Index

a
- absorption method 84
- active corona 97
- act with relevant experience 219–220
- additive-depleted surface 50–51
- adhesion of an insert on a variable base 227–229
- adhesive bonding-blocking 226–227
- adhesive replacement 226
- adiabatic compression and shock waves 11
- aerials 94
- aerosol 234–236, 239–240
- air boundary layers 242
- alcohol cup 173
- antistatic 45
- antistatic packaging 182
- application of liquid media 234–236
- application of water, use of charging during 236
- asymmetrical rubbing 24
- ATEX certification 240
- atmosphere exchange 236

b
- back discharge 160
- balun 94
- bang effect 144, 156
- basics of fire and explosion
 - danger triangle 2
 - exothermic reaction of fuel 1
 - explosion-endangered areas and permissible equipment 7
- explosive atmosphere
 - limits with combustible dusts 6
 - limits with flammable liquids 3–6
 - metal dusts 6
 - flammable liquids 15–18
 - fuel 2
 - heat 2–3
 - vs. oxygen 3
- hybrid mixtures 6–7
- ignition sources
 - adiabatic compression and shock waves 11
 - cathodic protection 10
 - chemical reactions 11
 - electrical apparatus 10
 - electromagnetic field 10
 - electromagnetic radiation 10
 - flames and hot gases 9
 - hot surfaces 9
 - ionizing radiation 10
 - lightning 10
 - mechanically generated sparks 10
 - static electricity 10
 - ultrasonics 11
 - inerting process 3
 - minimum ignition energy 11–15
 - oxygen 3
 - permissible equipment 7–9
- big storage tanks, two explosions 189–192
- bipolar charge layers 124
- blocking effect 230
- blocking of newspapers 226
- blow trunk 190
- breakdown voltage of a discharge gap 267
- Brownian molecular movement 28
brush discharges 97–98, 104–108, 162
bulk materials 52, 74–75, 130, 132
burning handkerchief does not burn up 174

C

capacitance 38, 259–261
charge decay measurements 79–81
coaxial cable/cylinder capacitance 260
conductive sphere in space 260
measurement 77–78
permittivity value 78–79
plate capacitor 261
rod (wire) across a conductive area 259
series of single capacitors 261
shunt of single capacitors 261
sphere across a conductive area 260
capacitive current limit 136
capacitive hygrometer 86
capacitor 38, 135
carbon fiber brush 136
carriers 19
cast film process 230
cathodic protection 10
charge 263–264. see also targeted use of charges
caused by separating process 149–150
conservation 223, 225
decay measurements 79–81
dissipation 20
of electron beam 263
mass charge density 264
measurement 54–56
moved charge 263
relaxation with liquids 30–31
surface charge density 263–264
volume charge density 264
charge decay measuring device
QUMAT®-528 80
charge-emitting discharge electrode 114
charging bars 223
behavior 41
by gases 31–33
of liquids 28–31
of particles
many 152–153
single 150–152
by separation 160
chemical reactions 11
chill roll 230–231
circular frequency 258
classification for flammable liquids 5–6
clean surfaces 128
climate 81–82
coating machine 237–241
coating process 241–243
coaxial cable/cylinder capacitance 260
“CombiCleaner” operating principle 128–129
combustible organic dusts 6
composite materials 125–127
conductance 269
conductive layers 125, 126
conductive sphere in space 260
conductive surfaces 135
conductivity 30, 51, 269
cone discharges 98
contact and separation 120
core dummy charge 232–233
corona discharges 96–97, 104, 161–162
corona effect 114
corona systems 248–251
Coulomb forces 144, 224
Coulomb meter 66–67
cracks 193
current density 240
current limiter 134
danger triangle 2
decanting of gasoline vapors 171–172
description of demonstration experiments
charges caused by separating process 149–150
charging by separation 160
charging of particles
 many 152–153
 single 150–152
dissipating properties 157–158
electric induction
 basic experiment 153–154
 chimes 154–155
 isolated conductive
 parts 155–157
 electrostatic charging of a
 person 158–159
electrostatic force effects 144–145
electrical field lines 148
electroscope 147–148
hovering pipes 146–147
rolling pipes 145–146
electrotechnical ideas 139
explosion tube 142–144
field meter 57, 142
fire and explosion dangers
 burning handkerchief does not
 burn up 174
 “decanting” of gasoline
 vapors 171–172
 effects with large surfaces 168–169
 extinguishing with
 water 173–174
 flash point 168
inflaming solid
 combustibles 174–175
 oxygen demand 172–173
progressive flame front 170–171
rich mixture 169–170
gas discharges
 brush discharges 162
 corona discharges 161–162
 evidence of ion wind 163–164
 ignition by brush
 discharges 162–163
 propagating brush
 discharges 164–167
 spark discharges 160–161
 super brush discharges 163
 ignition voltage 159–160
 preliminary remarks 140–141
static voltmeter 141
Van de Graaff generator 142–143
visualization 139
dew point hygrometry 83–84
dielectric strength 117–118
direct charge 232
dirty discharge electrodes 135
discharge electrodes 114
discharges, gas 89
 avoidable 103–111
 brush discharge 97–98
 cone discharges 98
 consequences of 102
 corona discharge 96–97
 electrostatic 90–94
 mechanisms of 89–90
 propagating brush
 discharge 98–102
 spark discharge 94–95
 traces caused by gas 102–103
discharges without electrodes 94
discharging charged
 surfaces 118–119
 granules and similar
 particles 129–133
 material webs
 behavior of composite
 materials 125–127
 bipolar layers of equal field
 strength 124
 double-sided
 discharging 123–124
 electric potential 123
 friction 120
 nonporous materials 122
 optimal discharging setup 120,
 121
 optimal placement of discharge
 bars 122
 rerolling process 120–121
 single-sided discharging 123
 static electric shocks 119
 triboelectric effect 120
 other objects 127–129
 sheets 127–128
 discharging granules 129–133
 discharging of sheets 127–128
 disruptive discharge 117
 dissipating property 41, 157–158
drying 236–237
dust explosion 130

