the Deducation of Delay Deville Dands 200
9	Asymmetric Reduction of Polar Double Bonds 209
0.1	Raphael Bigler, Lorena De Luca, Raffael Huber, and Antonio Mezzetti Introduction 209
9.1 9.1.1	Catalytic Approaches for Polar Double Bond Reduction 209
9.1.2	The Role of Hydride Complexes 210
9.1.3	Ligand Choice and Catalyst Stability 211
9.2	Manganese 211
9.3	Iron 212
9.3.1	Iron Catalysts in Asymmetric Transfer Hydrogenation (ATH) 213
9.3.2	Iron Catalysts in Asymmetric Direct (H ₂) Hydrogenation (AH) 218
9.3.3	Iron Catalysts in Asymmetric Hydrosilylation (AHS) 220
9.4	Cobalt 223
9.4.1	Cobalt Catalysts in the AH of Ketones 223
9.4.2	Cobalt Catalysts in the ATH of Ketones 224
9.4.3	Cobalt Catalysts in Asymmetric Hydrosilylation 225
9.4.4	Asymmetric Borohydride Reduction and Hydroboration 226
9.5	Nickel 228
9.5.1	Nickel Catalysts in Asymmetric H ₂ Hydrogenation 228
9.5.2	Nickel ATH Catalysts 228
9.5.3	Nickel AHS Catalysts 229
9.5.4	Nickel-Catalyzed Asymmetric Borohydride Reduction 230
9.5.5	Ni-Catalyzed Asymmetric Hydroboration of α,β-Unsaturated
	Ketones 230
9.6	Copper 231
9.6.1	Copper-Catalyzed AH 231
9.6.2	Copper-Catalyzed ATH of α-Ketoesters 232
9.6.3	Copper-Catalyzed AHS of Ketones and Imines 232
9.7	Conclusion 235
	References 235

10	Iron-, Cobalt-, and Manganese-Catalyzed Hydrosilylation of Carbonyl Compounds and Carbon Dioxide 241 Christophe Darcel, Jean-Baptiste Sortais, Duo Wei, and Antoine Bruneau-Voisine
10.1	Introduction 241
10.2	Hydrosilylation of Aldehydes and Ketones 241
10.2.1	Iron-Catalyzed Hydrosilylation 242
10.2.2	Cobalt-Catalyzed Hydrosilylation 247
10.2.3	Manganese-Catalyzed Hydrosilylation 248
10.3	Reduction of Imines and Reductive Amination of Carbonyl Compounds 251
10.4	Reduction of Carboxylic Acid Derivatives 252
10.4.1	Carboxamides and Ureas 252
10.4.2	Carboxylic Esters 254
10.4.3	Carboxylic Acids 257
10.5	Hydroelementation of Carbon Dioxide 258
10.5.1	Hydrosilylation of Carbon Dioxide 258
10.5.2	Hydroboration of Carbon Dioxide 259
10.6	Conclusion 260
1010	References 261
11	Reactive Intermediates and Mechanism in Iron-Catalyzed Cross-coupling 265 Jared L. Kneebone, Jeffrey D. Sears, and Michael L. Neidig
11.1	Introduction 265
11.1	Cross-coupling Catalyzed by Simple Iron Salts 266
11.2.1	Methods Overview 266
11.2.1	Mechanistic Investigations 267
11.3	TMEDA in Iron-Catalyzed Cross-coupling 273
11.3.1	Methods Overview 273
11.3.1	Mechanistic Investigations 275
11.3.2	NHCs in Iron-Catalyzed Cross-coupling 276
11.4.1	Methods Overview 276
11.4.2	Mechanistic Investigations 279
11.5	Phosphines in Iron-Catalyzed Cross-coupling 283
11.5.1	Methods Overview 283
11.5.2	Mechanistic Investigations 285
11.6	Future Outlook 291
11.0	Acknowledgments 291
	References 291
12	Recent Advances in Cobalt-Catalyzed Cross-coupling
	Reactions 297
	Oriol Planas, Christopher J. Whiteoak, and Xavi Ribas
12.1	Introduction 297
12.2	Cobalt-Catalyzed C—C Couplings Through a C—H Activation Approach 299

