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1.1 Proposed Advantages of Continuous Bioprocessing

1.1.1 Introduction

The change from batch to continuous processing has led to the intensification of
processes in a number of industries, including steel casting, automobile and other
devices, petrochemicals, food, and pharmaceuticals. Advantages include, aside
from a significant increase in volumetric productivity, reduced equipment size,
steady-state operation, low cycle times, streamed process flows, and reduced
capital cost.

In bioengineering, continuous processing is the standard in wastewater treat-
ment, composting, and some bioenergy processes such as biogas and bioethanol
fermentations. In contrast, most production processes run as batch type opera-
tions or more specifically fed-batch processes, which is the major production
technology today.

Konstantinov and Cooney provide a definition of a continuous process as “A
unit operation is continuous if it is capable of processing a continuous flow input
for prolonged periods of time. A continuous unit operation has minimal internal
hold volume. The output can be continuous or discretized in small packets
produced in a cyclic manner.” [1]. They also differentiate between full continuous
processes with no or minimal hold volume in the process line or hybrid processes
that contain both batch and continuous process operations.

Obviously, the push in continuous manufacturing technologies was initiated by
the BioPAT initiative of the Food and Drug Administration (FDA) in 2002 and the
published guidance to PAT in 2004 [2], which initially aimed at a better under-
standing of the connections between product quality and process conditions. This
lead to the need to develop quality by design (QbD), that is, the implementation of
process analytical tools over the whole developmental pipeline from early product
screening over the process development in the laboratory scale and during scale
up. The needs for a better understanding of the impact of process parameters on
the critical quality attributes (CQA) of the respective product also increased the
interest in the development and implementation of novel sensors and analytical
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tools. As a consequence, this better understanding of processes resulted in further
process intensification and provided the instrumental basis to approach chal-
lenges in relation to continuous operation.

Aside the FDA initiative, there are several drivers for the increasing interest in
continuous processing, not only in the pharmaceutical industry but also in the
industrial (white) biotech industry. On one side, we see an increasing demand and
thus also increasing production scale for industrial bioproducts (enzymes, small
molecules, and bioenergy market) with a need for reduced costs for the products
and increased competition. Considering that production scales are steadily
growing and that a scale reduction close to factor 10 would be possible by
continuous processing, plant sizes and the efficiency of bioprocesses could be
increased significantly. On the other side, the opportunity of the selection of new
biocatalysts and its implementation in the chemical synthesis for integrated
chemoenzymatic processes (i.e., processes which combine chemical and enzy-
matic reactions) have to be competitive with the existing chemical processes and
need to be integrated into the chemical production schemes. Here, continuous
processes offer clear advantages.

In biopharma for recombinant proteins, antibodies, highly complex proteins,
recombinant enzymes and blood factors, the efficiency of the cell factories, and
production systems have dramatically increased during the last decade. Opportu-
nities for high cell density processes with a higher volumetric product yield and
quality, as well as the changing situation in view of the intellectual properties by the
termination of many patents for important drugs with novel commercial opportu-
nities for new biosimilars and biobetters are a strong driver in increasing the
competition especially from emerging markets. In parallel, there is an increasing
demand for establishing local production sites for defined regional markets, rather
than having single production sites. Strict cost calculations as a developmental
driver demand for smaller and effective, but also flexible production plants. This
directs interest to evaluate continuous bioprocessing opportunities to minimize
investments for production facilities, and thinking about parallelization rather than
larger scales. Parallelization would also be an advantage in processes with longer
plant cycle times [3] as, for example, cell culture-based products. A nice example
that shows the opportunities in significantly decreasing operational and capital
expenses by changing from conventional bioprocessing to continuous bioprocess-
ing in the case of production onmonoclonal antibodies (mAB) and other non-mAB
processes is shown by Walther et al. [4].

However, despite the obvious opportunities of continuous processes there are
many challenges to solve, mainly the demand for fast realization and risk
minimization. Currently, it seems to be easier to transfer a batch process into
production than to start a new, longer, and more expensive development of a
continuous process even though it is expected to be more efficient.

These scenarios show that there is a big need in strategic methods concerning
the development of continuous process strategies for either new products or to
derive a continuous process from existing batch type processes. As early-phase
product development can practically be only performed as batch processes, a key
question in product development is how we can transfer a batch strategy to a
continuous operation in a large process.
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Specific challenges for continuous operations in the biotech industry compared
to other industries are (i) the inherent nature of a natural whole cell biocatalyst,
that is, a prokaryotic or eukaryotic cell, for steady evolution of its genome. (ii)
Biotechnological processes generally need much higher amounts of catalyst
compared to chemical industry. This biocatalyst has to be maintained by feeding.
Thereby, the feed is mostly the same substance as the original substrate for the
biochemical reaction and thus it competes with the yield. As a consequence,
diffusion and mass transfer in the reactor have not only an effect on the efficiency
of the process but also are critical for long-term operation andmaintenance of the
product quality.

Especially in view of the evolutionary adaptation, it is obvious that in contrast to
batch procedures, continuous operation cannot be set up by trial and error but
needs a fundamental basic understanding of the process in kinetic terms to allow a
control of the process. This is a fundamental paradigm change in bioprocessing
industries, where most operations included only a limited application of mathe-
matical models. Also, available sensors and ways for process control are tradi-
tionally very limited.

Although current examples of so-called continuous cell culture processes in
the pharma area are only semicontinuous if compared to, for example, biogas or
wastewater bioprocessing, the expansion of cell cultivation processes from days to
months, for example, by the perfusion technology, goes into the direction of
continuous bioprocessing. However, also for these continuous bioprocess opera-
tions a big amount of labor and time is needed to establish a new process as a
continuous production system. Similar as in traditional biotech, the development
is currently mainly based on wet-lab experiments rather than on a systematic
developmental approach. This raises the question, whether this is the only way
that has proven to be successful or whether a paradigm change in the application
of technologies is needed to advance the field of continuous bioprocessing. In this
chapter we will discuss the methods and data which are needed to develop a
continuous operation with a focus on modeling approaches.

