1 Stoff- und p,v-T-Daten der Reinstoffe

Die Berechnungsmethoden in der Verfahrenstechnik sind in den letzten Jahren, insbesondere durch die Einführung der Prozesssimulation wie z.B. CHEMCAD, immer leistungsfähiger geworden. Damit haben viele Lehrinhalte nicht immer mithalten können. Daher soll dieses Buch Berechnungsmethoden der Verfahrenstechnik an ausgewählten Beispielen vorstellen.

1.1 Wasserdampftafel nach IAPWS-IF97

Die Stoffdaten von Wasser und Wasserdampf sind für viele Anwendungen in der Verfahrenstechnik die wichtigsten Daten überhaupt. Seit vielen Jahren diente dazu das bekannte Tabellenwerk VDI-Wasserdampftafel von Dr. Koch und Prof. Dr. E. Schmidt, 1956, 4. Auflage, Springer Verlag. Die darin verwendeten Berechnungsmethoden wurden oft in programmierbaren Taschenrechnern wie HP41 oder TI99 programmiert und für den täglichen Bedarf angewandt. Sie lassen sich auch heute noch leicht in Excel und VBA verwenden.

In 2000 gab es eine CD unter dem Titel Wasser und Wasserdampf von Wagner, Span und Bonsen der Ruhr-Universität Bochum, Springer Verlag. Darin wurden die Berechnungen nach IAPS—IF97 durchgeführt. Die Programmsprache war Fortran. Diese CD wird nicht mehr vertrieben. Auf der Website der Ruhr-Universität Bochm findet man das Angebot von Prof. Dr. Wagner, Dateien für Excel erwerben zu können.

Nachstehend werden mehrere Methoden miteinander in der Excel-Datei Wasser-Dampf2017.xlsm verglichen, und zwar die Methoden von Prof. Dr. Kümmel, FH Lübeck, 2006, IAPS 1984, Prof. Dr. Wagner, Ruhr-Universität Bochum, Wasser und Wasserdampf, IAPS–IF97 und CHEMCAD, American Steam Table.

IAPS steht für International Association for the Properties of Water and Steam. IF97 bedeutet Industrieformulierung für Wasser und Wasserdampf 1997 (vgl. Abb. 1.1).

A	В	С	D	E	F	G	н	1	J.	K	L	M	N	0			
	IAPS - 1984		Berechnen														
Temperatur	- Dichte Wasser Siedelinie [kg/m²]	Dichte Sattdampf Taulinie [kg/m²]	Dichte IAPS - 1984 - attdampf Sättigungs- Taulinie Dampfdruck [kg/m²] [Pa]	Sättigungs- Dampfdruck [Pa]	Sättigungs- Dampfdruck	Sättigungs- Dampfdruck [Pa]	IAPS - 1984 - kinemat. Visk. Wasser Siedelinie [m²/s]	IAPS - 1984 - kinemat. Visk. Sattdampf Taulinie [m²/s]	IF97 - D8PT Dichte_pT [kg/m²]	IF97- HBPT Enthalpie_pT [kJ/kg.K]	IF97- SBPT Entropie_pT [kJ/kg.K]]	IF97 -CPBPT Cp_pT [kJ/kg.K]]	IF97 aus VDI Wasserdampf, Fortran Code [bar]	Temperatur [°C]	CHEMCAD 6.5 am. Steamtable Dampfdruck [bar]	CHEMCAD 6.5 DIPPR Dampfdruck [bar]	CHEMCAD 6.5 Antoine Dampfdruck [bar]
10	999,65264	9,40266E-03	1,22792E+03	1,30679E-06	1,00618E-03	999,74868	42,21496	0,15107	4,19507	1,228184E-02	10	1,228180E-02	1,234840E-02	1,206150E-02			
20	998,15964	1,73039E-02	2,33849E+03	1,00365E-06	5,62121E-04	998,25122	84,10592	0,29646	4,18449	2,339215E-02	20	2,339210E-02	2,350720E-02	2,314670E-03			
30	995,60467	3,03951E-02	4,24510E+03	8,00651E-07	3,29332E-04	995,69593	125,92372	0,43673	4,17975	4,246688E-02	30	4,246690E-02	4,264560E-02	4,222290E-0			
40	992,17469	5,12044E-02	7,38112E+03	6,57854E-07	2,01300E-04	992,26743	167,71177	0,57235	4,17831	7,384427E-02	40	7,384420E-02	7,409370E-02	7,362980E-03			
50	987,99705	8,30781E-02	1,23446E+04	5,53422E-07	1,27790E-04	988,09039	209,49805	0,70371	4,17933	1,235127E-01	50	1,235130E-01	1,238220E-01	1,233460E-0			
60	983,16273	1,30305E-01	1,99331E+04	4,74603E-07	8,39206E-05	983,25362	251,30561	0,83112	4,18254	1,994580E-01	60	1,994580E-01	1,997880E-01	1,993330E-0			
70	977,73860	1,98229E-01	3,11777E+04	4,13553E-07	5,68127E-05	977,82272	293,15597	0,95489	4,18788	3,120064E-01	70	3,120060E-01	3,122780E-01	3,118890E-0			
80	971,77453	2,93351E-01	4,73759E+04	3,65241E-07	3,95262E-05	971,84701	335,07013	1,07529	4,19530	4,741472E-01	80	4,741470E-01	4,742350E-01	4,739740E-0			
90	965,30783	4,23410E-01	7,01207E+04	3.26326E-07	2,81838E-05	965,36372	377,06889	1,19256	4,20480	7.018236E-01	90	7,018230E-01	7,015540E-01	7.015240E-0			
100	958,36623	5,97462E-01	1,01325E+05	2,94513E-07	2,05461E-05	958,40049	419,17320	1,30694	4,21642	1,014180E+00	100	1,014180E+00	1,013330E+00	1,013720E+0			
110	950,96992	8,25948E-01	1,43243E+05	2,68189E-07	1,52805E-05	950,97706	461,40455	1,41862	4,23023	1,433760E+00	110	1,433760E+00	1,432070E+00	1,433190E+0			
120	943,13295	1,12076E+00	1,98483E+05	2,46185E-07	1,15711E-05	943,10635	503,78550	1,52781	4,24637	1,986654E+00	120	1,986650E+00	1,983830E+00	1,986190E+0			
130	934,86414	1,49530E+00	2,70019E+05	2.27638E-07	8,90624E-06	1,09840	2727,25451	7,17962	2,12318	2,702596E+00	130	2,702600E+00	2,698320E+00	2,702720E+0			
140	926,16776	1,96462E+00	3,61191E+05	2,11896E-07	6,95691E-06	1,06920	2748,31055	7,23122	2,09016	3,615010E+00	140	3,615010E+00	3,608980E+00	3,616530E+0			
150	917,04380	2.54547E+00	4.75712E+05	1.98459E-07	5.50721E-06	1,04178	2769.08892	7,28091	2,06670	4,761014E+00	150	4,761010E+00	4.752940E+00	4.765100E+0			
160	907,48817	3,25650E+00	6,17659E+05	1,86932E-07	4,41257E-06	1,01595	2789,66420	7,32897	2,04917	6,181392E+00	160	6,181390E+00	6,171010E+00	6,189590E+0			
170	897,49267	4,11846E+00	7,91468E+05	1,77004E-07	3,57438E-06	0,99153	2810,08667	7,37559	2,03595	7,920532E+00	170	7,920530E+00	7,907670E+00	7,934680E+0			
180	887,04479	5,15443E+00	1,00193E+06	1,68421E-07	2,92420E-06	0,96839	2830,39429	7,42090	2,02608	1,002635E+01	180	1,002630E+01	1,001090E+01	1,004840E+0			
190	876,12739	6,39025E+00	1,25417E+06	1,60978E-07	2,41380E-06	0,94640	2850,61710	7,46504	2,01889	1,255018E+01	190	1,255020E+01	1,253230E+01	1,258190E+0			
200	864,71822	7,85494E+00	1,55365E+06	1,54504E-07	2,00866E-06	0,92548	2870,77928	7,50811	2,01388	1,554672E+01	200	1,554670E+01	1,552680E+01	1,558910E+0			
210	852,78918	9,58137E+00	1,90617E+06	1,48858E-07	1,68375E-06	0,90553	2890,90053	7,55020	2,01064	1,907391E+01	210	1,907390E+01	1,905280E+01	1,912650E+0			
220	840,30543	1,16071E+01	2.31782E+06	1,43920E-07	1,42068E-06	0,88648	2910,99697	7,59137	2,00887	2,319288E+01	220	2.319290E+01	2,317180E+01	2.325290E+01			

Abb. 1.1. Wasser und Wasserdampf nach IAPS, IF97 und CHEMCAD – hier eine Übersichtdarstellung. Für genaue Darstellung siehe bitte entsprechende Excel-Datei.

In Spalte A befindet sich die Temperatur in °C. In B-F befinden sich die Berechnungen nach Prof. Kümmel IAPS 1984, in Spalte B befindet sich die Wasserdichte in kg/m³ nach IAPS–1984,

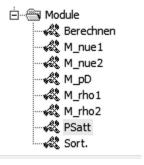
In C die Sattdampfdichte in kg/m³, in D der Sättigungsdampfdruck in Pa, in E die kinematische Viskosität von Wasser in m²/s, in F die kinematische Viskosität des Sattdampfes in m²/s. Diese VBA-Funktionen sind aktiv und können mit der Schaltfläche "Berechnen" ausgeführt werden.

In G-J befinden sich die Ergebnisse aus der o.g. CD, in G befindet sich die Wasserdichte in kg/m³ nach IF97-DBPT, H die Enthalpie des Wassers in kJ/kg•K nach IF97-HBPT, in I die Entropie des Wassers in kJ/kg.K nach IF97-SBPT, in J die spezifische Wärmekapazität des Wassers in kJ/kg.K nach IF97-CPBPT.

In K befindet sich die Berechnung das Dampfdrucks mit dem Fortran-Programm Dampfdruck aus der o.g. CD, in VBA konvertiert.

Des Weiteren werden in 5 Tabellen Grafiken erstellt, und zwar aus den in den Spalten B-F dargestellten Daten.

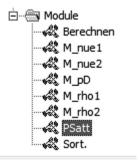
In den Spalten P-S werden die Dampfdruckergebnisse von CHEMCAD 6.5 wiedergegeben.


Ein Vergleich der Dampfdruckdaten bei 120 °C aus D13, M13 und nach Koch mit K13 erfolgt in den Zeilen 25–27 (für ausführliche Darstellung siehe bitte entsprechende Excel-Datei).

In K13 befindet sich der Dampfdruck nach IF97. Die Differenz mit IAPS 1984 beträgt 0,092% (D27), der mit Koch 0,065% (J27) und der mit CHEMCAD erwartungsgemäß 0,0020% (M27). Letzterer ist deshalb so klein, weil in CHEMCAD IF97 verwendet wird. Die Abweichungen von IF97 zu IAPWS 1984 und Koch sind so gering, dass sie in den meisten Fällen für verfahrenstechnische Anwendungen zu vernachlässigen sein dürften.

Die Dampfdruckdaten in CHEMCAD nach DIPPR (N) weichen um 0,0023 % und die nach Antoine (O) um 0,023 % von den IF97-Daten ab. Die DIPPR-Methode bietet in CHEMCAD weitere Stoffeigenschaften für Wasser und Wasserdampf. Damit lässt sich leicht ein Vergleich mit den oben erwähnten Berechnungsmethoden durchführen.