12.2.1	Low-Valent Cobalt Catalysis 299
12.2.2	High-Valent Cobalt Catalysis 302
12.3	Cobalt-Catalyzed C—C Couplings Using a Preactivated Substrate
	Approach (Aryl Halides and Pseudohalides) 308
12.3.1	Aryl or Alkenyl Halides, C(sp ²)–X 308
12.3.2	Alkyl Halides, $C(sp^3)$ – $X=309$
12.3.3	Alkynyl Halides, C(sp)–X 311
12.3.4	Aryl Halides Without Organomagnesium 311
12.4	Cobalt-Catalyzed C—X Couplings Using C—H Activation
	Approaches 312
12.4.1	C—N Bond Formation 313
12.4.2	C—O and C—S Bond Formation 317
12.4.3	C—X Bond Formation ($X = Cl$, Br, I, and CN) 318
12.5	Cobalt-Catalyzed C—X Couplings Using a Preactivated Substrate
	Approach (Aryl Halides and Pseudohalides) 320
12.5.1	$C(sp^2)$ –S Coupling 320
12.5.2	$C(sp^2)$ –N Coupling 321
12.5.3	$C(sp^2)$ –O Coupling 322
12.6	Miscellaneous 322
12.7	Conclusions and Future Prospects 323
	Acknowledgments 323
	References 324
13	Trifluoromethylation and Related Reactions 329
	Jérémy Jacquet, Louis Fensterbank, and Marine Desage-El Murr
13.1	Trifluoromethylation Reactions 329
13.1.1	Copper(I) Salts with Nucleophilic Trifluoromethyl Sources 329
	Reactions with Electrophiles 330
	Reactions with Nucleophiles: Oxidative Coupling 331
13.1.2	Generation of CF ₃ • Radicals Using Langlois' Reagent 332
13.1.3	Copper and Electrophilic CF ₃ ⁺ Sources 333
13.2	Trifluoromethylthiolation Reactions 341
13.2.1	Nucleophilic Trifluoromethylthiolation 342
13.2.1.1	Copper-Catalyzed Nucleophilic Trifluoromethylthiolation 342
	Nickel-Catalyzed Nucleophilic Trifluoromethylthiolation 344
13.2.2	Electrophilic Trifluoromethylthiolation 345
13.2.2 13.3	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348
13.2.2	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350
13.2.2 13.3	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348
13.2.2 13.3 13.4	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350
13.2.2 13.3	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350 Catalytic Oxygenation of C=C and C—H Bonds 355
13.2.2 13.3 13.4	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350 Catalytic Oxygenation of C=C and C—H Bonds 355 Pradip Ghosh, Marc-Etienne Moret, and Robert J. M. Klein Gebbink
13.2.2 13.3 13.4 14	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350 Catalytic Oxygenation of C=C and C—H Bonds 355 Pradip Ghosh, Marc-Etienne Moret, and Robert J. M. Klein Gebbink Introduction 355
13.2.2 13.3 13.4 14 14.1 14.2	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350 Catalytic Oxygenation of C=C and C—H Bonds 355 Pradip Ghosh, Marc-Etienne Moret, and Robert J. M. Klein Gebbink Introduction 355 Oxygenation of C=C Bonds 356
13.2.2 13.3 13.4 14 14.1 14.2 14.2.1	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350 Catalytic Oxygenation of C=C and C—H Bonds 355 Pradip Ghosh, Marc-Etienne Moret, and Robert J. M. Klein Gebbink Introduction 355 Oxygenation of C=C Bonds 356 Manganese Catalysts 356
13.2.2 13.3 13.4 14 14.1 14.2	Electrophilic Trifluoromethylthiolation 345 Perfluoroalkylation Reactions 348 Conclusion 350 References 350 Catalytic Oxygenation of C=C and C—H Bonds 355 Pradip Ghosh, Marc-Etienne Moret, and Robert J. M. Klein Gebbink Introduction 355 Oxygenation of C=C Bonds 356

1		
	14.3	Oxygenation of C—H Bonds 376
	14.3.1	Manganese Catalysts 376
	14.3.2	Iron Catalysts 377
	14.3.3	Cobalt Catalysts 380
	14.3.4	Nickel Catalysts 381
	14.3.5	Copper Catalysts 383
	14.4	Conclusions and Outlook 384
		Acknowledgment 385
		References 385
	15	Organometallic Chelation-Assisted C—H
		Functionalization 391
		Parthasarathy Gandeepan and Lutz Ackermann
	15.1	Introduction 391
		C—C Bond Formation via C—H Activation 392
		Reaction with Unsaturated Substrates 392
		Addition to C—C Multiple Bonds 392
		Addition to C—Heteroatom Multiple Bonds 393
		Oxidative C—H Olefination 396
		C—H Allylation 397
		Oxidative C—H Functionalization and Annulations 397
		C—H Alkynylations 403
		C—H Cyanation 404
		C—H Arylation 404
	15.2.4	C—H Alkylation 407
	15.3	C—Heteroatom Formation via C—H Activation 409
		C—N Formation via C—H Activation 409
		C—H Amination with Unactivated Amines 409
		C—H Amination with Activated Amine Sources 409
	15.3.2	
	15.3.3	
	15.3.4	
	15.4	Conclusions 415
		Acknowledgments 415
		References 415
	16	Catalytic Water Oxidation: Water Oxidation to O ₂ Mediated by
		3d Transition Metal Complexes 425
		Zoel Codolá, Julio Lloret-Fillol, and Miquel Costas
	16.1	Water Oxidation – From Insights into Fundamental Chemical
	1011	Concepts to Future Solar Fuels 425
	16.1.1	The Oxygen-Evolving Complex. A Well-Defined Tetramanganese
	10.1.1	Calcium Cluster 425
	16.1.2	Synthetic Models for the Natural Water Oxidation
	10.1.2	Reaction 428
	16.1.3	Oxidants in Water Oxidation Reactions 428
	10.1.0	CALAMATO ALL TIMOLI CALAMATOLI INCUCTIONO 120