1.2 Special Challenges for Continuous Bioprocesses

1.2.1 The Biological System in Continuous Biomanufacturing

In process engineering, there are different reactor designs typically used depend-
ing on the characteristics of the reaction system. It should be pointed, that
continuous stirred tank reactors (CSTR) are known to have some disadvantages
over plug flow reactors (PFR), which are typically used in the chemical industry
and batch and fed-batch type of cultures – the most important being a lower
concentration of product due to a constant dilution. In chemical processes,
typically PFRs are preferred when high yields are required, and batches are chosen
when low volumes of different product are to be produced. In addition, consid-
ering process development, continuous processes require higher investments and
times at small scales. Hence, even in the chemical industry many processes with
similar characteristics to protein synthesis run in PFR or batch. Still there are
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many process setups that allow a significant reduction in footprint, time, and costs
by using continuous processes and these should be considered in bioengineering.

Now let us focus on the processes that should run continuously in bioengineer-
ing. Continuous bioprocesses are characterized by a continuous addition of
substrates and simultaneous harvest, thus that the bioreactor volume stays
approximately constant. If the product is released from the cell and accumulates
in the culture broth, recycling by filtration units or centrifuges can be applied and
this separation canbe supported by immobilization of the biocatalyst. Alternatively,
the bioprocess can be performed in solid-state fermentation processes where the
medium runs through a static matrix where the biocatalyst is immobilized.

The biological system, which is the core component of a biotechnological
production process, has many specific features that favor continuous production
on one side, but also cause the specific challenges that restrict continuous
processing in the biotech industries so far.

In difference to chemistry, where continuous operation became a standard, and
where the change from batch to continuous operation has contributed to a
significant drop in reactor sizes and investment costs and lead to modularization
of production plants, bioprocesses are rather different. To understand the special
challenges of continuous bioprocessing, it is important to analyze these differ-
ences between chemical and biocatalytic processes, both of which are different
routes for the same outcome – the production of a chemical molecule.

A chemical reaction is characterized by the high yield of the reaction from a
substrate into a product using small amounts of catalysts (order of μg/l or mg/l).
In contrast, in a bioprocess the catalyst is the (micro)-organism, which has to be
produced from the substrate in a very high concentration (in industry mostly
50–100 g/l). This is mostly done in the first phase of a process (called growth
phase). The product is not produced until the second phase, called production
phase, which may be equal in length or even shorter than the growth phase.
Interestingly, the product reaches low yields if compared to single reaction
chemical processes. Highest concentrations of bioproducts are in the order
between 100 and 200 g/l, or up to the order of 10–100 g/l for more complex
molecules, and for many processes the yield is even lower. Generally, the yield of
the product from glucose is significantly lower than 0.1 g/g since most of the
glucose goes in the biomass, that is, the production of the biocatalyst. If one
assumes that after biomass production the cells could be used to produce the
product over unlimited time (considering that substrate required for the own
maintenance is less than 10% of the amount needed for the growth phase), a
significant increase of the product yield per substrate in a bioprocess would be
possible. Furthermore, if turn-around times are avoided, such as harvesting of the
reactor, cleaning, and preparation of the new batch including preparation of the
starter cultures, time costs would also be reduced further increasing process
efficiency.

1.2.2 Inherent Changes in the Microbial System – Problem of Evolution

In contrast to continuous processes in chemical engineering, bioprocesses
include a perpetual evolution process, that is, a genetic change of the biocatalyst.
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The rate of mutations has been extensively discussed and investigated, mainly in
the context of how a continuous culture can be used for strain evolution.

However, it needs to be stated that the problem of evolution is inherent to any
bioprocess. In a bioprocess the operation always starts with a very low number of
cells that are multiplied during inoculum preparation and scale-up from flasks to
the final size bioreactor. For a large scale bioreactor running at a scale of 10m3

(which is small in view of most common microbial bioprocesses) and a final cell
number of 1.2× 1018 for a bacterial process (i.e., 1.2× 1011 cells/ml),1 this makes
approximately 60 generations from a selected one-cell clone and even approxi-
mately 27 generations from an inoculum stock. If the calculations concerning the
accumulation of mutations as performed by Ref. [5] were assumed to be 1× 10�3
nucleotide substitutions per genome in each generation for Escherichia coli [6]
and 4× 10�3 nucleotide substitutions per genome per generation in Saccharo-
myces cerevisiae [7], and would be adopted to the considered large-scale cultiva-
tion case, when assuming a homogenic frozen stock culture (which is not the
case), there would be at the end of the cultivation a probability of approximately
30 mutations per each position of the nucleotide sequence of E. coli and 0.07
mutations per position for the yeast S. cerevisiae. This is an incredible diversity,
which is rarely applied in molecular evolution experiments and still not exploited.
These considerations may even underestimate the possible mutation frequency,
as discussed in detail for chemostat environments by Ferency [8]. Therefore, it is a
great challenge in continuous cultivation to direct evolution in order to guarantee
continuous production of a constant product with equal quality despite the steady
evolution process. While this is greatly ignored in industrial batch processes, this
evolution and selection of the fittest is a critical point in continuous processing.

What can be learned from a large number of evolution experiments, especially
from the extensive work of Lensky et al. [9], is that characteristic changes occur
stepwise, that is, suddenly. Also, most importantly, fitness gain is constant with
steady improvements without an upper end even in very long experiments over
(tens of) thousands of generations. Experiences with natural evolution and steady
fitness gain with a selection pressure for important cellular parameters, like
affinity constants and maximum specific rates as described in the model below,
and steady change of them by mutations [5] are a clear advantage if the
continuous culture is aimed at degrading a compound which serves as a key
substrate, like in degradation of wastes. However, the same process is a challenge
for control in production of biomolecules where it is not possible to set a selection
pressure toward the product.