effects with large surfaces 168–169

electrical apparatus 10
electrical breakdown 90

electrical charge 230
coverage 117, 118
electrical field lines 148, 235
electrical field resistance 45
electric induction 156, 224, 225
basic experiment 153–154
chimes 154–155
image charge 37–38
isolated conductive parts 155–157
specification of 36–37
electric induction field meter 67

electroadhesion 247–248
electromagnetic field 10
electromagnetic radiation 10

electrometer amplifier 54
electron density 247
electron work function 21
electroscope 147–148
:hovering pipes 146–147
rolling pipes 145–146

electrostatic application 223
electrostatic charging with fluids 75–76
of liquids 28–30
charge relaxation with liquids 30–31
charging by gases 31–33
of a person 158–159
of powdery bulk materials 74–75
electrostatic discharge 89, 180
electrostatic disturbances prevention alternating current voltage 114
charge-emitting discharge electrode 114
clean and corroded points 115
dielectric strength 117–118

discharging charged surfaces 113, 118–119
granules and similar particles 129–133
material webs 119–127

other objects 127–129
sheets 127–128
empty space 115
field line concentration 116–117
intentionally charging surfaces 113
ionizing electrodes 114
passive ionizer 116
potential hazards posed by discharge electrodes 134–136
electrostatic effect 236

electrostatic force effects 144–145
electrical field lines 148
electroscope 147–148
hovering pipes 146–147
rolling pipes 145–146

electrostatic ignitions, doubts with
burst of a glass pipe 218–219
fire in a polyethylene drum 213–215
fire in a solvent cleaning area 215–217
electrostatic safety measures 44
electrostatic separation 245
electrostatic shock 111

electrostatic voltmeters 53–54

electro-technical explosion protection 178
energy W of a capacitance 255–256
“equipment protection levels” (EPLs) 8–9
equipotential lines 34
equipotential surface 34
evidence of ion wind 163–164
explosion 1
disaster near Bitburg 190–192
in a floating roof tank followed by fire 189–190
in a mixing silo for plastic granules 202
in a railcar bulk container 192–193
during rotational molding 201–202
explosion dangers, fire and burning handkerchief does not burn up 174
“decanting” of gasoline vapors 171–172
effects with large surfaces 168–169
extinguishing with water 173–174
flash point 168
inflaming solid combustibles 174–175
oxygen demand 172–173
progressive flame front 170–171
rich mixture 169–170
explosion range 4
explosion tube 142–144
explosive atmosphere
 limits with combustible dusts 6
 limits with flammable liquids 3–6
metal dusts 6
extinguishing with water 173–174

