Contents

Preface xv Acknowledgments xvii Symbols xix Abbreviations xxvii

1 Introduction 1

2 Electrical Systems 5

- 2.1 High-Voltage Power Systems 5
- 2.2 Transformer Selection Depending on Load Profiles 9

۱v

- 2.3 Low-Voltage Power Systems 10
- 2.4 Examples of Power Systems 17
- 2.4.1 Example 1: Calculation of the Power 17
- 2.4.2 Example 2: Calculation of the Main Power Line 17
- 2.4.3 Example: Power Supply of a Factory 17

3 Design of DC Current Installations 21

- 3.1 Earthing Arrangement 21
- 3.2 Protection Against Overcurrent 22
- 3.3 Architecture of Installations 23
- 4 Smart Grid 25

5 Project Management 27

- 5.1 Guidelines for Contracting 27
- 5.2 Guidelines for Project Planning of Electrical Systems 28

6 Three-Phase Alternating Current 31

- 6.1 Generation of Three-Phase Current 31
- 6.2 Advantages of the Three-Phase Current System 31
- 6.3 Conductor Systems 32
- 6.4 Star Connection *36*
- 6.5 Triangle Circuit 37
- 6.6 Three-Phase Power 38
- 6.7 Example: Delta Connection 39

- vi Contents
 - 6.8 Example: Star Connection 41
 - 6.9 Example: Three-Phase Consumer 43
 - 6.10 Example: Network Calculation 44
 - 6.11 Example: Network 45
 - 6.12 Example: Star Connection 47

7 Symmetrical Components 49

- 7.1 Symmetrical Network Operation 49
- 7.2 Unsymmetrical Network Operation 51
- 7.3 Description of Symmetrical Components 51
- 7.4 Examples of Unbalanced Short-Circuits 54
- 7.4.1 Example: Symmetrical Components 54
- 7.4.2 Example: Symmetrical Components 54
- 7.4.3 Example: Symmetrical Components 55

8 Short-Circuit Currents 57

- 8.1 Introduction 57
- 8.2 Fault Types, Causes, and Designations 60
- 8.3 Short-circuit with *R*–*L* Network 61
- 8.4 Calculation of the Stationary Continuous Short-circuit 63
- 8.5 Calculation of the Settling Process 64
- 8.6 Calculation of a Peak Short-Circuit Current 65
- 8.6.1 Impact Factor for Branched Networks 65
- 8.6.2 Impact Factor for Meshed Networks 65
- 8.7 Calculation of the Breaking Alternating Current *66*
- 8.8 Near-Generator Three-Phase Short-circuit 66
- 8.9 Calculation of the Initial Short-Circuit Alternating Current 67
- 8.10 Short-Circuit Power 68
- 8.11 Calculation of Short-Circuit Currents in Meshed Networks 68
- 8.11.1 Superposition Method 68
- 8.11.2 Method of Equivalent Voltage Source 70
- 8.12 The Equivalent Voltage Source Method 72
- 8.13 Short-Circuit Impedances of Electrical Equipment 72
- 8.13.1 Network Feeders 73
- 8.13.2 Synchronous Machines 74
- 8.13.3 Transformers 75
- 8.13.4 Consideration of Motors 76
- 8.13.5 Overhead Lines, Cables, and Lines 78
- 8.13.6 Impedance Corrections 79
- 8.14 Calculation of Short-Circuit Currents 81
- 8.14.1 Three-Phase Short-circuits 81
- 8.14.2 Line-to-Line Short-circuit 82
- 8.14.3 Single-Phase Short-circuits to Ground 82
- 8.14.4 Calculation of Loop Impedance 83
- 8.14.5 Peak Short-Circuit Current 85
- 8.14.6 Symmetrical Breaking Current 85
- 8.14.7 Steady-State Short-circuit Current 87