Die Berechnungen in B-F (IAPWS 1984) und in K (CD) werden in VBA durchgeführt. Um zu dieser VBA-Berechnung zu gelangen, muss man Alt + F11 eingeben. Unter Module findet man



Dies sind einzelne Berechnungsfunktionen. Wält man "Berechnen" gelangt man zu

```
Sub Berechnung()
'Knopf "Neu berechnen", Aufrufen der einzelnen Berechnungsmodule
'Ergebnisse werden in die Tabelle und in die Grafik geschrieben
    Dichte Wasser
    Dichte Sattdampf
    Dampfdruck
    Viskositätl
    Viskosität2
```

Dies ist das Programm, welches ausgeführt wird, wenn man auf "Berechnen" klickt. Darin werden mehrere Unterprogramme wie z.B. Dampfdruck ausgeführt. Jedes Unterpogramm füllt die Tabelle auf und stellt Daten für die Grafik zur Verfügung.

Am Beispiel Dampfdruck soll dies näher erläuert werden.

End Sub

In dem nachstehenden Programm Dampfdruck werden die Temperaturen in A gelesen und daraus der Dampfdruck mit der Funktion pD(T) berechnet. Dies geht im Detail aus den Kommentaren hervor. Die Ergebnisse werden sowohl in die Tabelle nach D als auch in die Grafik geschrieben.

```
Sub Dampfdruck()
'Berechnen des Dampfdrucks und Übertragung in die Grafiktabelle "pD=f(T)"
Columns ("A:A") . Select
M = Application.Count(Columns("A:A")) berechnet die letzte Datenzeile (22)
                                       'i = 2 ....
For i = 2 To M + 1
    Range("A" & i).Select
                                        'wählt i. Zelle in A = aktive Zelle
    a = pD(ActiveCell.Value)
                                       'berechnet a=pD mit der Temperatur in der
    ActiveCell.Offset(0, 3).Activate
                                      'Schreibt Ergebnisse nach D
    ActiveCell.FormulaR1C1 = a
Next i
Sheets("pD=f(t)").Select
                                                                'Wählt Tabelle
                                                                'Öffnet Grafikdatı
    With ActiveChart.SeriesCollection(1)
        .XValues = Sheets("Tabelle1").Range("A2:A" & M + 1)
.Values = Sheets("Tabelle1").Range("D2:D" & M + 1)
                                                                'schreibt Tempera
                                                               'schreibt Dampfdr
    End With
Sheets("Tabelle1").Select
                                       'Wählt Tabelle1
End Sub
Function pD(T) As Double
  Const a1 = -7.85823, a2 = 1.83991, a3 = -11.7811
  Const a4 = 22.6705, a5 = -15.9393, a6 = 1.77516
  Const Tc = 647.14
                        'K'
                       'kq/m3'
  Const rhoc = 322
  Const Pc = 22064000 'Pa'
  Dim Tau, Teta, u b As Double
  T = T + 273.15
  Teta = T / Tc
  ub = Tc / T
  Tau = 1 - Teta
  pD = Pc * Exp(u b * (a1 * Tau + (a2 * Tau ^ 1.5) + (a3 * Tau ^ 3) +
  (a4 * Tau ^ 3.5) + (a5 * Tau ^ 4) + (a6 * Tau ^ 7.5)))
End Function
```

Natürlich kann man die Funktion pD in Excel wie üblich direkt benutzen. Dies befindet sich in D31.

Die in K dargestellten Ergebnisse wurden aus der o.g. CD entnommen und von Fortran in VBA konvertiert.

```
Public Function psattn(ts)
'Berechnen des Wasserdampfdrucks nach IF97
'aus CD Wasser und Wasserdampf 2000 in Fortran
ts = ts + 273.15
a1 = 1167.0521452767
a2 = -724213.16703206
a3 = -17.073846940092
a4 = 12020.82470247
a5 = -3232555.0322333
a6 = 14.91510861353 * 2
a7 = -4823.2657361591 * 2
a8 = 405113.40542057 * 2
a9 = -0.23855557567849
a0 = 650.17534844798
    y = ts + a9 / (ts - a0)
   b = a5 + y * (a4 + y * a3)
    c = a8 + y * (a7 + y * a6)
    ps = c / (Sqr(b * b - ((al + y) * y + a2) * c * 2#) - b)
    ps = ps * ps
    psattn = ps * ps * 10
'Genauigkeitsprüfung
'all = al + 0.0000000001
End Function
```

Die Funktion psattn kann ebenfalls direkt in Excel verwendet werden, wie in K21 gezeigt. Wenn man Wasser- und Wasserdampfdaten in Excel berechnen will, kann man entweder die in dem 2000 erschienenen o.g. CD-Fortran-Programm nach VBA konvertieren oder die komplette Exceldatei auf den neuesten Stand bei Prof. Wagner (Webseite Ruhr-Universität Bochum) erwerben.

1.2 Inkrementenmethode von Joback

Die Joback-Inkrementmethode (siehe Datei "jobackmod, ex-03_07_group_contribution,,) ist eine von vielen Inkrementmethoden, auch Gruppenbeitragsmethoden genannt, deren Ziel darin besteht, Stoffdaten aus der Struktur eines Moleküls auf einfache Weise zu berechnen. Dabei steht im Vordergrund die Erfahrung, dass sich Stoffdaten von Molekülen einfacher homologer Reihen mit guter Näherung linear berechnen lassen. Eine solche homologe Reihe stellen die linearen Alkanen in Bezug auf die CH₂-Gruppe dar. Die allgemeine Formel der Alkane lautet.

Am Beispiel des kritischen Volumens V_c der Alkane lässt sich das Joback-Prinzip leicht erklären. Wir entnehmen dem VDI-Wärmeatlas das kritische Volumen von Alkanen und stellen dieses in Abhängigkeit der C-Atome dar. Dazu verwenden wir die Exceldatei jobackmod.xlsm und darin die Tabelle VDI-WA (vgl. Abb. 1.2).

1	А	В	С	D		E	F	G	Н	1	J	K	L
1	Stoffdaten a	us VDI Wärm	eatlas										
2													
3	Daten von N	-Alkanen											
4						AN	MG	Tb	Tc	рс	Vc	Tm	Tm CHEMCAD
5			Summenfor	Strukturf	ormel	Atomzahl	Molgewicht	Siedepunkt	krit. Temper	krit. Druck	krit. Volume	Schmelztem	peartur
6							g/mol	K	K	bar,a	cm³/mol	K	
7	0	Methan	CH4	CH4			16.042	111 6	100.4	46.0	110.0	00.7	00.7
8	1	Ethan	C2H6	СН3-СН	Tak	ellenar	ısschnit	t zur A	necham	ına De	tailliert	e Infor	mation
9	2	Propan	C3H8	СН3-СН						•	taiiiici t	c mion	mation
10	3	N-Butan	C4H10	CH3-(C	siel	ne entsr	recheno	de Exce	 Datei. 				
11	4	N-Pentan	C5H12	CH3-(C		г							
12	5	N-Hexan	C6H14	CH3-(CI									

Abb. 1.2. Alkane in Tabelle VDI-WA in jobackmod.xlsm

Als Ergebnis erhalten wir die nachstehende Grafik (vgl. Abb. 1.3).

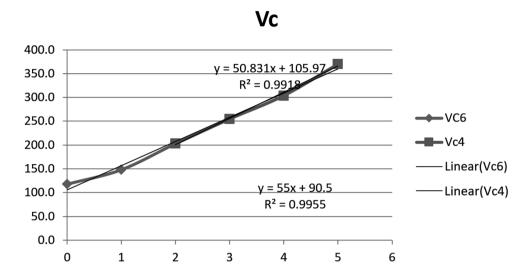


Abb. 1.3. Kritisches Volumen von Alkanen als Funktion der C-Atome

Auf der Horizontalen ist die Anzahl der C-Atome und auf der Vertikalen das kritische Volumen V_c dargestellt. Die Trendlinie ist mit Anklicken der Grafik mit der rechten Maustaste wie folgt auszuwählen (vgl. Abb. 1.4 und Abb. 1.5).

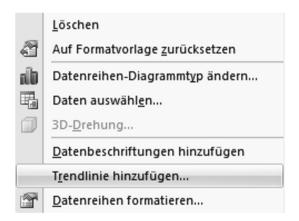


Abb. 1.4. Auswahl der Trendlinie

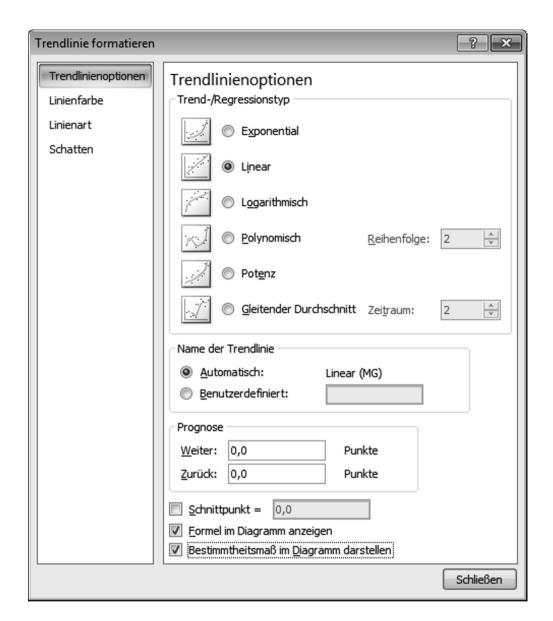
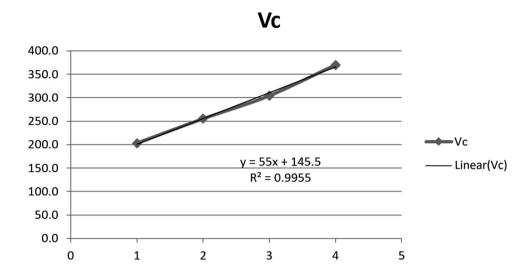



Abb. 1.5. Auswahl der Parameter der Trendlinie

Die Kurve VC6 stellt alle 6 Alkane dar, während die Kurve Vc4 nur die 4 Alkane ab Propan darstellt. Letztere ist auffällig linear, während die erstere bei Methan und Ethan Abweichungen zeigt. Die homologe Reihe beginnt mit n=1 (Anzahl der CH₂-Gruppen) erst bei Propan. Daher betrachten wir nur diese Alkane und stellen das kritischen Volumen V_c ab Propan in Abhängigkeit von n, also der Anzahl CH₂-Gruppen, dar und erhalten die nachstehende Grafik (vgl. Abb. 1.6).

Abb. 1.6. Kritisches Volumen V_c als Funktion von n in (CH₂)_n in Tabelle VDI-WA in jobackmod.xlsm

Die Abhängigkeit des kritischen Volumens Vc von n ist nahezu linear, was durch das Bestimmtheitsmaß = 0,9955 ausgedrückt wird. Die Funktionsgleichung lautet daher

$$V_c = 145,5 + 55n. (1.1)$$

Wie man der Joback-Tabelle entnehmen kann, lautet die original Joback-Funktion zur Berechnung des kritischen Volumens Vc, bezogen nur auf die CH2-Gruppen

$$V_c = 17.5 + 56n. (1.2)$$

Zählt man die Joback-Daten beider CH₃-Gruppen eines Alkans mit 2 mal 65 dem Wert 17,5 hinzu, erhält man für die Formel der Alkane CH3-(CH2)n-CH3

$$V_c = 147.5 + 56n. (1.3)$$

Damit erhalten wir nahezu exakt die obige Joback-Gleichung. Umgekehrt hätte man auch aus der o.g. Funktionsgleichung

$$V_c = 145.5 + 55n \tag{1.4}$$

den Wert 145,5 um 17,5 verringert und daraus 128 erhalten und dieses Ergebnis beiden CH₃-Gruppen zuordnen können. Damit hätte man pro CH₃-Gruppe den Inkrementwert 64 erhalten. Joback verwendet den CH₃-Inkrementwert 65.

Dieses Beispiel zeigt das Grundprinzip der Joback-Methode. Diese Vorgehensweise lässt sich auf alle Inkrementgruppen anwenden.

Würde man nun statt der Alkane eine andere homologe Reihe wie z.B. CH₃-(CH₂)n-OH betrachten, ergäben sich andere CH₂-Inkrementwerte. Die nachstehende Tabelle zeigte das kritische Volumen von aliphatischen Alkoholen (vgl. Abb. 1.7).