1.2.3 Lack of Process Information

Historically, the low reproducibility, observability, controllability, and understanding
of the biotechnological processes has driven large-scale production to an approach
based on: (i) as fast as possible after inoculation, (ii) as fast as possible after induction,
(iii) as fragmented as possible to avoid mixing of failed charges with high purity
product. For these reasons, the fed-batch technology has become the most widely

1 Assuming 1g/l = 2 × 1012 cells/l, final dry cell weight of 60 g/l.
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applied standard upstreamproductionmethod in large scale. Consequently, all other
processes taking place before (pretreatment and medium preparation) and after
(down-stream operations) were developed to meet the requirements of discrete
production plants. Despite this success of the fed-batch technology, it is remarking
that continuous bioprocesses have been early established [10] in parallel to the
development of the fed-batch technology by Hayduck [11].

Today’s advances in technology are paving the way for continuous systems with
improvements in PAT, higher automation of the production, advanced control
strategies, methods to direct and apply the naturally occurring evolution process
to higher productivity, and most importantly regulations that promote continu-
ous processes. This may clearly offer significant advantages by solving important
challenges as are higher overall productivity, lower risk of infection, smaller
reaction vessels and plants.

1.2.3.1 Models-Based Process Development and Control for Continuous
Processes
In bioprocess engineering,models are used for process design,monitoring, control,
and optimization [12–16]. Bioprocess complexity and restrictions have driven
design and control to demand accurate and robust models [17], triggering a rapid
development over the last years [18]. Advanced sensor techniques and fast
computer processors enable the creation of very complex models processing
enormous amounts of information [15,19]. Models are not only used to describe
the behavior of living organisms but also essential to map complex systems into
smaller dimension and also to obtain indirect measurements and observe non-
observable events when applied as software sensors [20], for example.

The new regulations of the PAT initiative of the FDA and EMA show the
importance that modeling applied to process monitoring and control is gaining in
the pharmaceutical and in general in biotechnological processes [21].

Biological processes are characterized by [22–25]

� the complexity of the biological processes taking place in the bioreactor� lack of reproducibility� monitoring of unstable intracellular compounds at very low concentrations� extremely fast and sensible reaction to environmental changes (offline mea-
surements are inaccurate)� mutations� insufficient sensor technology� expensive and inaccurate sensors� highly invasive� difficult to calibrate� large time delays and low frequency of observations

1.2.3.2 Engineering Approach to Complex Systems
In chemical engineering, the implementation of different methods to deal with
large complex systems has a long history. Engineers have developed methods like
hierarchical modeling, model reusability, model inheritance, and so on. An
extensive discussion of these methods and their application for the simulation
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of chemical plants is presented by Barton [12]. In biological systems, the
modularization of separated instances of the system is not always possible. In
traditional process engineering, a pump can be modeled in a modular form and
then added to the flow sheet of the plant and reused as many times as needed [26].
Contrary to this, biological systems tend to show different behavior under in vitro
conditions compared to their in vivo state [27]. Still, some approaches intend an
analysis and modeling of biological systems with methods taken from engineer-
ing [28,29]. Kitano [30,31] emphasizes that the only possibility to understand
living organisms is to consider the system as a whole. Identifying genes and
proteins is only the first step, whereas real understanding can only be achieved by
uncovering the structure and dynamics of the system. Kitano states the following
four key properties [30]:

� System structure
System structure identification refers to understanding both the topological

relationship of the network components and the parameters for each relation.� System dynamics
System behavior analysis suggests the application of standardized techniques

such as sensitivity, stability, stiffness, and bifurcation.� The control method
System control is concerned with establishing methods to control the state of

biological systems.� The design method
System design is the effort to establish new technologies to design biological

systems aimed at specific goals, for example, organ cloning techniques.

For this reason, two things are necessary in order to control a biological system
and comply with the strict food and pharmaceutical regulations, namely, to
observe or at least deduce the state of critical quantities and to predict to some
extent the behavior of the system. The first issue is tackled using state and
parameter estimation methods [32–36] in an effort to infer the conditions of the
process using the information that is available. Second, the evolution of the
system over time as well as its response to the control actions, characterized by
nonlinear dynamics, can be predicted using mathematical models.

1.2.4 Limited Control Strategies

1.2.4.1 Traditional Control Strategies for Continuous Cultures
As the chemostat works at a preset dilution rate without any feedback control, it
cannot stabilize in a process that runs close to the maximum specific growth rate.
Although the chemostat is themost used continuous culture technique in research,
it is rarely applied in industry. In this context other processes with a feedback
control loop have developed, such as the turbidostat and the pH auxostat.

The turbidostat (see Ref. [37] for an excellent early review) is a continuous
process where the feed rate is controlled by the online measurement of the
turbidity, mostly in the outlet stream. By maximizing the flow rate at a high
biomass concentration, the turbidostat can operate the process at μmax and, at the
same time, avoids outwashing of the biomass. Therefore, it is generally applied in
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processes where the flow rate should be maximized, but while maintaining the
cells in the system, for example, in processes which aim the degradation of toxic
compounds in wastewater treatment, or directly for the production of biomass
(single cell protein), or other growth-related molecules. The turbidostat has been
also a powerful tool for the selection of faster growing strains, that is, in natural
selection, due to its permanent adaptation of the flow rate [38–40].