- 8.15 Thermal and Dynamic Short-circuit Strength 87
- 8.16 Examples for the Calculation of Short-Circuit Currents 89
- 8.16.1 Example 1: Calculation of the Short-Circuit Current in a DC System 89
- 8.16.2 Example 2: Calculation of Short-Circuit Currents in a Building Electrical System *91*
- 8.16.3 Example 3: Dimensioning of an Exit Cable 92
- 8.16.4 Example 4: Calculation of Short-Circuit Currents with Zero-Sequence Resistances *93*
- 8.16.5 Example 5: Complex Calculation of Short-Circuit Currents 94
- 8.16.6 Example 6: Calculation with Effective Power and Reactive Power 97
- 8.16.7 Example 7: Complete Calculation for a System 101
- 8.16.8 Example 8: Calculation of Short-Circuit Currents with Impedance Corrections 111
- 8.16.9 Example: Load Voltage and Zero Impedance 113
- 8.16.10 Example: Power Transmission 116
- **9 Relays** 119
- 9.1 Terms and Definitions 119
- 9.2 Introduction 119
- 9.3 Requirements 121
- 9.4 Protective Devices for Electric Networks 121
- 9.5 Type of Relays 122
- 9.5.1 Electromechanical Protective Relays 122
- 9.5.2 Static Protection Relays 122
- 9.5.3 Numeric Protection Relays 122
- 9.6 Selective Protection Concepts 123
- 9.7 Overcurrent Protection 124
- 9.7.1 Examples for Independent Time Relays *126*
- 9.8 Reserve Protection for IMT Relays with Time Staggering 126
- 9.9 Overcurrent Protection with Direction 126
- 9.10 Dependent Overcurrent Time Protection (DMT) 129
- 9.11 Differential Relays 131
- 9.12 Distance Protection 133
- 9.12.1 Method of Distance Protection 135
- 9.12.2 Distance Protection Zones 135
- 9.12.3 Relay Plan 135
- 9.13 Motor Protection 138
- 9.14 Busbar Protection 138
- 9.15 Saturation of Current Transformers 140
- 9.16 Summary 141
- **10 Power Flow in Three-Phase Network** *143*
- 10.1 Terms and Definitions 143
- 10.2 Introduction 143
- 10.3 Node Procedure 145
- 10.4 Simplified Node Procedure 148
- 10.5 Newton–Raphson Procedure 151

11 Substation Earthing 155

- 11.1 Terms and Definitions 155
- 11.2 Methods of Neutral Earthing 160
- 11.2.1 Isolated Earthing 162
- 11.2.2 Resonant Earthing 163
- 11.2.3 Double Earth Fault 164
- 11.2.4 Solid (Low-Impedance) Earthing 166
- 11.3 Examples for the Treatment of the Neutral Point 166
- 11.3.1 Example: Earth Fault Current When Operating with Free Neutral Point 166
- 11.3.2 Example: Calculation of Earth Fault Currents 167
- 11.3.3 Example: Ground Fault Current of a Cable 167
- 11.3.4 Example: Earth Leakage Coil 168
- 11.3.5 Example: Arc Suppression Coil 168
- 11.4 Dimensioning of Thermal Strength 168
- 11.5 Methods of Calculating Permissible Touch Voltages 169
- 11.6 Methods of Calculating Permissible Step Voltages 172
- 11.7 Current Injunction in the Ground 172
- 11.8 Design of Earthing Systems 173
- 11.9 Types of Earth Rods 175
- 11.9.1 Deep Rod 175
- 11.9.2 Earthing Strip 175
- 11.9.3 Mesh Earth 176
- 11.9.4 Ring Earth Electrode 177
- 11.9.5 Foundation Earthing 177
- 11.10 Calculation of the Earthing Conductors and Earth Electrodes 177
- 11.11 Substation Grounding IEEE Std. 80 178
- 11.11.1 Tolerable Body Current 178
- 11.11.2 Permissible Touch Voltages 179
- 11.11.3 Calculation of the Conductor Cross Section 180
- 11.11.4 Calculation of the Maximum Mesh Residual Current 181
- 11.12 Soil Resistivity Measurement 182
- 11.13 Measurement of Resistances and Impedances to Earth 184
- 11.14 Example: Calculation of a TR Station 184
- 11.15 Example: Earthing Resistance of a Building 186
- 11.15.1 Foundation Earthing $R_{\rm EF}$ 186
- 11.15.2 Ring Earth Electrode 1 R_{ER1} 187
- 11.15.3 Ring Earth Electrode 2 R_{ER2} 187
- 11.15.4 Deep Earth Electrode $R_{\rm ET}$ 187
- 11.15.5 Total Earthing Resistance R_{ETotal} 188
- 11.16 Example: Cross-Sectional Analysis 188
- 11.17 Example: Cross-Sectional Analysis of the Earthing Conductor 189
- 11.18 Example: Grounding Resistance According to IEEE Std. 80 190
- 11.19 Example: Comparison of IEEE Std. 80 and EN 50522 193
- 11.20 Example of Earthing Drawings and Star Point Treatment of Transformers 194
- 11.21 Software for Earthing Calculation 199
- 11.21.1 Numerical Methods for Grounding System Analysis 199
- 11.21.2 IEEE Std. 80 and EN 50522 203
- 11.21.3 Summary 217