68	Alkohole	kritisches Vo	lumen			
69					(CH2)n	Vc
70						cm³/mol
71	1	Ethanol	C2H5OH	CH3(CH2)1OH	1	167,1
72	2	n-Propanol		CH3(CH2)2OH	2	219
73	3	n-Butanol		CH3(CH2)3OH	3	275
74	4	n-Pentanol		CH3(CH2)4OH	4	326

Abb. 1.7. Daten der Alkohole in Tabelle VDI-WA in jobackmod.xlsm

Daraus erhalten wir die folgende Grafik (vgl. Abb. 1.8).

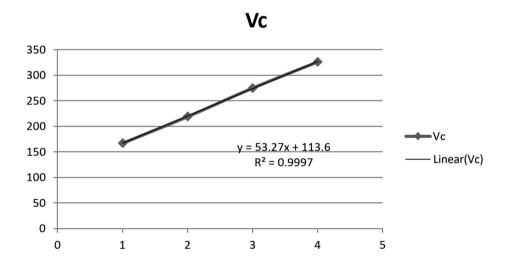


Abb. 1.8. Kritisches Volumen Vc bei Alkoholen in Tabelle VDI-WA in jobackmod.xlsm

Die Regressionsfunktion (Trendlinie) lautet

$$V_c = 113,6 + 53,27n \tag{1.5}$$

Das Bestimmtheitsmaß beträgt 0,9997, ist also sehr hoch.

Hier ist der CH₂-Inkrementwert = 53,27, d.h. geringer als bei den Alkanen mit 55. Der Inkrementwert für die beiden Endgruppen CH₃ + OH ergibt sich analog zur vorherigen Berechnung zu

$$113.6 - 17.5 = 96.1 \tag{1.6}$$

Davon wird der oben berechnete CH3-Inkrementwert 64 abgezogen

$$96,1 - 64 = 32,1 \tag{1.7}$$

und wir erhalten den Inkrementwert der OH-Gruppe. Joback rechnet mit dem OH-Inkrementwert 28.

Dass bei aliphatischen Alkoholen der CH₂-Inkrementwert 53,27 statt wie bei den Alkanen 55 beträgt, lässt sich auf den Einfluss der OH-Gruppe zurückführen, welche eine CH₃-Gruppe ersetzt. Ebenso könnten wir nun die homologe CH2-Reihe bei aliphatischen Carbonsäuren betrachten.

CH₃- (CH₂)n-COOH

Die COOH-Gruppe besteht aus den Inkrementen >C=0 und -OH.

Diese Betrachtung könnte nahezu beliebig fortgesetzt werden und wir erhielten CH₂-Inkrementwerte für diverse homologe Molekülreihen, also Alkane, aliphatische Alkohole, aliphatische Carbonsäuren usw. Damit würde in Bezug auf die CH₂-Gruppe eine erheblich höhere Genauigkeit erzielt werden als dies mit dem konstanten CH₂-Inkrementwert von 56 möglich ist.

Natürlich gilt diese Betrachtung nicht nur für die CH₂-Gruppe, sondern für alle Gruppen. Im Prinzip ist der Inkrementwert einer Gruppe in zweiter Näherung von seiner Nachbargruppe abhängig. Damit ergeben sich binäre und höhere kombinierte Inkrementgruppen. Der Rechenaufwand wird dadurch erhöht und die manuelle Benutzung erschwert. Ohne Programm wäre dieser Aufwand kaum realisierbar, außerdem fehlen z.Z. noch die Daten dazu.

Die Joback-Methode gilt als eine der besten linearen Inkrementnäherungsmethoden zur Berechnung des Siedepunktes T_b, des Schmelzpunktes T_m, der kritischen Temperatur T_c, dem kritischen Druck Pc, dem kritischen Volumen Vc, der Standardbildungsenthalpie Hf, der Gibbs'schen Bildungsenergie G_f, der spezifischen Wärmekapazität des idealen Gases C_p, der Verdampfungsenthalpie H_v, der Schmelzenthalpie H_m sowie der Flüssigviskosität η.

Die Anwendung der Joback-Methode lässt sich in Excel relativ einfach gestalten (vgl. Abb. 1.9). Dazu wurde die Excel-Datei jobackmod.xlsm erstellt, in der die öffentlichen Daten aus Wikipedia eingefügt und aufgearbeitet wurden.

1 1	oback Tabelle aus ht	B ttps://da.wikir	C C	D ki/loback-M	ethode c=t	nomman	G	Н	31.06.2015	,	K		M	N	0	P	Q	R	S
	oback Tabelle aus ht eispiel Aceton	ttps://de.wikip	edia.org/wi	KI/JODBCK-MI	etnode ent	nommen			51.06.2015										
3	eispiei Aceton	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
		N -	z	MG	т.	P.	٧,	T _h	т_	H,	G,	Cpa	Cpb	Срс	Cpd	H_	H,	na	nb
	Gruppe	- "	•	mo	14	Pe	v.	Phasenüb		Bildungs-	Gibbs	Сра		nekapazität	Cpu		n, Verdampfu	Dynami	
	огаррс				Kı	ritischer Punk	rt	tempera		Std. Ent				es Gas		enthal		Flüssigvis	
7								tempera	Nicht-l		naipie		ideal	es Gas		enthai	pien	riussigvis	KOSITAT
_	CH.	2	4	15.00	0.0141	-0.0012	65.0000	23,5800	-5.1000	-76.4500	-43,9600	19.5000	-8.0800E-03	1 52005 04	-9.6700E-08	0.9080	2.3730	548.2900	-1.7
_		2	- "	15,00	0,0141	-0,0012	65,0000	23,5800	-5,1000	-/6,4500	-45,9600	19,5000	-8,U8UUE-U3	1,5300E-04	-9,6700E-08	0,9080	,	,	,
	CH ₂ -			16.00	0.0100	0.0000	EE 0000	22 0000	11.2700	20.5400	0.4200	n enen	9 ENONE NO	E AAAAAE AE	1 19005 00	2 5900	2,2260	94,1600	-0,1
	CH-			TD 1	11		1	•		1		-	111	. ,	т с		1,6910	-322,1500	1,1
	C<			Tab	ene	naus	scnn	111 ZI	ır A	nsch	auun	g D	etailli	ierte	Infor:	ma-	0,6360	-573,5600	2,3
	CH2											0 -					1,7240	495,0100	-1,5
	CH-			4:	:_1	l	. 4	1	T	7	1 D-4	:					2,2050	82,2800	-0,2
	C<			uon	ı sie	ne er	uspr	ecne	nae i	zxce.	l-Dat	.eı.					2,1380	82,2800	-0,2
	C=						1										2,6610	82,2800	-0,2
	CH																1,1550	82,2800	-0,2
	C-		0.000														3,3020	82,2800	-0,2
18 Si	ummen	2	8,000		-,	-,	,	,	20,2000	,	,	,	-,		-,	-,	4,7460	1096,5800	-3,4
19										a labashar					_				
_	(2)		3	44.00	0.0400	0.0005	40.0000	07.4500		g Jobackgrup;		C 0300	0.545.00	0.005.05	4 00005 00	0.4000	0.2000	207 5200	-0,7
	CH ₂ -(Ring)			14,00	0,0100	0,0025	48,0000	27,1500	7,7500	-26,8000	-3,6800	-6,0300	8,54E-02	-8,00E-06	-1,8000E-08	0,4900	2,3980	307,5300	
	CH-(Ring)		2	15,00	0,0122	0,0004	38,0000	21,7800	19,8800	8,6700	40,9900	-20,5000	1,62E-01	-1,60E-04	6,2400E-08	3,2430	1,9420	-394,2900	1,3
	C<(Ring)		1	16,00	0,0042	0,0061	27,0000	21,3200	60,1500	79,7200	87,8800	-90,9000	1,62E-01	-1,60E-04	4,6900E-07	-1,3730	0,6440	-394,3000	1,2
	CH- (Ring)		2	17,00	0,0082	0,0011	41,0000	26,7300	8,1300	2,0900	11,3000	-2,1400	5,74E-02	-1,64E-06	-1,5900E-08	1,1010	2,5440	259,6500	-0,7
	C<(Ring)		1	18,00	0,0143	0,0008	32,0000	31,0100	37,0200	46,4300	54,0500	-8,2500	5,74E-02	-1,64E-06	6,7800E-08	2,3940	3,0590	-245,7400	0,9
	ummen	0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000E+00	0,0000E+00	0,0000E+00	0,0000	0,0000	0,0000	0,0
7																			_
8										en Jobackgru									
29 -	F		1	19,00	0,0111	-0,0057	27,0000	-0,0300	-15,7800	-251,9200	-247,1900	26,5000	-9,13E-02	1,91E-04	-1,0300E-07	1,3980	-0,6700	625,4500	-1,8
	CI		1	35,50	0,0105	-0,0049	58,0000	38,1300	13,5500	-71,5500	-64,3100	33,3000	-9,63E-02	1,87E-04	-9,9600E-08	2,5150	4,5320	625,4500	-1,8
	Br		1	80,00	0,0133	0,0057	71,0000	66,8600	43,4300	-29,4800	-38,0600	28,6000	1,36E-04	-7,45E-08	-7,4500E-08	3,6030	6,5820	738,9100	-2,0
32 -			1	192,20	0,0068	-0,0034	97,0000	93,8400	41,6900	21,0600	5,7400	32,1000	1,26E-04	-6,87E-08	-6,8700E-08	2,7240	9,5200	809,5500	-2,2
33 S	ummen	0	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000E+00	0,0000E+00	0,0000E+00	0,0000	0,0000	0,0000	0,0
34									_			_							
35										toff Jobackgr									_
	OH (Alkohole)		2	17,00	0,0741	0,0112	28,0000	92,8800	44,4500	-208,0400	-189,2000	25,7000	1,26E-04	-6,87E-08	-9,8800E-08	2,4060		2173,7200	-5,0
	OH (Phenol)		2	17,00	0,0240	0,0184	-25,0000	76,3400	82,8300	-221,6500	-197,3700	-2,8100	-1,16E-04	4,94E-08	4,9400E-08	4,4900	12,4990	3018,1700	-7,3
	O-(Nichtring)		1	16,00	0,0168	0,0015	18,0000	22,4200	22,2300	-132,2200	-105,0000	25,5000	1,11E-04	-5,48E-08	-5,4800E-08	1,1880	2,4100	122,0900	-0,3
	O-(Ring)		1	16,00	0,0098	0,0048	13,0000	31,2200	23,0500	-138,1600	-98,2200	12,2000	-1,26E-02	6,03E-05	-3,8600E-08	5,8790	4,6820	440,2400	-0,9
	C=O (Nichtring)	1	2	28,00	0,0380	0,0031	62,0000	76,7500	61,2000	-133,2200	-120,5000	6,4500	6,70E-02	-3,57E-05	2,8600E-09	4,1890	8,9720	340,3500	-0,3
	C=O (Ring)		2	28,00	0,0284	0,0028	55,0000	94,9700	75,9700	-164,5000	-126,2700	30,4000	-8,29E-02	2,36E-04	-1,3100E-07	4,1890	6,6450	340,3500	-0,3
	=CH-(Aldehyd)		3	29,00	0,0379	0,0030	82,0000	72,2400	36,9000	-162,0300	-143,4800	30,9000	-3,36E-02	1,60E-04	-9,8800E-08	3,1970	9,0930	740,9200	-1,7
	COOH (Säure)		4	57,00	0,0791	0,0077	89,0000	169,0900	155,5000	-426,7200	-387,8700	24,1000	4,27E-02	8,04E-05	-6,8700E-08	11,0510	19,5370		-2,5
	COO-(Ester) O (andere oben)		3	44,00 16.00	0,0481	0,0005	82,0000 36,0000	81,1000 -10,5000	53,6000 2.0800	-337,9200 -247,6100	-301,9500 -250.8300	24,5000 6.8200	4,02E-02 1,96E-02	4,02E-05 1,27E-05	-4,5200E-08 -1.7800E-08	6,9590 3.6240	9,6330 5.9090	483,8800 675,2400	-0,9 -1,3
6 S	ummen	1	2,00	28,0000	0,0143	0,0101	62,0000	76,7500	61,2000	-133,2200	-120,5000	6,4500	6,7000E-02	-3,5700E-05	2,8600E-09	4,1890	8,9720	340,3500	-1,3
7			2,50	30,0000	0,0000	0,0051	22,0000	. 0,. 550	02,2000	355,2200	520,5000	0,.500	_,,	_,0.002.03	_,00000000	.,2000	0,5120	5.0,550	
8									Sticks	toff Jobackgru	ippe								
	NH,		3	16,00	0,0243	0,0109	38,0000	73,2300	66,8900	-22,0200	14,0700	26,9000	-4,12E-02	1,64E-04	-9,7600E-08	3,5150	10,7880	307,5300	-0,7
	NH (Nichtring)		2	15,00	0,0295	0,0077	35,0000	50,1700	52,6600	53,4700	89,3900	-1,2100	7,62E-02	-4,86E-05	1,0500E-08	5,0990	6,4360	308,5300	-0,7
	NH (Ring)		2	15,00	0,0233	0,0077	29,0000	52,8200	101,5100	31,6500	75,6100	11,8000	-2,30E-02	1,07E-04	-6,2800E-08	7,4900	6,9300	309,5300	-0,5
	N-(Nichtring)		1	14.00	0,0150	0,0074	9,0000	11,7400	48,8400	123,3400	163,1600	-31,1000	2,27E-01	-3,20E-04	1,4600E-07	4,7030	1.8960	310,5300	-0,0
	N=(Nichtring)		1	14,00	0.0255	-0.0099	9.0000	74,6000	48.8400	23,6100	163,1600	-31,1000	0,02	0,00	1,4600E-07	4,7030	3,3350	311,5300	-0,0
	N= (Ring)		1	14,00	0.0085	0.0076	34.0000	57.5500	68.4000	93,7000	119.6600	5.6900	-4.12E-03	1.28E-04	-8.8800E-08	3,6490	6.5280	312,5300	-0.8
	NH		2	15,00	0,0085	0,0076	34,0000	83,0800	68,9100	93,7000	119,6600	5,6900	-4,12E-03	1,28E-04	-8,88-8	3,6490	12,1690	313,5300	-0,8
	NH CN		2	26,00	0,0085	-0,0076	91,0000	125,6600	59,8900	88,4300	89,2200	36,5000	-4,12E-03 -7,33E-02	1,28E-04 1,84E-04	-8,88-8 -1.0300E-07	2,4140	12,1690	314,5300	
															-1,0300E-07 -8.8800E-08				-0,8
	NO ₂		3	46,00	0,0437	0,0064	91,0000	152,5400	127,2400	-66,5700	-16,8300	25,9000	-3,74E-03	1,29E-04	-,	9,6790	16,7380	315,5300	-0,8
58 S	ummen	0	0.00	0,0000	0,0000	0,0000	0.0000	0,0000	0.0000	0.0000	0,0000	0.0000	0.0000E+00	0.0000E+00	0.0000E+00	0.0000	0.0000	0.0000	0