The necessity of the turbidostat to have a continuous measurement of the
turbidity limits its applications to systems with no biofilm formation at the walls.
Therefore, thepHauxostat (pH stat), whichuses thepHas a state control variable, is
more robust, but is alsomore sophisticated in terms of the design of themedium. In
the pH-auxostat theflow rate is set by thepHcontroller through the feeding of fresh
medium to keep the pH constant. Thus, the pH auxostat can be used only for
processes where biomass growth is closely correlated to changes on the pH [41].
Early pH auxostats [42,43] were typically applied for microbial processes with
acidifying products, for example, in the dairy fermentation [44] or similar anaerobic
processes. Such processes needed special pretreatment of the fedmedium that had
to be preadjusted for a certain pHand thus the biomass concentration in the reactor
depended on the difference between the pH difference between the feed solution
and the fermenter broth as well as on the buffer capacity of the medium, and
normally not high cell densities were obtained [42].

The theoretical solution of the performance of a pH auxostat with two inlet
flows, medium and a pH controlling agent, by Larsson et al. [45] made the pH
auxostat more easy to handle and applicable as a tool also for aerobic processes.
The kinetic model contains an extra function that calculates the hydrogen ions in
the added base, and considers that the added newmedium has the same pH as the
control point for the pH in the bioreactor. The process is controlled by the
definition of the inlet flow ratio of the two inlet streams, which can be easily set.
This inlet flow ratio is a parameter that provides a reliable tool for process
optimization. This principle was adapted to processes with an ammonia (NH4

+)
feed, for which the H+ concentration is in good relation with the cellular uptake of
NH3 and the yield coefficient for hydrogen ions on substrate used is constant,
such as for S. cerevisiae [41].

A third principle for control of a continuous bioprocess, namely, the nutristat,
aiming at maintaining the substrate concentration at a certain level, has found less
application. If online methods for the determination of the substrate are available,
the nutristat is well suited to run a process at higher growth rates which are lower
than μmax. This is a clear advantage over the pH- or turbidostat. However, an
interesting study by Rice and Hempfling [46] shows that even a pH stat can run
stable at different concentrations of the growth limiting substrate, that is, specific
growth rates, by variation of the substrate concentration in the feed solution or by
changing the buffering capacity of the feed solution. The nutristat is clearly useful
for the degradation of waste compounds, as shown, for example, by Refs [47,48].
When using glucose as substrate, the nutristat can be applied [48], however due to
the low KS value and high specific substrate uptake rate, a proper control below
μmax is becoming challenging, especially at high cell densities.

A special solution for culture processes with production of secreted products,
such as monoclonal antibodies, at low or even zero growth rates is cell
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recycling. The theory of continuous cultures with cell recycling was already
developed and experimentally proven in Ref. [49] based on the idea of
continuous culture with cell recycling [50]. While in these processes the theory
of a chemostat (see above) is valid with the cell recycling term (which can be
from 0 to 1), most production processes rely on higher growth rates, as the
metabolic activities at low growth rates are low and the energy supply is going to
the maintenance mainly. However, the cell recycling (or cell retention, reten-
tiostat, perfusion culture) is a practical method to increase degradation capa-
bilities, for example, in waste treatment or maintaining organisms for which
even μmax is very low.

The method of perfusion culture is widely and very successfully applied in
mammalian cell culture and similar processes with a low growth rate, where,
for example, the production of monoclonal antibodies can be stably main-
tained for longer times (see Chapter 7 of this volume). Cell retention in these
systems today is mainly achieved either by immobilization of the cells, by
filtration, for example, use of alternating tangential flow filtration, or by
centrifugation [51,52].

1.3 Changes Required to Integrate Continuous
Processes in Biotech

1.3.1 A Better Physiological Understanding of the Organisms and Their
Responses on the Reactor Environment

1.3.1.1 Model Complexity
The biggest challenge for modeling is to develop a general and systematic
approach to find the simplest manner to describe complex systems aiming at
the strictly required accuracy. The meaning of model simplification becomes
more important with the increasing complexity of bioprocesses analyzed in
research. The complexity of biological processes makes it very difficult to fully
describe cultivations using a computer model. To name one example consider the
phenotype of a microbial cell determined by >30 million macromolecules, >1000
species of small organic molecules fine-tuned in composition and number to the
comprehensive set of its environmental factors [53].

In order to achieve a robust and efficient continuous process, a close monitor-
ing of the system and a tight control are required. Due to the complexity of the
microbial behavior, standard feedback control methods are not adequate and
more advanced methods are required. Process control has a long tradition in
development of model-based techniques, for monitoring (e.g., softsensors,
observers, moving horizon estimators) and control (e.g., model predictive control,
adaptive control). These methods relay on a mathematical model that fulfils some
specifications as are follows:

� Ability to accurately describe the dynamic behavior of the system� Identifiability� Tractability
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This obliges a close interaction between control experts and bioengineers in
order to develop control systems that assure a secure process that will fulfill
quality regulation with high reliability.

1.3.1.2 Models
A model is a poor mathematical representation of a physical system. Lack of
accurate knowledge of the process to be modeled, insufficient measurement
techniques, and extensive computation time hinder an exact representation of the
phenomena to be described [54]. Nevertheless, models are widely used in science
and their contribution to a better understanding of engineering processes and
their proper design, optimization and control is out of question. Computer aided
tools using model-based methods allow optimal design and operation of plants,
reducing energy consumption, hazard, and environmental impact, while allowing
better monitoring and control [12].

From this it can be deduced that the best model to describe a certain process is
not necessarily the most accurate, but the one that describes only the relevant
aspects of the system so as to get a good description with minimal effort [55].

Modeling includes a wide number of tools [56] as are principal component
analysis (PCA) or partial least squares (PLS) [57], nonlinear models like neural
networks [58] and also multivariate statistics [57]. Roughly said, these methods
search for data correlation to reduce the dimension of the data set [59]. Also more
advanced methods in knowledge discovery of data (KDD) like data mining [60]
have been developed for treatment of large data sets and are applied in bio-
informatics. Still, generally speaking, first principle modeling (white box) is the
preferred approach to describe a complex system when mechanistic under-
standing (mass balances, thermodynamics, kinetics, etc.) is at hand [25,61–63].
These methods study the data characteristics to find new relations between
variables and create black-box type models that describe it. By these means it is
possible to look through high dimensional data and detect the most important
characteristics of the system [64–66].