f
Faraday cage 55
Faraday pail 55
feeder bowls 133
fiberglass fabric 169
field
 field of point charge 256
 field of rod (wire) charge 257
 homogeneous field between plane plates 256
 lines 33, 34
 meter 142
 permittivity 257
 strength (see field)
fire 1
fire extinguishing installation 189–191
fixing coverings 227
fixing of thin materials 226
flames and hot gases 9
flammable liquids 15–18
flash point 4, 168
fluida 20
flux density 257
force 262
 between 2 point charges 262
free-falling objects 55–56
frequency
 circular frequency 258
 wavelength 258
frictional electrification 22
fuel 2
fuel/oxygen mixture 1–2
gas discharges 89
 avoidable 103–111
 brush discharges 97–98, 162
 cone discharges 98
 consequences of 102
 corona discharges 96–97, 161–162
 electrostatic 90–94
 evidence of ion wind 163–164
 ignition by brush discharges 162–163
 mechanisms of 89–90
 propagating brush discharges 98–102, 164–167
 spark discharges 94–95, 160–161
 super brush discharges 163
 traces caused by gas 102–103
gasification process with wood 174–175
gas stream 246
glass fiber fabric, impregnation of 186–187
Globally Harmonized System (GHS) 5
gravure printing 237–241
grounded emitter 93
guard ring circuit 47–49

h
hair hygrometer 84
Helmholtz double-layer effect 38
homogeneous field between plane plates 256
hose filter 208–209
hot surfaces 9
hovering pipes 146–147
humidity 81
hybrid mixtures 6–7
hygrometers 86–87

i
ignitability of brush discharges 109
ignition by brush discharges 162–163
ignition caused by cone discharges 212–213
ignition of dust 165–166
ignitions due to brush discharges
filling pipe blocked with sulfur
leading to ignition of
methanol 187–188
ignition caused by an antistatic PE
bag 182–183
impregnation of a glass fiber
fabric 186–187
ion exchanger resin in
toluene 188–189
PE liner slipping out of paper
bag 181–182
pouring flaked product into an
agitator vessel 180–181
pumping polluted toluene 185–186
shaking fine dust out of a PE
bag 183–185
two explosions in big storage
tanks 189–192
ignition sources 2, 9–11, 178
adiabatic compression and shock
waves 11
cathodic protection 10
chemical reactions 11
electrical apparatus 10
electromagnetic field 10
electromagnetic radiation 10
flames and hot gases 9
hot surfaces 9
ionizing radiation 10
lightning 10
mechanically generated sparks 10
static electricity 10
ultrasonics 11
ignition voltage 159–160
image charge 37–38
impedance
of a capacitance 271
of a inductance 271–273
impression roller 237
indirect charge 233–234
inductance, of an air coil 259
induction electric field meters 56–58
induction field meter 56
inverting process 3
inflaming
a dust heap 175
solid combustibles 174–175
ink particles 239
in-mold-decoration (IMD) 232–234
in-mold-labeling (IML) 232–234
intermediate layers 227
investigation, strategy of 177–178
general approach 179
hasty consequence 179–180
ignition sources 178–179
ion exchanger resin in
toluene 188–189
ionization 89–91
ionizing electrodes 114
ionizing radiation 10
ions 89–91
ion wind 97

k
Kasuga Denki KSD System 61–62
Kirchhoff’s junction rule 266
Kirchhoff’s loop rule 266

l
laminar air boundary layers 234
laminar airflow 234–237
laminar airflow boundary layer 236
leakage current 240
leakage resistance 269
Lewis acidic surfaces 119
Lewis base surface 119
Lichtenberg discharges 98
lightning 10
lithium-chloride hygrometer 85–86
lower explosion limit 4

m
mass charge density 264
material separation 246
maximum allowable capacitance 104
maximum allowed surface area 105
measurement methods. see also
metrology
electrical resistance 45
realization of resistance
measurements 46–49
measuring area E-field meter 64
measuring area piezo sensor 65
mechanically generated sparks (MGSs) 10
mechanism of charging 19
metallic dust 6
metrology
 additive-depleted surface 50–51
 applications of induction electric field meters 65–67
 bulk materials 52
 capacitance 77–81
 conductivity of liquids 51
 discharge capacity 71–73
 electrostatic charges in chemical production 76–77
 electrostatic charging of powdery bulk materials 74–75
 electrostatic charging with fluids 75–76
 electrostatic safety measures 44
 electrostatics/electrical engineering 44–45
 electrostatic voltmeters 53–54
 errors when measuring field strength 58–61
 Faraday pail 54–56
 induction electric field meters 56–58
 measurement methods
 electrical resistance 45
 realization of resistance measurements 46–49
 protective textile clothing 68–71
 surface charge on moving webs 68
 test procedure for paper 73–74
 themes around air humidity 81–87
 types of electric field meters 61–65
 use of insulating material in endangered areas 52
 walking test 41–43
 microampere meter 161
 micronizer jet mill, ignition in a
 minimum ignition energy (MIE) 11–15
 miraculous earthing clamp 212
 modified ball electrode 67
modified induction electric field meter 66
moved charge 263
mutual binding effect 99