Abb. 1.9. Tabelle "Daten" in jobackmod.xlsm, auszugsweise

Am Beispiel Aceton ist dort die Berechnung in der Tabelle "Daten" ausgeführt. Aceton besteht aus 3 Gruppen 2 x CH₃ und >C=O.

In der Tabelle "Daten" befindet sich in A8 die -CH₃-Gruppe. In B8 wird eine 2 eingetragen, da die CH₃-Gruppe im Aceton zweimal vorkommt. Damit werden die Inkremente der CH₃-Gruppe zweifach berechnet. Die Inkremente befinden sich ab Spalte E.

	А	В	С	D	E	F	G			
1	Joback Tabelle aus https://de.wikipedia.org/wiki/Joback-Methode entnommen									
2										
3										
4		N	Z	MG	T _c	P _c	V _c			
5	Gruppe				K	ritischer Punk	rt			
6					K	indischer Fulli				
7										
8	−CH ₃	2	4	15,00	0,0141	-0,0012	65,0000			
9	-CH ₂ -		3	16,00	0,0189	0,0000	56,0000			
10	>CH-		2	17,00	0,0164	0,0020	41,0000			

Abb. 1.10. Auswahl der CH3-Inkrementgruppe der Nicht-Ring-Joback-Gruppe in jobackmod.xlsm

In E8 (Abb. 1.10) steht z.B. der Inkrementwert für die kritische Temperatur $T_c = 0.0141$. Die zweite Gruppe des Acetons, die >C=O-Gruppe wird in A40 mit 1 eingetragen. Die dort aufgeführten Gruppen gehören zur Sauerstoffgruppe. In B40 wird eine 1 eingegeben, da diese Gruppe nur einmal im Aceton vorkommt.

D' : C O I 1	•	1	C / CC T 1 1
Die >C=O-Inkrementgruppe	1n	der	Sauerstoff-Johackgrunne
Die G G inkrementgruppe	111	uci	Saucistoff Journal appe.

	Α	В	С	D	Е
37	–OH (Phenol)		2	17,00	0,0240
38	-O- (Nichtring)		1	16,00	0,0168
39	–O– (Ring)		1	16,00	0,0098
40	>C=O (Nichtring)	1	2	28,00	0,0380
41	>C=O (Ring)		2	28,00	0,0284
42	O=CH-(Aldehyd)		3	29,00	0,0379
43	-COOH (Säure)		4	57,00	0,0791
44	-COO- (Ester)		3	44,00	0,0481
45	=O (andere oben)		1	16,00	0,0143
46	Summen	1	2,00	28,0000	0,0380

Abb. 1.11. Auswahl der >C=O-Inkrementgruppe der Sauerstoff-Jobackgruppe in jobackmod.xlsm

In B18 und B46 (Abb. 1.11) werden die Summen der ausgewählten Gruppen gebildet, sodass in B65 die Gesamtsumme aller gewählten Gruppen berechnet wird. Dieser Wert dient der Kontrolle.

In Zeile 18 sowie in Zeile 46 werden die Summenprodukte für Aceton aus den Inkrementzahlen (B8) und den Inkrementdaten gebildet. In allen Zeilen, die in Spalte A mit Summen gekennzeichnet sind, werden diese Summenprodukte gebildet.

Klickt man z.B. auf H18, erscheint im Funktionsfeld wie z.B. die Inkremente der Gruppe T_b (Siedetemperatur) berechnet und aufsummiert werden.

Angeklickt erhalten wir das Fenster nach Abb. 1.12:

Funktionsargumente				? ×
SUMMENPRODUKT				
Array1	\$8\$8:\$8\$17		=	{2;0;0;0;0;0;0;0;0;0}
Array2	H8:H17		=	{23,58;22,88;21,74;18,25;18,18;24
Array3			=	array
Gibt die Summe der Proc		sind	ray 2 b	47, 16 vs zurück. nis 255 Arrays, deren Komponenten Sie zunächst Bend addieren möchten.
Formelergebnis = 47,1	600			
Hilfe für diese Funktion				OK Abbrechen

Abb. 1.13. Eingabe der Summenproduktfunktion für den Siedepunkt T_b

Das Array1 ist \$B\$8:\$B\$17. Dies ist der Bereich, in welchem die Anzahl der Gruppen eingegeben wird. Array2 ist H8:H17. Dies ist der Bereich, in welchem die Daten für die Siedetemperatur T_b zu finden sind. Die Rechenoperation lautet B8:B17* H8:H17 = ΣG_i . D.h. B8*H8 + B9*H9 usw. Diese Summe wird zunächst in den Zeilen 18, 26, 33, 46, 58 und 64 für jede Joback-Gruppe, z.B. Nicht-Ring-Joback-Gruppe, gebildet, und daraus entsteht die Gesamtsumme in Zeile 65. Dieser Wert wird dann in der jeweils gültigen Joback-Funktion verwertet und ergibt den entsprechenden Stoffwert z.B. für die kritische Tempertaur T_b .

Die Formel für den Siedepunkt Tb lautet wie folgt:

$$T_{b} = 198.2 + \sum_{i} G_{i}$$
 (1.8)

Im Fall Aceton lauten die Gruppenbeiträge für -die CH₃-Gruppe 23,5 (mal 2) und für die >C=O-Gruppe 76,75, zusammen 123,91. In die obige Formel eingegeben erhalten wir $T_b = 322,11K =$ 48.96 °C. Der Siedepunkt von Aceton beträgt 56.0 °C. Der mit Joback berechnete Siedepunkt liegt also 13% zu niedrig. Da der Siedepunkt für die Berechnung der kritischen Temperatur und diese für weitere Berechnungen verwendet wird, sollte der Siedepunkt möglichst durch einen Literaturwert ersetzt werden, wann immer es möglich ist.

Mit der Wahl der Inkrementgruppen in der Spalte B kann man jedes beliebige Molekül darstellen und die Joback-Stoffdaten berechnen. Die Berechnung ist in allen Details nachvollziehbar. Komfortabler ist jedoch die Bedienung in der Tabelle Berechnung. Auch dazu dient das Beispiel Aceton (vgl. Abb. 1.14).

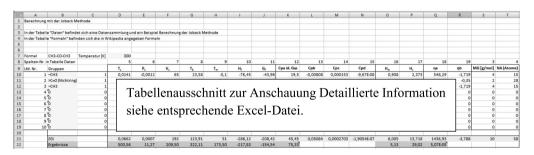


Abb. 1.14. Auswahl der Aceton-Inkremente und Joback-Berechnung

In A–C werden die Inkrementgruppen CH₃ und >C=O für Aceton ausgewählt. Dazu existiert ein Menü. Es können maximal 10 Inkremente ausgewählt werden. Die Tabelle ist unter Beachtung der Excel-Regeln erweiterbar auf beliebig viele Inkremente (vgl. Abb. 1.15).

	А	В	С	D	Е
9	Lfd. Nr.	Gruppen		T _c	P _c
10	1	-CH3	2	0,0141	-0,0012
11	2	>C=O (Nichtring)	1	0,038	0,0031
12	3	-CH3	0	0,0141	-0,0012
13	4	0	0	0	0

Abb. 1.15. Auswahl der Joback-Inkremente

Klickt man auf B10, öffnet sich ein Auswahlfenster (vgl. Abb. 1.16 und Abb. 1.17).

	А	В	
9	Lfd. Nr.	Gruppen	
10	1	-СН3	▼

Abb. 1.16. Auswahl des CH₃-Inkrements

	А	В	
9	Lfd. Nr.	Gruppen	
10	1	-CH3	
11	2	-CH3	*
12	3	-CH2- >CH-	
13	4	>C< =CH2	
14	5	=CH2 =CH- =C<	
15	6	=C< =C=	÷

Abb. 1.17. Liste der Inkremente

Aus dieser Liste kann man nun das gewünschte Inkrement anklicken. Danach trägt man in der Spalte C daneben die Anzahl der gewählten Inkremente ein. In D8 gibt man die Temperatur in Kelvin zur Berechnung von Cp und der Flüssigviskosität η eine. Die Berechnung der Joback-Stoffdaten erfolgt dann in der Zeile Ergebnisse. Je nach gewähltem Inkrement werden die Joback-Daten automatisch aus der Tabelle Daten gelesen.

In diesem Beispiel wurden die Inkremente von Aceton gewählt, also $2 * CH_3$ und 1 * > C=0. Die Ergebnisse sind natürlich identisch mit denen in der Tabelle Daten. Zum Vergleich: Die kritische Temperatur in D22 ist identisch mit dem Ergebnis in der Tabelle Daten, nämlich 500,56 K. In der Zeile Σ Gi werden die Summen gebildet, also Σ Gi, und in der Zeile Ergebnisse werden die Stoffdaten aus Σ Gi berechnet. Die Berechnung erfolgt durch VBA-Funktionen.