Contrary to black box models, mechanistic models are based on physical
knowledge of the system to be described. In engineering, for example, rigorous
modeling includes mass and energy balances, detailed reaction pathways, and so
on. Models are the core of computer aided process engineering (CAPE) [67] and
computer aided biology (CAB). The quality of every work on simulation,
optimization, design, and model-based control, depends on the characteristic
of the model. In engineering, models are not only used to describe the behavior of
systems but also essential to map complex systems into smaller dimension more
comprehensible to humans. Finally, they also serve to obtain indirect measure-
ments of states or parameters of interest with software sensors [20], for example.
Software sensors substitute measurements, which are not possible due to physical
limitations, with models which predict the behavior of the nonmeasurable
variable based on indirect measurements. Whenever a state of the system is
to be determined, observer can be applied [35,36] or the Kalman filter [33] with its
variations [34].

In system biology, various methods exist aiming at an adequate description of
the dynamics of living organisms studying their gene regulatory networks [68].
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Still, differential equation systems settle the standard modeling method in
engineering. Systems of ordinary differential equations (ODE) have been widely
applied for the description of gene regulatory networks. Usually, the system
comprises rate equations of the form

dxi
dt

� f i x; u� �; (1.1)

where x is the vector of concentration of proteins, mRNAs, or other molecules, u
the vector of inputs, and fi is a nonlinear function. Also, time delays can be added
if necessary. Typical types of equations used are Monod type, switching, Heavi-
side, and logoid functions among others. An important advantage of nonlinear
ODEs is the possibility to describe multiple steady-states and oscillations in the
system [69]. Besides the requirement of testing the global convergence of the
optimal solution, the bottleneck is still the state information of the parameter set
creating identifiability problems. Nevertheless, many successful applications have
been published showing the possibilities of ODEs to describe gene regulatory
networks [70].

Although today gene regulatory network models are not applicable in industrial
scales, it can be expected that systematic conversion of complex gene regulatory
network models in simple tractable models will be possible in near future. Never-
theless, model complexity is closely related to instability, over parameterization,
parameter correlation, and low parameter identifiability [71]. The effort required to
develop and fit a model has to be justified by its application. It is useless to apply
computational fluid dynamics (CFD) to the simulation of a 1 l reactor knowing that
the concentration gradients can be neglected. On the other hand, simulating a
reaction in a tank with 10 000 l without considering mass transfer limitations may
yield in results far from reality. Summarizing, the key dynamics of a system need to
be identified, isolated, and analyzed before anymodel is built. Currently, limitations
are mainly due to the scarcity of measurement possibilities but also to the
insufficiency of adequate mathematical tools.

1.3.2 Model-Based Process Monitoring

A key task in process control is to monitor the critical states and parameters of the
process in order to secure proper operating conditions and desired quality even
under perturbations and model mismatch [72,73]. Unfortunately, bioprocesses
are characterized by their low information content caused by low concentrations,
complex media, and the lack of noninvasive online sensors that can measure
intracellular concentrations [74]. To overcome these problems, model-based
methods to infer the conditions of the process can be applied. There is a long list
of methods and applications for online state estimation [32], state observers
including the classical Kalman filters [33] with their variations [34] and nonlinear
observers [35,36]. Some authors use the expression software sensor or softsen-
sor [75,76] in account of the fact that a “software” or computer-based calculation
of a nonmeasurable variable which is not always a state variable, like the
respiration coefficient, provides more information than the initial variable that
can be directly measured.
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1.3.3 Implementation of Model Predictive Control

1.3.3.1 Model-Based Control
Advances in computer capacity, sensor technology, and a better understanding of
the biological system are giving place to very successful applications of advanced
control strategies in continuous processes [77,78]. In the case of continuous
processes, different approaches have been developed and successfully applied.
Some representative examples are classical approaches to various control strate-
gies [79–84] and state feedback control strategies [85,86]. Additionally, efforts to
exploit the data generated using neural networks [64,87,88] without the need of a
thorough understanding of the system have been shown. In an effort to simplify
the control strategy, fuzzy logic controls [89] have also been used in bioreactors.
Furthermore, advanced methods using model predictive controllers [64–66], and
even based on population models [22] can be found in literature. An interesting
approach is to overcome the limitations of the existing models by performing
recursive estimation of its parameter estimates. By these means, models can be
used also in processes that change over time. Some proves of the potential of these
methods are the use of adaptive control techniques [90–92]. Finally, investigation
of complex formulation for optimal control show the controllability potential of
biological systems if simplified mathematical descriptions succeed to predict the
dynamics of the process [93,94].

In general, the theory of monitoring and control is used under the assumption
that the system to be described is time invariant and properly described by the
model. Nevertheless, there exists the possibility to adapt the observer to changing
system behavior by estimating the model parameters together with the states in
order to adapt the model to changes in the system. This is called adaptive
control [95] and proved to be very effective for many applications including
bioreactors [90]. Adaptive control can be used to overcome structural deficiencies
of the model as well as uncertainty in the parameters. Still an important drawback
is the need of increasing information in order to find accurate estimates of both,
the parameters and the states. Methods for moving horizon estimation can be
used to increase the robustness of the parameter estimates if sufficient computer
capacity is at hand [96]. These methods are especially relevant in biotechnology
application since changes in the system (e.g., between cultivations, mutants, over
time) can be observed by small variations in the parameters without the need of a
change in the model structure.