n
 n-hexane 207–208

o
 oil application 234
 oil suction granules 168, 169
 one-electrode discharges 95
 opposite- and similar-poled charges 224
 Optical-Web-Tension-Profile-Scanner 244
 oxygen 3
 oxygen demand 172–173

p
 paper ribbon 230
 particle mist 241–243
 passive corona 97
 passive discharge electrode 136
 passive ionizer 116, 240
 permittivity 257
 permittivity value 78–79
 Perspex® tube 142
 Picoampere meter 67
 pinch effect 91
 pipe ionization 131
 plasma 92
 plate capacitor 261
 polluted toluene pumping 185–186
 potential 264
 powder heap discharge 98. see also cone discharges
 print cylinder 237
 progressive flame front 170–171
 propagating brush discharges 98–100, 118
 corona needle 164
 curiosity during outflow of liquid from a metal pipe 202–204
 explosion during rotational molding 201–202
 explosion in a mixing silo for plastic granules 202
propagating brush discharges (contd.)
explosion in a railcar bulk container 192–193
failed attempt to eliminate electrostatic nuisances 195–197
fire in a spray-bed dryer 197–200
ignition in a micronizer jet mill 200
ignition of dust 165–166
metal drum with inner liner 193–195
plastic drum with inner liner 195
short circuit of a double-layer charge 166–167
protective textile clothing test procedures with electrostatic influence 69–71
triboelectric test procedure 69
psychrometer 84–85

q
quenching distance 95

r
recombination 114
relaxation time 225
resistance 267
conductance 269
conductivity 269
impedance of a capacitance 271
impedance of a inductance 271–273
leakage resistance 269
measurements 46–49
resistivity of a conductor 268
series 270
shunt 270
surface resistivity 268
volume resistivity 268
resistive/capacitive coupling 134
resistive hygrometer 86
resistivity of a conductor 268
ribbon tacking 230
rich mixture 169–170
rod (wire) across a conductive area 259
rolling pipes 145–146

S
sawtooth sequence 162
seminconductive rollers 230
separation of pollutants 246
series of single capacitors 261
series resistance 270
short-circuit effect 92
short circuit of a double-layer charge 166–167
shunt of single capacitors 261
shunt resistance 270
sliding discharges 100
space charge clouds 114
spark discharges 94–95, 104, 135, 160–161
alternative restrictions on insulating solid materials 219–220
dust removal from pharmaceutical pills 205–206
filling n-hexane into metal drums 207–208
hose filter 208–209
lost and found 211–212
miraculous earthing clamp 212
powder explosion in a metal drum 204–205
sparks at a throttle valve 206–207
water flowing through PVC hose 210–211
spark-gap transmitters 92
sphere across a conductive area 260
spray-bed dryer, fire in a 197–200
static electricity 10
basics 19–21
capacitance and capacitor 38
electric field 33–36
electric induction image charge 37–38
specification of 36–37
electrostatic charging of liquids 28–30
charge relaxation with liquids 30–31
charging by gases 31–33
electrostatic charging of solids 21–23
surface resistivity 24–28
influence of surface texture on static charging 28
triboelectric series 24
static voltmeters 53–54, 141
stoichiometric value 12
stored electrical energy 44
super brush discharges 98, 104–106, 163
supercapacitors 38
surface charge density 263–264
surface resistance 48
surface resistivity 24–28, 48, 268
surface texture 28
surface treatment with corona systems 248–251

use of charging for technical measurement processes 243–244
telescoping 231–232
thin laminates 226
time constant 266
traces caused by gas discharges 102–103
Trek contact voltmeter 64
triboelectric series 24, 150
triboelectric test procedure 69
two-electrode discharges 94

U
ultrasonics 11
upper explosion limits 4

V
Van de Graaff generator 142–143
vibratory conveyors 133
voltage 265–267
breakdown voltage of a discharge gap 267
in a homogeneous electric field 265
Kirchhoff’s junction rule 266
Kirchhoff’s loop rule 266
time constant 266
voltage gradient when charging a capacitor 265
voltage gradient when discharging a capacitor 265
voltage/current principle 46
voltage gradient
when charging a capacitor 265
when discharging a capacitor 265
voltmeters 53–54
volume charge density 264
volume resistance 46–47
volume resistivity 46–47, 268

W
Walking Test 41–43
wavelength 258
web tension profile 243

Z
zones 7