Klickt man z.B. auf D22, erscheint

	D22	+ (6	<i>f</i> _x =Tcf(D21;G	622;0)
	Α	В	С	D
21		ΣGi		0,0662
22		Ergebnisse		500,56

Das bedeutet, dass die VBA-Funktion Tcf die Werte aus D14 und G15 liest. Klickt man nun auf fx, erscheint (Abb. 1.18):

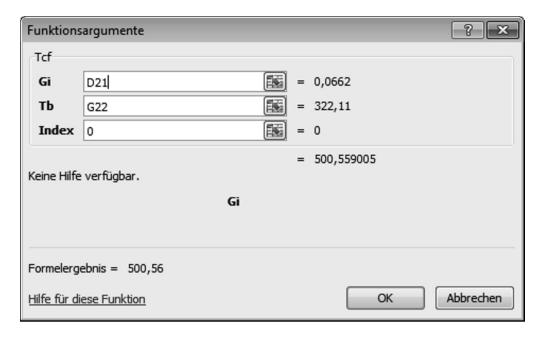


Abb. 1.18. Parameter der kritischen Temperatur T_c

Der Index legt die Berechnungsart fest und ist hier 0. Näheres geht aus der VBA-Funktion hervor.

Öffnen wir den VBA-Editor (Alt + F11), finden wir folgende Funktionen (Abb. 1.19):

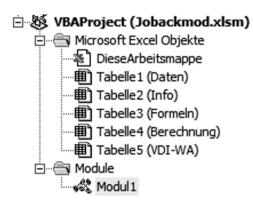


Abb. 1.19. VBA-Projekt in VBA-Editor-Fenster

Klickt man Modul1 an erhält man sämtliche Funktionen der Joback-Berechnungen (vgl. Abb. 1.20).

```
Public Function Tbf(Gi, Index)
'Normalsiedepunkt
'Index = 1 Tb in Cel, sonst in K
Tk = 273.15
Tb = 198.2 + Gi
If Index = 1 Then Tb = Tb + Tk
Tbf = Tb
End Function
Public Function Tmf(Gi, Index)
'Schmelzpunkt
'Index = 1, Tm in Cel, sonst in K
Tk = 273.15
Tm = 122.5 + Gi
If Index = 1 Then Tm = Tm + Tk
Tmf = Tm
End Function
Public Function Tcf(Gi, Tb, Index)
'krit. Temperatur
'Index = 1, Tm in Cel, sonst in K
Tk = 273.15
Tc = Tb * (0.584 + 0.965 * Gi - (Gi * Gi)) ^ -1
If Index = 1 Then Tc = Tc + Tk
Tcf = Tc
End Function
```

Abb. 1.20. VBA-Funktion für T_b , T_m und T_c

Wir betrachten die Funktion Tef zur Berechnung der kritischen Temperatur näher. Die Funktion Tcf liest die Daten Gi, Tb (Siedepunkt) und den Index, die in der Klammer stehen. In der Zeile

```
Tk = 273.15
```

wird die Konstante T_k erstellt. Danach wird in der Zeile

```
Tc = Tb * (0.584 + 0.965 * Gi - (Gi * Gi)) ^ -1
```

die Berechnung gemäß der unten stehenden Joback-Formel durchgeführt. Tc wird in K ausgegeben. Danach wird der Index abgefragt mit

```
If Index = 1 Then Tc = Tc + Tk
```

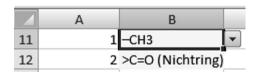
Ist der Index = 0, wird diese Zeile nicht ausgeführt und T_c wird in K berechnet. Ist der Index = 1, wird T_c in °C umgerechnet. In der letzten Zeile

Tcf = Tc

wird T_c an die Funktion Tcf übergeben.

In dieser Funktion wird der Siedepunkt Tb benötigt und in der Funktion Tbf berechnet.

```
Public Function Tbf(Gi, Index)
'Normalsiedepunkt
'Index = 1 Tb in Cel, sonst in K
Tk = 273.15
Tb = 198.2 + Gi
If Index = 1 Then Tb = Tb + Tk
Tbf = Tb
End Function
```


Auch hier erfolgt die Berechnung der Konstanten Tk. Die eigentliche Gleichung lautet

```
Tb = 198.2 + Gi
```

Ebenso wie in der Funktion Tcf erfolgen hier die Abfrage der Variablen "Index" und die Umrechnung von K in °C.

Alle anderen VBA-Funktionen sind ähnlich aufgebaut, sodass auf die detaillierte Beschreibung verzichtet werden kann.

Die Auswahl der Inkremente funktioniert mithilfe der Excel-Funktion wie folgt: B11 anklicken, Daten, Datenüberprüfung, Datenüberprüfung, Liste (vgl. Abb. 1.21).

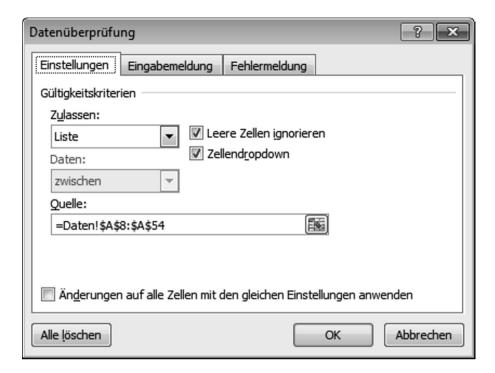


Abb. 1.21. Entstehung des Auswahlmenüs

Unter Quelle befindet sich der Datenbereich, der angezeigt werden soll. Die Verwertung zur Darstellung der Joback-Daten lässt sich am Beispiel der Zelle D11 erläutern. Klickt man D11 an, erscheint in der Funktionszeile

	D10 •		fx	=SVERWEIS(\$B10;Daten!\$A\$8:\$S\$63;D\$8;FALSCH				
	А	В		С	D	E	F	
9	Lfd. Nr.	Gruppen			T _c	P _c	V _c	
10	1	-CH3		2	0,0141	-0,0012		65

Das bedeutet, dass aus der Tabelle Daten im Bereich A8:S63 in der ersten Spalte der Inhalt von B11 gesucht wird (-CH₃) und in der derselben Zeile der Wert von D9 gelesen wird.

Klickt man auf fx, erscheint (Abb. 1.22):

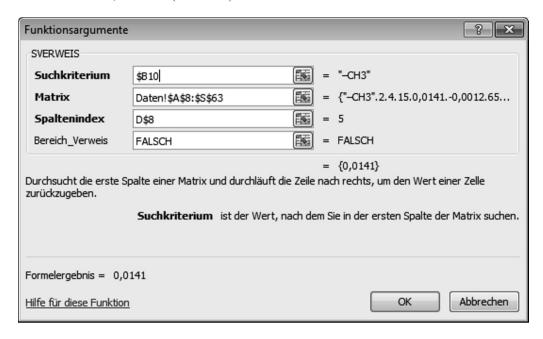


Abb. 1.22. Argumente für die Verweis-Funktion

Die Verweis-Funktion ist eine von vielen, die in Excel mit den Tabellen datenmäßig verknüpft werden können (vgl. Abb. 1.23).

In diesem Beispiel werden nur zwei Inkremente gewählt. Das lässt sich aber leicht auf drei Inkremente erweitern, indem in Zeile 13 eine neue Zeile eingefügt wird. Das geschieht durch Anklicken von der 13 oder A13 mit der rechten Maustaste, Zeilen einfügen. Dann kopiert man den Inhalt der Zeile 12 in die Zeile 13. Damit steht sofort eine neue Inkrementauswahl zur Verfügung. Nun ist die Berechnung erweitert. Klickt man auf D21, findet man wieder die Funktion Summenprodukt.

	D21	+ (6	f _x =SUMMEN	PRODUKT(\$C\$	310:\$C20;D10:	D20)
	А	В	С	D	E	
9	Lfd. Nr.	Gruppen		T _c	P _c	
10	1	-CH3	2	0,0141	-0,0012	
11	2	>C=O (Nichtring)	1	0,038	0,0031	
12		-CH3	0	0,0141	-0,0012	
13		o	0	0	0	
14		o	0	0	0	
15		o	0	0	0	
16		0	0	0	0	
17	8	0	0	0	0	
18	9	o	0	0	0	
19	10	0	0	0	0	
20						
21		ΣGi		0,0662	0,0007	
22		Ergebnisse		500,56	11,27	

Abb. 1.23. Summenprodukt

Hier wird C10*D10 + C11*D11 gebildet. Damit eine weitere Zeile berücksichtigt werden kann, muss das Summenprodukt entsprechend erweitert werden. Das geschieht am besten wie folgt: Klickt man auf fx, erscheint (Abb. 1.24):

Funktionsargumente			? x
SUMMENPRODUKT			
Array1	\$C\$10:\$C20	= {2;1;0;0;0;0;0	;0;0;0;" "}
Array2	D10:D20	= {0,0141;0,038	;0,0141;0;0;0;0;0;0;0
Array3		👪 = array	
Gibt die Summe der Prod			eren Komponenten Sie zunächst öchten.
Formelergebnis = 0,066	52		
Hilfe für diese Funktion		(OK Abbrechen

Abb. 1.24. Summenprodukt [C]*[D]

Man ändert sowohl im Array 1 als auch im Array 2 jeweils die 12 in 13. Dann zieht man diese Zelle bis zur Spalte T.

Die in Joback verwendeten Formeln werden nachstehend aufgelistet.

Siedetemperatur T_b

$$T_b = 198.2 + \Sigma G_i \tag{1.9}$$

 $Schmelztemperatur\ T_m$

$$T_m = 122.5 + \Sigma G_i \tag{1.10}$$

Kritischer Druck P.

$$P_c = [0.113 + 0.0032N_A - \Sigma G_i]^{-2}$$
 (1.11)

Kritische Temperatur T_c

$$T_c = T_b [0.584 + 0.965\Sigma G_i - (\Sigma G_i)^2]^{-1}$$
 (1.12)

Kritisches Volumen V_c

$$V_c = 17.5 + \Sigma G_i \tag{1.13}$$

Standardbildungsenthalpie H_f

$$H_f = 68,29 + \Sigma G_i \tag{1.14}$$

Gibbs'sche Standardbildungsenergie G_f

$$G_f = 53,88 + \Sigma G_i \tag{1.15}$$

Spezifische Wärmekapazität des idealen Gases Cp

$$C_p = \Sigma a_i - 37.93 + [\Sigma b_i + 0.210]T + [\Sigma c_i - 3.91 * 10^{-4}]T^2 + [\Sigma d_i + 2.06 * 10^{-7}]T^3$$
 (1.16)

Standardverdampfungsenthalpie ΔH_{ν}

$$\Delta H_v = 15,30 + \Sigma G_i \tag{1.17}$$

Standardschmelzenthalpie ΔH_m

$$\Delta H_m = -0.88 + \Sigma G_i \tag{1.18}$$

Dynamische Viskosität der Flüssigkeit n_L

$$\eta_{L} = Me^{\left(\frac{\left[\Sigma\eta_{A-597,82}\right]}{T} + \Sigma\eta_{b} - 11,202\right)}$$
 (1.19)

Darin ist M das Molgewicht, e die e-Funktion.

Neben den hier aufgeführten Stoffdaten der Joback-Methode lassen sich in CHEMCAD weitere Stoffdaten wie Azentrischer Faktor ω, Liquid Volume Constant, Specific Gravity, Solubility Parameter, Watson Factor mit der Joback-Methode berechnen. Eine entsprechende Dokumentation ist bei www.chemstations.com erhältlich.