1.4 Role of Iterative Process Development to Push
Continuous Processes in Biotech

1.4.1 Methods for Development of Continuous Processes

In general, bioprocess development suffers from significantly longer times and
costs compared to other industries [97,98]. Additionally, development of contin-
uous processes follows different strategies than batch processes. While it is
advantageous to implement the cultivation strategy at the screening or product
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development stage, it is difficult to implement continuous strategies in the early
phases. Thus, the successful development of continuous bioprocesses depends to
a bigger part than batch bioprocess development on a comprehensive under-
standing of the biological system. While batch processes have been traditionally
developed with trial-and-error approaches, this is not possible for continuous
processes so that the implementation of robust process control strategies is an
important basis.

A key parameter for any bioprocess is the specific product formation rate qp.
This rate has a close connection to the specific growth rate, but this correlation is
different for different products. In many cases there is no linear dependency, but
qp has an optimum below μmax. Thus, to run a process with a high productivity, it
is a major task in continuous bioprocess development to find this correlation
between μ and qp.

Traditionally, this is performed in chemostats, which is a long-lasting process,
as the steady state must be established for each dilution rate, which takes about
four to seven reactor exchanges. While generally in scientific investigations with
chemostats more steady states are established in a series from an initial batch
process, such consecutive long-time cultivation can lead to the selection of
mutants and thus has to be performed with good controls, for example, by
returning to the original dilution rate in the end of an experiment.

While for process development systems for the parallel performance of
continuous bioreactors would be very interesting, the setup of such systems
is a technical challenge. Parallel chemostats can minimize the problem of
evolutionary selection by running experiments with different dilution rates in
parallel. However, parallel experiments benefit from miniaturization, especially
if big liquid volumes are handled like in the case of chemostats. Although
miniaturization has made a big progress in discontinuous cultivation technol-
ogies, it is difficult to achieve in the milliliter and submilliliter scale when well
defined and controlled dilution rates must be guaranteed over long time
intervals.

In the past a number of approaches have been realized for parallel continuous
mini and microbioreactors. Balagadde et al. [99] developed a microchip-based
circulating loop bioreactor with a segment-wise sterilization option to avoid
biofilm formation. They demonstrated this reactor for cultivations with E. coli.
The authors observed oscillations in the cell number. No other online parameters
were measured. The feed control, steady states, and so on, were not characterized.
The system was developed to investigate evolution, but probably it would not be
applicable in its current form for process development.

Nanchen et al. [100] used a 10-ml parallel continuous culture system in 17ml
Hungate tubes for 13C labeling and metabolic flux analysis. Aeration with 2 vvm,
was used to also mix the system, feeding was done by a peristaltic pump, pH was
measured in outlet stream and DO by a microelectrode. The system was
characterized with steady states obtained over five volume changes and compared
against stirred tank reactor cultivations. The system is very simple to establish and
is also very valuable for parameter estimation for continuous process develop-
ment. A shaken system that can be easily parallelized was developed by Akgün
et al. [101]. The authors developed a continuous bioreactor based on shake flasks
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with a controlled feed, an overflow outlet channel at the side of the flask, and a
top-phase aeration. While this system was extensively characterized in connec-
tion to filling volume constancy and different technical parameters and applied
for a continuous culture of S. cerevisiae, the system has possibly so far not been
applied for other studies. In view of real microbioreactors a modification to a
commercial 48 bioreactor system (2 mag, Munich, Germany) was recently
published by Schmideder et al. [102] showing first promising results for the
feasibility of transferring this system to a continuous bioreactor. However, in this
case so far only eight of the bioreactors were connected and the determination of
key parameters, such as the Ks value had a relatively high error. While continuous
cultivation until seven volume exchanges was possible, the presented data do not
allow deep-going evaluation about the quality of the steady states, which even has
been a problem in larger continuous cultivations.

A faster and elegant method for obtaining the necessary cellular parameters
and characteristics with a lower effort compared to parallel chemostats is the A
stat technology [103].With this technology, it is possible to scan the whole growth
rate space of an organism in a single experiment [104], either by continuously
increasing (Acelerostat) or by decreasing (Decelerostat) the dilution rate in a way
that the culture always is in a steady state. However, the technology even has
wider use by applying this concept also to the continuous change of other
parameters than the feed rate of the limiting substrate; therefore, the term
changestat was introduced [104]. This technology of the Gradiostat was applied
by various authors, but only Vilu et al. developed the scientific basis for it and
showed the strength in view of data collection over the whole growth range (see
Chapter 9 of this volume).

1.4.1.1 Alternative: Fed-Batch as a System to Simulate Quasi Steady-State
Conditions
The strength of the A-stat technology, screening the whole growth space in a
single experiment, starting with either a high or a low specific growth rate, is
principally also possible by the application of the fed-batch technology. Here, in a
similar way as in the A-stat, one can realize a feeding rate, which leads to a
continuous gradual change of the specific growth rate of the system. However, in
difference to a real continuous culture technology, the fed-batch is more easily to
apply in high throughput approaches, as standard (micro)-reactors can be used.
Simply instead of having an outgoing steam, one can live with the typical volume
change of a fed-batch, which is dependent on the substrate concentration in the
feed solution and the feed rate.

Although the controlled feeding to miniaturized cultures is still a challenge,
first solutions are available which provide an interesting technological basis, such
as 48 microplate base real feeding systems with integrated bottom channels and a
hydrogel filling the capillaries [105], or even the integration of micropumps [106].
Alternatively, and more easy to use, would be systems with internal release of the
substrate either from silicon as the feed-bead technology [107] or the Feed plate®

(PS Biotech, Aachen, Germany). While these systems rely simply on the diffusion
of the substrate into the medium, the EnBase® technology [108] (for a compre-
hensive review see Ref. [109]), which is based on a biocatalytic release of glucose
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from a polymer of glucose, allows easily varying the feed rate by the amount of the
added biocatalyst. Thus, it is easy with this technology to screen for a wide range
of growth rates in microplates or parallel shake flasks [108,110]. Recently, this
technology was applied with the aim of finding an optimal specific growth rate for
the specific production rate of a secreted heterologous enzyme in the yeast S.
cerevisiae. In comparison to the A-stat technology the same optima was found,
but in a very much shorter time [111].