- **12** Protection Against Electric Shock 219
- 12.1 Voltage Ranges 221
- 12.2 Protection by Cut-Off or Warning Messages 222
- 12.2.1 TN Systems 222
- 12.2.2 TT Systems 224
- 12.2.3 IT Systems 226
- 12.2.4 Summary of Cut-Off Times and Loop Resistances 228
- 12.2.5 Example 1: Checking Protective Measures 229
- 12.2.6 Example 2: Determination of Rated Fuse Current 231
- 12.2.7 Example 3: Calculation of Maximum Conductor Length 231
- 12.2.8 Example 4: Fault Current Calculation for a TT System 231
- 12.2.9 Example 5: Cut-Off Condition for an IT System 232
- 12.2.10 Example 6: Protective Measure for Connection Line to a House 232
- 12.2.11 Example 7: Protective Measure for a TT System 233

13 Equipment for Overcurrent Protection 235

- 13.1 Electric Arc 235
- 13.1.1 Electric Arc Characteristic 235
- 13.1.2 DC Cut-Off 237
- 13.1.3 AC Cut-Off 237
- 13.1.3.1 Cut-Off for Large Inductances 238
- 13.1.3.2 Cut-Off of Pure Resistances 239
- 13.1.3.3 Cut-Off of Capacitances 239
- 13.1.3.4 Cut-Off of Small Inductances 239
- 13.1.4 Transient Voltage 240
- 13.2 Low-Voltage Switchgear 241
- 13.2.1 Characteristic Parameters 241
- 13.2.2 Main or Load Switches 242
- 13.2.3 Motor Protective Switches 242
- 13.2.4 Contactors and Motor Starters 244
- 13.2.5 Circuit-Breakers 244
- 13.2.6 RCDs (Residual Current Protective Devices) 245
- 13.2.7 Main Protective Equipment 248
- 13.2.8 Meter Mounting Boards with Main Protective Switch 249
- 13.2.9 Fuses 251
- 13.2.9.1 Types of Construction 253
- 13.2.10 Power Circuit-Breakers 256
- 13.2.10.1 Short-Circuit Categories in Accordance with IEC 60947 258
- 13.2.10.2 Breaker Types 259
- 13.2.11 Load Interrupter Switches 260
- 13.2.12 Disconnect Switches 260
- 13.2.13 Fuse Links 261
- 13.2.14 List of Components 261

14 Current Carrying Capacity of Conductors and Cables 263

- 14.1 Terms and Definitions 263
- 14.2 Overload Protection 264
- 14.3 Short-Circuit Protection 265
- 14.3.1 Designation of Conductors 268

x Contents

- 14.3.2 Designation of Cables 269
- 14.4 Current Carrying Capacity 270
- 14.4.1 Loading Capacity Under Normal Operating Conditions 270
- 14.4.2 Loading Capacity Under Fault Conditions 271
- 14.4.3 Installation Types and Load Values for Lines and Cables 273
- 14.4.4 Current Carrying Capacity of Heavy Current Cables and Correction Factors for Underground and Overhead Installation 276
- 14.5 Examples of Current Carrying Capacity 280
- 14.5.1 Example 1: Checking Current Carrying Capacity 280
- 14.5.2 Example 2: Checking Current Carrying Capacity 285
- 14.5.3 Example 3: Protection of Cables in Parallel 290
- 14.5.4 Example 4: Connection of a Three-Phase Cable 293
- 14.5.5 Example 5: Apartment Building Without Electrical Water Heating 294
- 14.6 Examples for the Calculation of Overcurrents 300
- 14.6.1 Example 1: Determination of Overcurrents and Short-Circuit Currents 300
- 14.6.2 Example 2: Overload Protection 302
- 14.6.3 Example 3: Short-Circuit Strength of a Conductor 303
- 14.6.4 Example 4: Checking Protective Measures for Circuit-Breakers 304