Die Stärke der Joback-Methode besteht in der einfachen und der sehr flexiblen Verwendung. Ihre Schwäche ist die, dass die genaue Molekülstruktur und damit Wechselwirkungen der gewählten Gruppen mit Nachbargruppen nicht berücksichtigt werden. Dies ist allerdings die Schwäche vieler Inkrementmethoden, was offensichtlich zwei Gründe hat. Einerseits besagen die Inkremente ohnehin nichts über Wechselwirkungen untereinander, andererseits auch nichts über ihre Position in einem Molekül. Wie bereits dargestellt, bestehen z.B. zwischen einem CH_3 -Inkrement und dem CH_3 -Inkrement andere Wechselwirkungen als zwischen dem CH_3 - und dem CH_2 -Inkrement. Während für viele einfache Moleküle die Molekülstruktur aus den Inkrementen eindeutig hervorgeht, ist das bei größeren Molekülen nicht der Fall, z.B. bei Isomeren. So stellt $2 CH_3$ - eindeutig Ethylen dar. Aber $4 CH_3$ -, $2 CH_2$ - und 2 CH- ergeben 3 Isomere, nämlich 2,3-, 2,4- und 2,5-Dimethylhexan (DMH). Deren Siedepunkt würde mit Joback für alle 3 Isomere $T_b = 551,52$ K ergeben (Ex_xls), (ifp15). Tatsächlich betragen die Siedetemperaturen für 2,3-DMH $T_b = 563,5$ K, für 2,4-DMH $T_b = 553,6$ K und für 2,5-DMH $T_b = 550$ K.

Bei diesem Molekül kann man annehmen, dass Wechselwirkungen kaum die Ursache für die unterschiedlichen Siedetemperaturen sein können, sondern eher die Positionen. Warum das so ist, ist wenig erforscht. Wir können also nur empirisch vorgehen und die speziellen Positionen herausfinden und ihnen Joback-Werte zuordnen.

In der Literatur sind neben der Joback-Methode auch weitere Methoden ausführlich beschrieben.

Die Verbesserung der Joback-Methode durch Einführung von Wechselwirkungsparametern wird in der Exceldatei ex_03_07_Group_Contribution.xls (Abb. 1.25) sowohl bei der Berechnung der Siedetemperatur T_b als auch der kritischen Temperatur T_c dargestellt.

A	A	В	С	D	E	F	G	Н		J	K	L	M
10													
11													
12					2,	3 dimethylhexa	ine	2,	4 dimethylhex	ane	2,5	dimethylhe	xane
13	First-order	Group	Tb1	Tc1	N	N.Tb1	N.Tc1	N	N.Tb1	N.Tc1	N	N.Tb1	N.Tc1
14	1	CH3	0,8491	1,7506	4	3,3964	7,0024	4	3,3964	7,0024	4	3,3964	7,0024
15	2	CH2	0,7141	1,3327	2	1,4282	2,6654	2	1,4282	2,6654	2	1,4282	2,6654
16	3	CH	0,2925	0 506	2	0.686	1 102	2	0.585	1 102	2	0.686	1 102
17	15	aCH	0,8365	2.			•			-			
18	16	aC fused aromatic	1,7324	4, I a	ıbellen	aussch	nitt zui	: Anso	chauun	g Deta	ıllıeri	te Info	or- 🗆
19	17	aC fused non arom.	1,1995	3						_			
20	18	aC except as above	1,5468	4. ma	ation s	iehe en	tsprech	iende -	Excel-	Datei			
21	21	aC-CH2	1,4925	2,	ation 5	10110 011	copreer	iciiac	LACCI .	Dater.			
22	29	OH	2,567	5,									
23	37	aC-CO	3,465	9,									
24	53	aC-O	1,8522	3,									
25	62	aC-NH2	3,8298	10,2155		U	0		U	U		0	-
26	63	aC-NH	2,923	8,4081		0	0		0	0		0	0
27	100	NHCONH	8,9406			0	0		0	0		0	0
28	168	CH2 cyclic	0,8234	1,8815		0	0		0	0		0	0
29	169	CH cyclyc	0,5946	1,102		0	0		0	0		0	0
30						5,4096	10,8598		5,4096	10,8598		5,4096	10,8598
31													
32	Second-order	Group	Tb2	Tc2	N	N.Tb1	N.Tc1	N	N.Tb1	N.Tc1	N	N.Tb1	N.Tc1
33	1	(CH3)2CH	-0,0035	-0,0471	1	-0,0035	-0,0471	1	-0,0035	-0,0471	2	-0,007	-0,0942
34	2	(CH3)3C	0,0072	-0,1778		0	0		0	0		0	0
35	3	CH(CH3)CH(CH3)	0,316	0,5602	1	0,316	0,5602		0	0		0	0
36	77	CHcyc-CH2	-0,0148	0,3816		0	0		0	0		0	0
37	106	AROMRINGSs1s4	0,1007	0,0803		0	0		0	0		0	0
38						0,3125	0,5131		-0,0035	-0,0471		-0,007	-0,0942
39													
40	Calculated 1st-order					375,69	551,52		375,69	551,52		375,69	551,52
41	Calculated 2nd-order					388.19	562.20		375,55	550.52		375,40	549.51
42	Database (DIPPR)					388,76	563,5		382,58	553,5		382,26	550
43	, ,												
44	Deviation 1 st-order (%)					3,36%	2,13%		1,80%	0,36%		1,72%	0,28%
AE	Deviation 2 nd-order (%)					0.15%	0.23%		1,84%	0.54%		1,79%	0.09%

Abb. 1.25. Erweiterte Joback-Berechnung 2. Grades für Isomere

Während man für T_b dem 2,3-DMH ein (CH₃)₂CH- mit dem Korrekturwert −0,0035 und ein CH(CH₃)CH(CH₃)-Inkrement mit dem Korrekturewert 0,316 zuordnet, wird dem 2,4-DMH ein (CH₃)₂CH- und dem 2,5-DMH 2 (CH₃)₂CH-Inkremente zugeordnet (vgl. Abb. 1.26).

32	Second-order	Group	Tb2	Tc2	N	N.Tb1	N.Tc1
33	1	(CH3)2CH	-0,0035	-0,0471	1	-0,0035	-0,0471
34	2	(CH3)3C	0,0072	-0,1778		0	0
35	3	CH(CH3)CH(CH3)	0,316	0,5602	1	0,316	0,5602
36	77	CHcyc-CH2	-0,0148	0,3816		0	0
37	106	AROMRINGSs1s4	0,1007	0,0803		0	0
38						0,3125	0,5131

Abb. 1.26. Inkremente der 2. Ordnung

Der Summenwert ΣG_i für T_b beträgt 5,4096 (F30). Die vollständige, korrigierte Berechnung von ΣG_i erfolgt durch

$$\Sigma G_{i} = 5,4096 - 0,0035 + 0,316 \tag{1.20}$$

Damit erhält man aus der Joback-Gani-Gleichung

$$T_b = T_{b0} * ln(\Sigma G_i) \tag{1.21}$$

Mit $T_{b0} = 222,543$ (C8) erhalten wir $T_b = 375,69$ K (F40) nach Joback, d.h. unkorrigiert und 388,19 K (F41) korrigiert. Nach DIPPR beträgt der Siedepunkt 388,76 (F42). Die Abweichung beträgt nur noch 0,15% (F45). Leider fallen die Verbesserungen für die beiden anderen Isomere trotz Verwendung der Korrekturwerte bei Weitem nicht so gut aus (E30:M45). Auch die Berechnung der Siedepunkte für die beiden weiteren Moleküle 2,3,4-Trimethylpentane und n-Propylcyclohexan nach Joback-Gani ergeben sich trotz Verwendung der Korrekturen 2. Ordnung keine nennenswerten Verbesserungen im Vergleich zu den Joback-Ergebnissen (N30:S45).

Die Joback-Gani-Methode unterscheidet sich in Bezug auf den Siedepunkt etwas von der Joback-Methode. Die Gleichung zur Berechnung der Siedetemperatur lautet nach Joback-Gani

$$T_b = T_{b0} * \ln\left(\sum G_i\right) \tag{1.22}$$

Darin ist $T_{b0} = 222,543 \text{ K}.$

Für die kritische Temperatur gilt eine ähnliche Gleichung wie bei Joback.

$$T_k = T_{k0} * \ln\left(\sum G_i\right) \tag{1.23}$$

Natürlich sind dann die Inkrementdaten anders.

In der Tabelle "Second-order molecules" werden die 3 Isomeren von Dimethylhexan betrachtet. In der Zeile 30 und 40 haben alle zunächst dieselben Grunddaten. In den Zeilen 32 bis 37 werden die Strukturen der Isomeren betrachtet und deren Joback-Konstanten verwendet. Diese werden in F41:G41 der zuvor gewonnenen Summe zuaddiert.

$$T_b = T_{b0} * \ln\left(\sum G_{1,i} + \sum G_{2,i}\right)$$
 (1.24)

$$T_b = T_{b0} * \ln \left(\sum_{i} G_{1,i} + \sum_{i} G_{2,i} \right)$$

$$T_k = T_{k0} * \ln \left(\sum_{i} G_{1,i} + \sum_{i} G_{2,i} \right)$$
(1.25)

Wie man in den Zeilen 44 und 45 erkennen kann, wird die Genauigkeit durch diese Methode deutlich verbessert. Hier das Beispiel 2,3-diemethylhexan.

3,36%	2,13%
0,15%	0,23%

Was die Korrekturen bedeuten, geht aus der Grafik in der Excel-Datei hervor, die zwischen T und AE zu finden ist.

Eine weitere Verbesserung sind Strukturbeschreibungen der 3. Ordnung. Im Beispiel der Tabelle "Third-order molecules" der Exceldatei Ex 03 07 Group Contrubuition.xls werden die Siedeund kritischen Temperaturen einiger substituierter Aromaten berechnet. Die Methode ist identisch mit der der 2. Ordnung, d.h. die Parameter der 3. Ordnung in den Zeilen 41-44 werden den zuvor gebildeten Summen zuaddiert, sodass die Formeln lauten

$$T_b = T_{b0} * \ln\left(\sum G_{1,i} + \sum G_{2,i} + \sum G_{3,i}\right)$$
 (1.26)

und

$$T_k = T_{k0} * \ln\left(\sum G_{1,i} + \sum G_{2,i} + \sum G_{3,i}\right)$$
 (1.27)

Die Genauigkeiten werden dadurch aber nur z.T. gegenüber der der 1. bzw. 2. Ordnung verbessert.

1 Ordnung	2,00%	0,66%	0,50%	2,98%	3,89%	1,13%
2 Ordnung	1,77%	0,60%	0,50%	2,98%	3,89%	1,13%
3 Ordnung	0,51%	0,00%	0,27%	2,95%	1,93%	0,28%

Bei der Betrachtung dieser Liste fällt auf, dass die Methode der 2. Ordnung nicht immer eine Verbesserung gegenüber der Methode der 1. Ordnung liefert. Aber auch bei der Methode 3. Ordnung verbleiben Abweichungen.

Wechselwirkungen zwischen den Molekülen gleicher Art sind nicht selten, werden bei der Joback-Methode aber nicht berücksichtigt. Selbst die Methoden zur Berechnung von Aktivitätskoeffizienten wie etwa NRTL, Uniquac, Unifac etc. betrachten Wechselwirkungen nur zwischen ungleichen Molekülen. Mit der Lennard-Jones-Methode können Wechselwirkungen zwischen jeder Art von Molekülen berechnet werden.

Die Elliot-Unifac-Methode enthält neben den bekannten Joback-Gruppen sogenannte Doppelgruppen. Diese wurden der Unifac-Methode zur Berechnung von Wechselwirkungsparametern entliehen. Allerdings werden alle 4 Isomeren, also 2,2-, 2,3-, 2,4- und 2,5-Dimethylhexan mit den gleichen Unifac-Inkrementen beschrieben, nämlich Unifac Sub-Group 1 (CH₃) *4, Unifac Sub-Group 2 (CH₂) * 2, Unifac Sub-Group 3 (CH) *2. Somit ergeben sich auch für alle dieselben Joback-Unifac-Daten und wir erhalten für den Siedepunkt T_b = 383,658 K. Dieser Wert ist aber besser als der Joback-Wert mit 375,69 K wie der Vergleich mit der Tabelle Second-ordermolecules in der Exceldatei Ex 03 07 Group Contribution zeigt. Eine genauere Strukturanalyse lässt auch Unifac nicht zu.