As it was discussed above, the big challenge for the future is, to combine
model-based and experimental approaches for continuous bioprocess develop-
ment. As models in this direction must provide knowledge on the system,
mechanistic models, rather than black-box approaches are needed. Therefore, it
is necessary to develop design of experiment (DoE) approaches which allow the
fast estimation of parameters of nonlinear models. Traditionally, in other
disciplines this has been done with online optimal experimental designs
(OED). In a recent study, we have applied this approach also to identify the
parameters of a dynamic model for E. coli cultivations [112]. The strength of the
application of the fed-batch approach with a model-based DoE with a sequen-
tial reoptimization of the model by a sliding windows approach succeeded in
identifying the model parameters in a single parallel experiment of one day,
which shows how process development can benefit from model-based and
automation approaches.

1.4.2 Mimicking Industrial Scale Conditions in the Lab: Continuous-Like
Experiments

1.4.2.1 A Simple Model for Continuous Processes
The challenges of continuous processes and comparison against batch or fed-batch
can be better understood using a simplified description of its dynamic system. The
continuous process is one of three main cultivation technologies together with
batch and fed-batch. Other extensions such as sequencing batch and fed-batch also
exist butwill be covered later. Themain difference between these three setups is the
inflow and outflow streams. We can use a simple generalized dynamic model to
describe the reactor in Eqs (1.2–1.5). The reader is referred to Refs [25,113] for a
more detailed description of the system of equations.

The simplest system of a continuous process is the chemostat, which is
characterized by a continuous flow of the incoming medium at a rate that limits
one nutrient component in the bioreactor. As the rates for inflow and outflow are
equal, the volume in a chemostat is constant. Through the limiting component,
the specific growth rate can be controlled simply by the pump speed.

The experimental system and kinetic basis of the chemostat were developed
in the groundbreaking papers by Novick and Szillard [114] and Monod [115]
and further theoretically refined by Powell [116]. The chemostat applies the
concept of the metabolic control, which has been earlier established by the
fed-batch method, to continuous processing. By this these authors have set
the basis for the wider application of the chemostat providing a detailed
procedure for control, long before this was done for the fed-batch by Pirt and
Kurowski [49].
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A number of assumptions are necessary, the most important being:
(i) species and conditions that are not described by the model (temperature,
pH, trace elements, etc.) are constant, (ii) ideal mixing, (iii) monoculture. The
behavior of the process can be approximately described by the following set of
equations:

dSj
dt

� F in

V
Sj;in � Sj
� � � qSjX; (1.2)

dX
dt

� F in

V
X in � X� � � Fout

V
δX � X� � � μX; (1.3)

dOd

dt
� Kla O∗

d � Od
� � � qOXH; (1.4)

dV
dt

� F in � Fout; (1.5)

with Sj being the j � 1 . . .N soluble components (substrate or product) concentra-
tions in the medium in (g/l) (qSj > 0 for substrate uptake and qSj < 0 product
secretion),X the cell dry weight of the organisms in (g/l),Od the oxygen dissolved
in the medium in (%) of saturation, V the volume of medium in the reactor in (l),
and F a flow streamof the reactor in (l/h). The subindexes in and out represent the
inlet and outlet streams, respectively, qS and qO the uptake rates of soluble
components and oxygen, respectively, in (g/(g l)), Kla is the oxygen diffusion
constant, O∗

d the saturation concentration of oxygen in the medium in (%),H the
Henry related coefficient, and δ the cell retention (�) by membrane or perfusion
systems (1 for no retention and 0 for complete recirculation).

This simple model, allows us to analyze the basic characteristics and differences
of the discontinuous and continuous cultivation processes. In batch F in � Fout � 0,
in fed-batch F in > 0; Fout � 0, and in continuous F � F in � Fout > 0 with D �
F=V being the dilution rate.

1.4.2.2 Continuous-Like Fed-Batch Cultivations
It is worth stressing out that, in systems with no recirculation (δ � 1), Fout enters
only in the volume Eq. (1.5), so that equilibrium in all other states can be reached
also in the fed-batch setup considering off course an infinitely large vessel.

In a continuous process, the growth rate can be easily obtained by solving Eqs
(1.2) and (1.3) at steady state and considering that concentration of biomass or
products in the inlet are equal to zero.

Inacontinuousprocess, thegrowthratecanbeobtainedbyreformulatingEq.(1.3)to

0 � dX
dt

� � F
V
δ � μ

� �
X; (1.6)

and further solving it to

μ � F
V
δ � Dδ;
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for the biomass with S1 being the substrate and qS1 < 0 being the specific
substrate uptake rate

0 � dS1
dt

� F in

V
S1;in � S1
� � � qS1X � D S1;in � S1

� � � qS1X;

X � �D S1;in � S1
� �

qS1
; considering S1;in � S1

� � � S1;in;

X � �DS1;in
qS1

;

(1.7)

now if we consider qS1 � �μ=YX=S , and μ � Dδ we obtain

X � S1;inYX=S

δ
; (1.8)

and for the product S2 or P, with qp > 0 being the production rate

0 � dP
dt

� � F in

V
P � qPX � �DP � qPX;

qP � D
P
X
; or P � qPX

D
:

(1.9)

Figure 1.1 depicts the growth rate of an E. coli cultivation with regard to
different levels of constant feeding. Even at large feeding differences, the change in
biomass concentration drives the process to a similar growth rate.
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Figure 1.1 Effect of constant feeding profiles in biomass and growth rate.
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If we apply an exponential feeding as in Figure 1.2, the dilution rate remains
constant. By this, the growth rate, which is directly related to D, can be held
constant so as to investigate the effect of continuous cultures in the organisms.