15 Selectivity and Backup Protection 309

- 15.1 Selectivity 309
- 15.2 Backup Protection 317

16 Voltage Drop Calculations 321

- 16.1 Consideration of the Voltage Drop of a Line 321
- 16.2 Example: Voltage Drop on a 10 kV Line 325
- 16.3 Example: Line Parameters of a Line 325
- 16.4 Example: Line Parameters of a Line 327
- 16.5 Voltage Regulation 328
- 16.5.1 Permissible Voltage Drop in Accordance With the Technical Conditions for Connection 328
- 16.5.2 Permissible Voltage Drop in Accordance With Electrical Installations in Buildings 329
- 16.5.3 Voltage Drops in Load Systems 329
- 16.5.4 Voltage Drops in Accordance With IEC 60364 330
- 16.5.5 Parameters for the Maximum Line Length 330
- 16.5.6 Summary of Characteristic Parameters 333
- 16.5.7 Lengths of Conductors With a Source Impedance 334
- 16.6 Examples for the Calculation of Voltage Drops 334
- 16.6.1 Example 1: Calculation of Voltage Drop for a DC System 334
- 16.6.2 Example 2: Calculation of Voltage Drop for an AC System 335
- 16.6.3 Voltage Drop for a Three-Phase System 336
- 16.6.4 Example 4: Calculation of Voltage Drop for a Distributor 338
- 16.6.5 Calculation of Cross Section According to Voltage Drop 338
- 16.6.6 Example 6: Calculation of Voltage Drop for an Industrial Plant 339
- 16.6.7 Example 7: Calculation of Voltage Drop for an Electrical Outlet 339
- 16.6.8 Example 8: Calculation of Voltage Drop for a Hot Water Storage Unit 339
- 16.6.9 Example 9: Calculation of Voltage Drop for a Pump Facility *339*
- 16.6.10 Example: Calculation of Line Parameters 340

- **17** Switchgear Combinations 343
- 17.1 Terms and Definitions 343
- 17.2 Design of the Switchgear 347
- 17.2.1 Data for Design 347
- 17.2.2 Design of the Distributor and Proof of Construction 348
- 17.2.3 Short-Circuit Resistance Proofing 348
- 17.2.4 Proof of Heating 349
- 17.2.5 Determination of an Operating Current 349
- 17.2.6 Determination of Power Losses 350
- 17.2.7 Determination of a Design Loading Factor RDF 350
- 17.2.8 Determination of an Operating Current 350
- 17.2.9 Check of Short-Circuit Variables 351
- 17.2.10 Construction and Manufacturing of the Distribution 351
- 17.2.11 CE Conformity 352
- 17.3 Proof of Observance of Boundary Overtemperatures 352
- 17.4 Power Losses 353

18 Compensation for Reactive Power 355

- 18.1 Terms and Definitions 355
- 18.2 Effect of Reactive Power 358
- 18.3 Compensation for Transformers 358
- 18.4 Compensation for Asynchronous Motors 359
- 18.5 Compensation for Discharge Lamps 359
- 18.6 *c/k* Value *360*
- 18.7 Resonant Circuits 360
- 18.8 Harmonics and Voltage Quality 360
- 18.8.1 Compensation With Nonchoked Capacitors 362
- 18.8.2 Inductor–Capacitor Units 363
- 18.8.3 Series Resonant Filter Circuits 365
- 18.9 Static Compensation for Reactive Power 365
- 18.9.1 Planning of Compensation Systems 368
- 18.10 Examples of Compensation for Reactive Power 368
- 18.10.1 Example 1: Determination of Capacitive Power 368
- 18.10.2 Example 2: Capacitive Power With *k* Factor 369
- 18.10.3 Example 3: Determination of Cable Cross Section 369
- 18.10.4 Example 4: Calculation of the c/k Value 370