Das 2,3- Dimethylhexan hat die Struktur

Die beiden seitlichen CH₃-Gruppen befinden sich am 2. und 3. C-Atom, von links gezählt. Es fällt auf, dass sowohl beide CH3-Gruppen als auch die CH-Gruppen nebeneinander liegen. Beim 2,4-Dimethylhexan

befinden sich die beiden seitlichen CH₃-Gruppen am 2. und 4. C-Atom, von links gezählt. Deren Abstand ist damit größer als der Abstand bei 2,3-Dimethylhexan. Auch befindet sich zwischen den beiden CH-Gruppen jetzt eine CH₂-Gruppe. Es ist das Ziel weiterer Bemühungen, diese Strukturunterschiede so zu definieren, dass sich daraus bessere Ergebnisse erhalten lassen.

In der o.g. CHEMCAD-Dokumentation befindet sich eine umfangreiche Beschreibung der Cavett, API, Lee-Kesler, Joback- und der Elliot-Unifac-Methode, sowie Daten für die beiden letztgenannte Methoden. Im neuen VDI-Heat-Atlas ist u.a. die Joback- sowie die Second-Order -Constantinou-/Gani-Methode beschrieben.

1.3 **DIPPR-Datenbank**

Die DIPPR-Gesellschaft "Design Institute for Physical Property Research" hat es sich zum Ziel gesetzt, Stoffdatenfunktionen und deren Parameter von Reinstoffen als Datenbank zu speichern und auf dem Markt anzubieten.

Die Verwendung der DIPPR-Datenbank soll am Beispiel Ethanol in der Prozesssimulationssoftware CHEMCAD 6.5 dargestellt werden. Alle Screenshots sind der Software CHEMCAD entnommen.

In diesem Screenshot (Abb. 1.27) sind die kritischen Daten, d.h. T_c und P_c sowie der azentrische Faktor ω und die spezifische Dichte, d.h. die auf Wasser bezogene Dichte bei 60 F = 16,666 °C sowie die Parameter der spezifischen Wärmekapazität Cp für das ideale Gas aufgeführt.

Die Gleichung für die spezifische Wärmekapazität Cp lautet:

$$Cp = A + BT + CT^{2} + DT^{3} + ET^{4} + FT^{5}$$
(1.28)

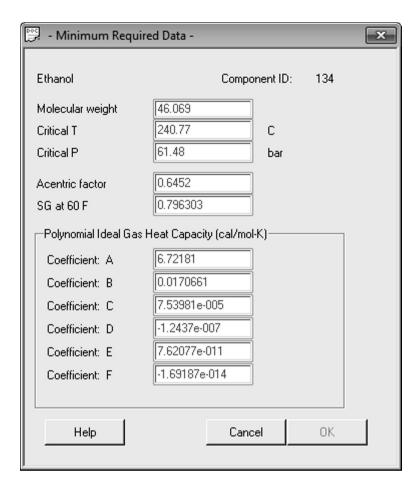


Abb. 1.27. Minimum Required Data

Bei näherer Betrachtung der Parameter A bis F fällt auf, dass diese in der genannten Reihenfolge in etwa um den Faktor 1/1000 kleiner werden. Wäre dem nicht so, bestünde die Gefahr einer wellenförmigen Funktion. Dies ist bekanntlich der typische Nachteil der ansonsten einfachen Polynomfunktion. So einfach ein Polynom auch ist, es gibt keinen physikalischen Zusammenhang, der einer Polynomfunktion entspricht. Daher ist ein Polynom zur Beschreibung einer physikalischen Größe nicht geeignet. Die Aussage, mit einem Polynom könne man jeden beliebigen Funktionsverlauf darstellen, stimmt eben nur sehr begrenzt.

Mit diesen minimalen Daten lassen sich notfalls fehlende Stoffdaten durch Korrelationen abschätzen. Natürlich kann man damit nicht die Genauigkeit gemessener Daten ersetzen.

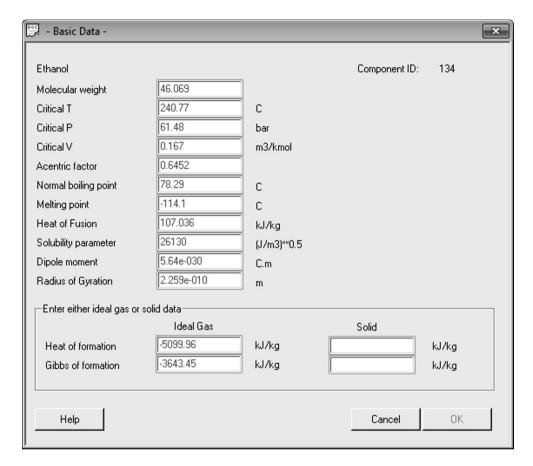


Abb. 1.28. Basic Data

In einem weiteren Sceenshot (Abb. 1.28) findet man die Basic-Daten. Darin sind weitere temperaturunabhängige Stoffdaten enthalten. Zu finden ist das Molgewicht [kg/kmol], die kritischen Daten T_c [C], P_c [bar] und V_c [m³/kmol], der azentrische Faktor ω, der Siedepunkt [°C] (normal boiling point), der Schmelzpunkt [°C] (melting point), Schmelzenthalpie [kJ/kg] (heat of fusion), Solubility-Parameter [(J/m³)^{0,5}), Dipolmoment [Cm], Streuradius [m] (Radius of Gyration).

Weiterhin findet man die Standardbildungsenthalpie [kJ/kg] (heat of formation) und die Gibbs-Enthalpie of formation [kJ/kg]. Der Zusammenhang beider Enthalpien geht aus der Gleichung hervor.

$$G = H - TS \tag{1.29}$$

In diesem Fall sind nur die Daten für die Gasform im idealen Zustand bekannt.

📴 - Library Density Data -		×
Ethanol Liquid Density (kmol/m3)	Equation No. 105	Component ID: 134 Coefficients: A
Low T (K) [159.05 High T (K) [513.92	Low value 19.4128 High value 5.96518	C 513.92 D 0.2331 E
Solid Density (kmol/m3)	Equation No. [100	Coefficients: A 22.9 B C
Low T (K) 159.05 High T (K) 159.05	Low value 22.9 High value 22.9	D E
Help		Cancel 0K

Abb. 1.29. Dichte nach DIPPR

Für die Dichte der Flüssigkeiten (Abb. 1.29) gilt die DIPPR-Formel Nr. 105. Diese lautet

$$Y = \frac{A}{B^{\left(1 + \left(1 - \frac{T}{C}\right)^D\right)}} \tag{1.30}$$

Diese Funktion benötigt nur die Parameter A bis D. Diese 4 Parameter liegen für Ethanol vor. Der untere Gültigkeitswert bei T_u = 159,05 K beträgt 19,4128 kmol/m³, bei T_0 = 513,92 K beträgt er hingegen 5,96518 kmol/m³.

Für die Feststoffdichte gilt die DIPPR-Formel Nr. 100. Diese lautet

$$Y = A + B \cdot T + C \cdot T^2 + D \cdot T^3 + E \cdot T^4$$
(1.31)

In dieser Funktion genügt im Minimalfall sogar nur 1 Parameter. Und tatsächlich liegt auch nur ein einziger Parameter, nämlich 22,9 kmol/m³, für Ethanol vor. D.h. die Dichte von festem Ethanol ist also nur mit 22,9 kmol/m³ in der Datenbank enthalten. Vermutlich liegen keine weiteren Messungen vor.

Im nächsten Screenshot geht es um den Dampfdruck und die Verdampfungsenthalpie (Abb. 1.30).

- Library VP and HoV Data -		x
Ethanol		Component ID: 134
Vapor Pressure (Pascals)	Equation No. 101	Coefficients: A 74.475 B -7164.3 C -7.327
Low T (K) 159.05 High T (K) 513.92	Low value 0.000484589 High value 6.11713e+006	C -7.327 D 3.134e-006 E 2
Heat of Vaporization (J/kmol)	Equation No. 106	Coefficients: A 5.69e+007
Low T (K) [159.05 High T (K) [513.92	Low value 5.02448e+007 High value 268472	D E
Help		Cancel 0K

Abb. 1.30. Dampfdruck (101) und Verdampfungsenthalpie (106) nach DIPPR

Der Dampfdruck wird nach der DIPPR-Funktion 102 berechnet. Diese lautet

$$Y = e^{\left[A + \frac{B}{T} + C \cdot \ln(T) + D \cdot T^{E}\right]}$$
(1.32)

Die Funktion entspricht der Clausius-Clapeyron-Formel und einer empirischen Erweiterung mit den Parametern C, D und E.

Die Verdampfungsenthalpie wird nach der DIPPR-Funktion 106 berechnet. Diese lautet

$$Y = A \cdot (1 - T_r)^{(B + C \cdot T_r + D \cdot T_r^2 + E \cdot T_r^3)}$$
(1.33)

Die spezifischen Wärmekapazitäten Cp werden nach den DIPPR-Funktionen 107, und 100 berechnet (Abb. 1.31).

📴 - Library Heat Capacity Data -			×
Ethanol		Compone	nt ID: 134
Ideal Gas Heat Capacity		Coefficients: A	49200
(J/kmol-K)	Equation No. 107	В	145770
		С	1662.8
Low T (K) 200	Low value 52235.8	D	93900
High T (K) 1500	High value 165758	E	744.7
			100040
Liquid Heat Capacity		Coefficients: A	102640
(J/kmol-K)	Equation No. 100	В	-139.63
		C	-0.030341
Low T (K) 159.05	Low value 87866.6	D	0.0020386
High T (K) 390	High value 164497	E	
			10500
Solid Heat Capacity		Coefficients: A	-13500
(J/kmol-K)	Equation No. 100	В	1175.5
		С	-8.043
Low T (K) 25	Low value 11230.9	D	0.0237
High T (K) 159	High value 65335.8	E	
Help		Cance	ОК

Abb. 1.31. Spezifische Wärmekapazitäten fest (107), flüssig (100) und gasförmig (100)

Die DIPPR-Funktion 107 lautet

$$Y = A + B \left[\frac{(C/T)}{\sinh(C/T)} \right]^2 + D \left[\frac{(E/T)}{\cosh(E/T)} \right]^2.$$
 (1.34)

Früher verwandte man für Cp nur die Polynomfunktion. Diese versagte jedoch u.a. bei Wasserstoff und Helium, da die spezifische Wärmekapazität (Cp-Wert) über einen weiten Temperaturbereich nahezu konstant bleibt. Die Funktion 107 kann diese Eigenschaft erheblich besser darstellen.

Die Funktionen 100 lauten wie oben bereits genannt

$$Y = A + B \cdot T + C \cdot T^2 + D \cdot T^3 + E \cdot T^4$$
(1.35)

Auch hier ist bei den Polynomansätzen (DIPPR-Formel 100) zu beobachten, dass die Koeffizienten jeweils etwa um den Faktor 1000 kleiner werden, um die Gefahr der Polynomwelligkeit zu vermeiden.

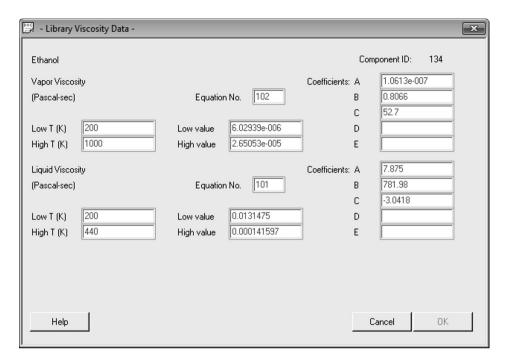


Abb. 1.32. DIPPR-Funktion für Gasviskosität (102) und Flüssigviskosität (101)

Im Screenshot (Abb. 1.32) kann die Gasviskosität aus der DIPPR-Funktion 102 berechnet werden

$$Y = \frac{\mathbf{A} \cdot \mathbf{T}^B}{\left(1 + \frac{C}{\mathbf{T}} + \frac{D}{\mathbf{T}^2}\right)} \tag{1.36}$$

Die Funktion 101 für die Flüssigviskosität lautet

$$Y = e^{\left[A + \frac{B}{T} + C \cdot \ln(T) + D \cdot T^{E}\right]}$$
(1.37)

Sie ist damit identisch mit der Funktion für den Dampfdruck.