These exponential feeding experiments recreate conditions very similar to
continuous cultures, reducing drastically material costs (experimental setup and
volumes) and experimental time.

1.4.3 Fast and Parallel Experimental Approaches with High Information Content

1.4.3.1 Computer-Aided Operation of Robotic Facilities
One of the most important differences of continuous processes compared to
batch or even fed-batch is its level of sophistication hence control sophistication
required. The actions that can be taken to operate a batch process are limited so
that control can be simple. But continuous processes require a complex control
strategy to assure stability and product quality. In other words, the acceptance and
profitability of continuous processes strongly depends on the progress in bio-
process monitoring, understanding, and control.

But before a model can be used for monitoring, control, and optimization
purposes, it has to be build and validated with experimental data. This is not a
trivial task since, as mentioned before, the reproducibility and scalability of
processes is especially difficult in biological systems. The experimental efforts
related are extremely high so that model building is usually left aside since scale-
up and process development are carried out under high time pressure. Nowadays,
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fed-batch process.
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advances in robotics, miniturazion, and data handling are being used to create
high-throughput (HT) facilities able to perform thousands of experiments in
parallel automatically. With this, new opportunities arise for a better process
understanding and model building. Together with scale down techniques it is
possible to create many experiments at “process like conditions” in order to
rapidly fit model parameters and test the response of the system in a larger
operation space.

1.4.3.2 Model Building and Experimental Validation
In biotechnology,model building is necessarily coupled to a reiterative experimental
validation. Regardless of its level of complexity, models have to be constantly fitted
against real observations to adjust its parameters to changes caused by variations in
the environment or in the microorganism itself. On the other hand, such robotic
systems require a respective control strategy, posing new challenges to experimental
design and control. Process automation from product development to production
requires a horizontal transfer of information. In near future, a miniaturized scale
down robotic facility will be connected to the plant and run in parallel creating a
miniaturized twin of the large-scale process. By this, the mathematical model
traditionally used in MPC will be substituted by a more accurate description of
the system with a faster response time due to the dimension difference.

Regarding the experimental planning for model validation, the efficiency in the
design of multiple parallel experiments can be increased by using existingmethods
for data analysis and design of experiments [117–120] in order to allow an
automatic evaluation of experimental results as well as the design and run of
following experiments. Ifwemanaged to build a propermodel to describe a process,
we first need to fit the model to real data. This model will contain a set of unknown
parameters that can be varied to fit the outputs of themodel against observations of
the real process. The aim is to find the experimental setups such that the statistical
uncertainty of estimates of the unknownmodel parameters isminimized [121,122].
Nevertheless, there are some problems again related with the complexity and
nonlinear dynamics of biological processes. First, the experiments carried out in the
screening phase should emulate real process conditions [123] and generate high
quality data so that systemsbeyond simpleplates, as aremini-bioreactors [124–129]
are needed. But more important is that, even for continuous processes, we have to
go beyond “endpoint” or “steady-state” experiments. The dynamics of the process
are essential to predict its evolution over time and the proper control strategies and
for thesewe need dynamic experiments or at least different steady states. Because of
the size and possibility of modern HT facilities, the number of factors that can be
varied is very large including “actions” (pipetting, mixing, incubating, measuring,
etc.) and “resources” (1-, 8-, or 96-channel pipette, shaker, photometer, flow
cytometer, reaction vessels, plates, etc.). For these reasons, computer aided tools
for optimal experimental design (OED) [121,130–132] are needed tomaximize the
efficiency of automatized laboratories. Achievements in online applications, allow-
ing the use of the data generated to redesign the running experiment also are being
developed [130,133–137] and applied in real case studies with bacterial cultiva-
tions [138], solving a number of complications as are the complexity of the
biological system, the control of the experimental facilities, the low information
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content and long delays of the measurements, the scheduling of all actions
considering resource availability, and a robust and cheap computation of the
optimization.

Generally, the main factors that affect the identifiability of a model are: (i) the
structure of the model, (ii) the quality of the measurements (frequency, accuracy,
etc.), and (iii) the design of the experiment (inputs, conditions, etc.). OED thus, by
realization of the computed experimental conditions, the information content
of the measurements is maximized and the parameters are determined most
accurately.

There are still important challenges that need to be solved before OED
methods for optimal design and operation of robotic liquid handling stations
can be reliably applied for bioprocess development. Some of the most important
are the design of a robust optimization program that can assure convergence to a
global solution in a limited time, the addition of nonlinear path constraints to
define a more accurate search, the computation of the error propagation caused
by model uncertainties, efficient methods for the solution of the scheduling
problem considering all resources.

1.5 Conclusions

Continuous bioprocessing which is a standard in some bioprocesses, such as for
example, waste-water treatment and biogas production, is still at its infancy in
pharmaceutical production.While long-term continuous experiments are limited
in view of labor and also would only provide limited knowledge in connection to
the randomly occurring mutations, deeper going knowledge is needed and quality
has to be implemented in the process. Therefore, modeling and advanced process
control approaches form a solid basis. Especially, mechanistic and hybrid models
can provide here important information on the system and the process. For their
application, it has to be considered that due to variations in the process the
parameters of the model will be not constant over longer time intervals but have
to be regularly adjusted automatically. While such continuous optimization
strategies are the state of the art in various engineering disciplines they are
new in the area of bioprocessing, but can provide a significant benefit. In this
context it is an advantage that various complex cellular models exist, which
however by typical methods of model reduction should be adapted in a way to
make the parameters identifiable. If successful, such approaches can than be a
solid basis for continuous bioprocessing.
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