16.2	Model Well-Defined Water Oxidation Catalysts 430
	Manganese Water Oxidation Catalysts 430
16.2.1.1	Bioinspired Mn ₄ O ₄ Models 430
	Biomimetic Models Including a Lewis Acid 432
	Catalytic Water Oxidation with Manganese Coordination
	Complexes 433
16.2.2	Water Oxidation with Molecular Iron Catalysts 435
	Iron Catalysts with Tetra-Anionic Tetra-Amido Macrocyclic
	Ligands 436
16.2.2.2	Mononuclear Complexes with Monoanionic Polyamine
	Ligands 437
16.2.2.3	Iron Catalysts with Neutral Ligands 437
16.2.2.4	Water Oxidation by a Multi-iron Catalyst 440
	Cobalt Water Oxidation Catalysts 440
	Nickel-Based Water Oxidation Catalysts 443
	Copper-Based Water Oxidation Catalysts 445
16.3	Conclusion and Outlook 446
	References 448
17	Base-Metal-Catalyzed Hydrogen Generation from Carbon- and
	Boron Nitrogen-Based Substrates 453
	Elisabetta Alberico, Lydia K. Vogt, Nils Rockstroh, and Henrik Junge
17.1	Introduction 453
17.1.1	State of the Art of Hydrogen Generation from Carbon- and Boron
	Nitrogen-Based Substrates 453
17.1.2	Development of Base Metal Catalysts for Catalytic Hydrogen
	Generation 458
17.2	Hydrogen Generation from Formic Acid 460
17.2.1	Iron 461
17.2.2	Nickel 466
	Aluminum 467
17.2.4	Miscellaneous 467
17.3	Hydrogen Generation from Alcohols 469
17.3.1	Hydrogen Generation with Respect to Energetic
	Application 469
17.3.2	Hydrogen Generation Coupled with the Synthesis of Organic
	Compounds 470
17.4	Hydrogen Storage in Liquid Organic Hydrogen Carriers 473
17.5	Dehydrogenation of Ammonia Borane and Amine
	Boranes 474
17.5.1	Overview on Conditions for H ₂ Liberation from Ammonia
	Borane and Amine Boranes 474
17.5.2	Non-noble Metal-Catalyzed Dehydrogenation of Ammonia
	Borane and Amine Boranes 476
17.6	Conclusion 480

References 481

18	Molecular Catalysts for Proton Reduction Based on Non-noble
	Metals 489
10.1	Catherine Elleouet, François Y. Pétillon, and Philippe Schollhammer
18.1	Introduction 489
18.2	Iron and Nickel Catalysts 489
18.2.1	Bioinspired Di-iron Molecules 490 Mono- and Poly-iron Complexes 496
18.2.2 18.2.3	Bioinspired [NiFe] Complexes and [NiMn] Analogs 501
18.2.4	Other Nickel-Based Catalysts 506
18.3	Other Non-noble Metal-Based Catalysts: Co, Mn, Cu,
10.5	Mo, and W 508
18.3.1	Cobalt 508
18.3.2	Manganese 512
18.3.3	Copper 514
18.3.4	Group 6 Metals (Mo, W) 514
18.4	Conclusion 518
	References 518
19	Nonreductive Reactions of CO ₂ Mediated by Cobalt Catalysts:
	Cyclic and Polycarbonates 529
	Thomas A. Zevaco and Arjan W. Kleij
19.1	Introduction 529
19.2	Cocatalysts for CO ₂ /Epoxide Couplings: Salen-Based Systems 530
19.3	Co–Porphyrins as Catalysts for Epoxide/CO ₂ Coupling 537
19.4	Cocatalysts Based on Other N_4 -Ligated and Related Systems 540
19.5	Aminophenoxide-Based Co Complexes 542
19.6	Conclusion and Outlook 544
	Acknowledgments 545
	References 545
20	Dinitrogen Reduction 549
20.1	Fenna F. van de Watering and Wojciech I. Dzik
20.1	Introduction 549
20.2 20.3	Activation of N_2 550 Reduction of N_2 to Ammonia 551
20.3.1	Haber–Bosch-Inspired Systems 551
20.3.2	Nitrogenase-Inspired Systems 555
	Early Mechanistic Studies on N ₂ Reduction by Metal Complexes 556
	Iron–Sulfur Systems 557
20.3.3	Catalytic Ammonia Formation 559
	Tripodal Systems 560
	Iron and Cobalt PNP Systems 566
	The Cyclic Aminocarbene Iron System 567
	The Diphosphine Iron System 568
20.4	Reduction of N ₂ to Silylamines 569
20.4.1	Iron 570

Cobalt 572 20.4.2 20.5 Conclusions and Outlook 575 Acknowledgments 576 References 576

Index 583