Im nächsten Screenshot (Abb. 1.33) finden wir die DIPPR-Funktionen für die Gas- und Flüssigwärmeleitfähigkeit sowie die Oberflächenspannung.

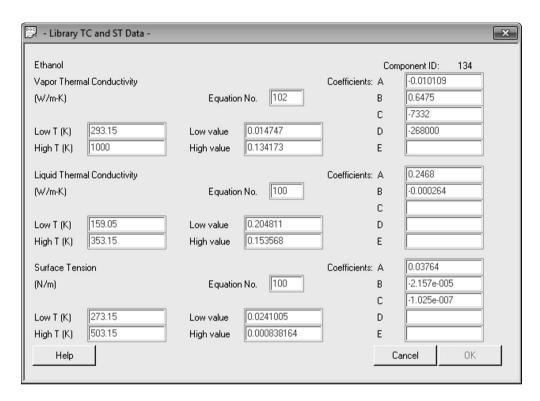


Abb. 1.33. Gaswärmeleitfähigkeit, Flüssigwärmeleitfähigkeit, Oberflächenspannung

Die DIPPR-Funktion für die Gaswärmeleitfähigkeit hat die Nr. 102 und lautet

$$Y = \frac{\mathbf{A} \cdot \mathbf{T}^B}{\left(1 + \frac{C}{\mathbf{T}} + \frac{D}{\mathbf{T}^2}\right)} \tag{1.38}$$

Die DIPPR-Funktionen für die Flüssigwärmeleitfähigkeit sowie die Oberflächenspannung haben die Nr. 101 und lauten

$$Y = A + B \cdot T + C \cdot T^2 + D \cdot T^3 + E \cdot T^4$$
(1.39)

Dies sind die DIPPR-Funktionen wie sie in CHEMCAD zum Einsatz kommen.

Der Prozess zur Gewinnung dieser Funktionen und Parameter bei DIPPR ist komplex und aufwendig. Es beginnt mit einer Datenrecherche in diversen englischsprachigen Publikationen. Die gewonnenen Messdaten werden mithilfe von statistischen Methoden verglichen und geprüft und daraus durch Regression die Parameter ermittelt. DIPPR führt selber keine Messungen durch. Wenn man den Zugang zur DIPPR-Datenbank erwirbt, erhält man genaue Informationen über die Datenquellen.

1.4 DWSIM – Freewaresoftware zur Prozesssimulation (dwflash)

Mit dem Freeware-Tool DWSIM, welches von Daniel, einem brasilianischen Ingenieur der Minaralöltechnik erstellt und von diversen Mitarbeitern weltweit unterstützt wird, stehen umfangreiche Excel-Funktionen zur Verfügung. Diese werden allerdings über ein spezielles Verfahren direkt nach Excel geladen. Man findet sie unter PVFFLASH.

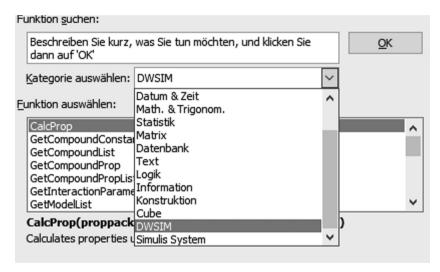
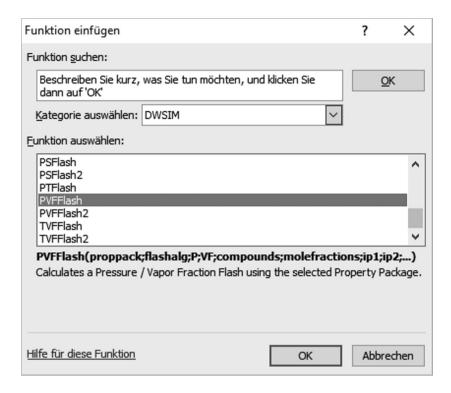
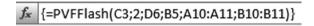


Abb. 1.34. Funktion einfügen

Beim Auswählen der Excelfunktion unter Abb. 1.34 ist zunächst die Kategorie DWSIM zu wählen. Dann werden alle DWSIM-Funktionen angezeigt. In dieser Excelberechnung wird die o.g. Funktion PVFFLASH (Abb. 1.35) benötigt.




Abb. 1.35. Auswahl PVFFlash

In D8:F11 findet man (Abb. 1.36)

Vapor	Liquid	Liquid2
0	1	0
0,54080309	0,2	0
0,45919691	0,8	0

Abb. 1.36. Zellen D8 bis F11

mit der Funktion (Abb. 1.37)

Abb. 1.37. Funktion PVFFlash

in E10:F11. Die geschweifte Klammer ist nötig, da das Ergebnis dieser Funktion eine Tabelle (Matrix) ist. Wie in der runden Klammer selbst zu sehen und allgemein bekannt ist, braucht diese Funktion wie jede andere auch Parameter (vgl. Abb. 1.38).

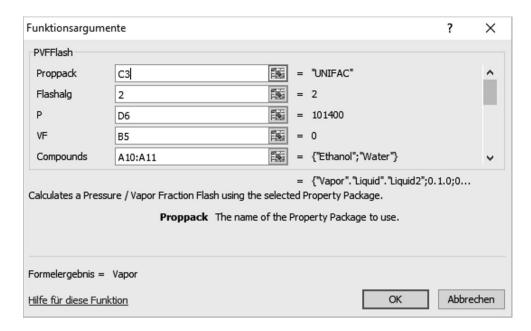


Abb. 1.38. Funktionsargumente der Funktion PVFFlash

Mit Proppack wählt man das thermodynamische Modell, hier in C3. Dort befindet sich die Menüauswahl (Abb. 1.39).

	A	В	С
1	PV-Flash		
2			
3	PropertyPackage	UNIFAC	•

Abb. 1.39. Auswahl thermodynamisches Modell

Der Flashalgorithmus ist hier 2, P ist der Druck, der befindet sich in D6, VF der Verdampfungsgrad ist 0. Die Stoffe Ethanol und Wasser (Compounds) befinden sich in A10:11 (Abb. 1.40).

10	Ethanol
11	Water

Abb. 1.40. Komponenten Ethanol und Wasser

Die nächste Eingabe findet man durch Scrollen (vgl. Abb. 1.41).

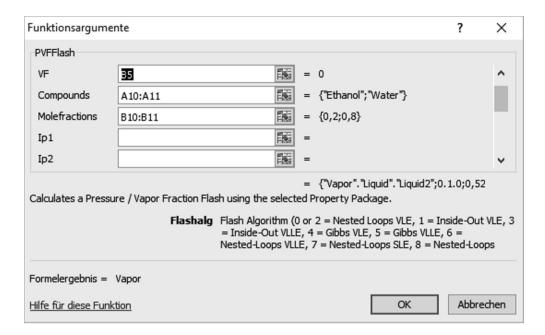


Abb. 1.41. Weitere Funktionsargumente

Molefraction, also der Molbruch, ist die Zusammensetzung des Gemisches und befindet sich in B10:B11, d.h. 20 mol% Ethanol und 80 mol% Wasser (vgl. Abb. 1.42).

0,2
8,0

Abb. 1.42. Zusammensetzung des Gemisches

Als Ergebnis erhält man in D10:D11 (Abb. 1.43)

0,54080309
0,45919691

Abb. 1.43. Ergebnis

In der Dampfphase befinden sich also 54 mol% Ethanol und 46 mol% Wasser im Phasengleichgewicht mit der o.g. Flüssigzusammensetzung bei dem o.g. Druck.

Diese Einzelberechnung kann auch als Tabelle durchgeführt werden, wie in I7:J27 zu sehen (vgl. Abb. 1.44).

X Water	Y Water
	0,54080309
0	0
0,05	0,36046969
0,1	0,46312637
0,15	0,51100245
0,2	0,54080309
0,25	0,56370575
0,3	0,5840555
0,35	0,60379468
0,4	0,62387329
0,45	0,64478835
0,5	0,66681805
0,55	0,69013453
0,6	0,71485474
0,65	0,74112205
0,7	0,76907007
0,75	0,79890894
0,8	0,83096622
0,85	0,86577725
0,9	0,90425018
0,95	0,94799104
1	1

Abb. 1.44. Einzelberechnungen

Die Grafik dazu (Abb. 1.45)

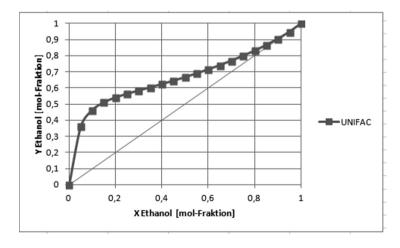


Abb. 1.45. Phasengleichgewicht Ethanol und Wasser mit DWSIM Flash

Die Stoffe Ethanol und Wasser lassen sich leicht gegen andere Stoffe austauschen. Entweder schriebt man einfach einen anderen Stoffnamen in A10:A11 oder wählt den Stoff aus einer DWSIM-Stofftabelle in der Tabelle Daten aus (vgl. Abb. 1.47). Die in DWSIM gespeicherten Stoffe sind in Spalte B aufgeführt, hier ein Ausschnitt. Die Funktion dazu lautet (Abb. 1.46):

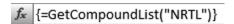


Abb. 1.46. Aufruf vorhandener Komponenten

Liste der Komponenten		
Air		
Argon		
Bromine		
Carbon tetrachloride		
Carbon monoxide		
Carbon dioxide		
Carbon disulfide		
Phosgene		
Trichloroacetyl chloride		
Hydrogen chloride		
Chlorine		
Hydrogen iodide		
Hydrogen		
Water		
Hydrogen sulfide		

Abb. 1.47. Ausschnitt aus Liste der Komponenten

In Spalte A befindet sich eine Liste der thermodynamischen Modelle in DWSIM (Abb. 1.49). Die Funktion dazu lautet (Abb. 1.48):

Abb. 1.48. Aufruf vorhandener thermodynamischer Modelle

40	III D I D I
	Liste verfügbarer PropertyPackages
13	FPROPS
14	PC-SAFT
15	Peng-Robinson (PR)
16	Peng-Robinson-Stryjek-Vera 2 (PRSV2-M)
17	Peng-Robinson-Stryjek-Vera 2 (PRSV2-VL)
18	Soave-Redlich-Kwong (SRK)
19	Peng-Robinson / Lee-Kesler (PR/LK)
20	UNIFAC
21	UNIFAC-LL
22	Modified UNIFAC (Dortmund)
23	NRTL
24	UNIQUAC
25	Chao-Seader
26	Grayson-Streed
27	Lee-Kesler-Plöcker
28	Raoult's Law
29	COSMO-SAC (JCOSMO)
30	IAPWS-IF97 Steam Tables
31	CoolProp

Abb. 1.49. Ausschnitt aus Liste der verfügbaren thermodynamischen Modelle

Von D bis H findet man Stoffdaten von Ethanol und Wasser. Die Funktion dazu lautet wie in (Abb. 1.50):

f {=GetCompoundConstants(E10)}

Abb. 1.50. Aufruf der Stoffdaten von Ethanol und Wasser

in Spalten D und G. Hier ein Ausschnitt zu Spalte D und E. In E10 muss der Stoffname stehen.

Weitere Informationen zu den DWSIM-Funktionen sind durch die Betreiber der Internetseiten zu erfahren.