19 Lightning Protection Systems 371

- 19.1 Lightning Protection Class 373
- 19.2 Exterior Lightning Protection 374
- 19.2.1 Air Terminal *374*
- 19.2.2 Down Conductors 375
- 19.2.3 Grounding Systems 379
- 19.2.3.1 Minimum Length of Ground Electrodes 385
- 19.2.4 Example 1: Calculation of Grounding Resistances 386
- 19.2.5 Example 2: Minimum Lengths of Grounding Electrodes 387
- 19.2.6 Exposure Distances in the Wall Area 387
- 19.2.7 Grounding of Antenna Systems 389
- 19.2.8 Examples of Installations 389

- xii Contents
 - 19.3 Interior Lightning Protection *392*
 - 19.3.1 The EMC Lightning Protection Zone Concept 392
 - 19.3.2 Planning Data for Lightning Protection Systems 395

20	Lighting Systems 399
20.1	Interior Lighting 399
20.1.1	Terms and Definitions 399
20.2	Types of Lighting 400
20.2.1	Normal Lighting 400
20.2.2	Normal Workplace-Oriented Lighting 400
20.2.3	Localized Lighting 400
20.2.4	Technical Requirements for Lighting 401
20.2.5	Selection and Installation of Operational Equipment 401
20.2.6	Lighting Circuits for Special Rooms and Systems 402
20.3	Lighting Calculations 403
20.4	Planning of Lighting with Data Blocks 405
20.4.1	System Power 405
20.4.2	Distribution of Luminous Intensity 405
20.4.3	Luminous Flux Distribution 405
20.4.4	Efficiencies 406
20.4.5	Spacing Between Lighting Elements 407
20.4.6	Number of Fluorescent Lamps in a Room 407
20.4.7	Illuminance Distribution Curves 407
20.4.8	Maximum Number of Fluorescent Lamps on Switches 407
20.4.9	Maximum Number of Discharge Lamps Per Circuit-Breaker 408
20.4.10	Mark of Origin 408
20.4.11	Standard Values for Planning Lighting Systems 409
20.4.12	Economic Analysis and Costs of Lighting 409
20.5	Procedure for Project Planning 412
20.6	Exterior Lighting 413
20.7	Low-Voltage Halogen Lamps 415
20.8	Safety and Standby Lighting 416
20.8.1	Terms and Definitions 416
20.8.2	Circuits 417
20.8.3	Structural Types for Groups of People 417
20.8.4	Planning and Configuring of Emergency Symbol and Safety Lighting 417
20.8.5	Power Supply 421
20.8.6	Notes on Installation 422
20.8.7	Testing During Operation 422
20.9	Battery Systems 423
20.9.1	Central Battery Systems 423
20.9.2	Grouped Battery Systems 427
20.9.3	Single Battery Systems 429
20.9.4	Example: Dimensioning of Safety and Standby Lighting 432
21	Generators 435
21.1	Generators in Network Operation 437
21.2	Connecting Parallel to the Network 438

- 21.2 Connecting Parallel to the Network 438
- 21.3 Consideration of Power and Torque 438

- 21.4 Power Diagram of a Turbo Generator 439
- 21.5 Example 1: Polar Wheel Angle Calculation 440
- 21.6 Example 2: Calculation of the Power Diagram 440

22 Transformer 441

- 22.1 Introduction 441
- 22.2 Core 445
- 22.3 Winding 446
- 22.4 Constructions 446
- 22.5 AC Transformer 446
- 22.5.1 Construction 446
- 22.5.2 Mode of Action 447
- 22.5.3 Idling Stress 448
- 22.5.4 Voltage and Current Translation 448
- 22.5.5 Operating Behavior of the Transformer 449
- 22.6 Three-phase Transformer 452
- 22.6.1 Construction 452
- 22.6.2 Windings 452
- 22.6.3 Circuit Groups 452
- 22.6.4 Overview of Vector Groups 454
- 22.6.5 Parallel Connection of Transformers 454
- 22.7 Transformers for Measuring Purposes 457
- 22.7.1 Current Transformers 457
- 22.7.2 Voltage Transformer 457
- 22.7.3 Frequency Transformer 458
- 22.8 Transformer Efficiency 459
- 22.9 Protection of Transformers 459
- 22.10 Selection of Transformers 459
- 22.11 Calculation of a Continuous Short-Circuit Current on the NS Side of a Transformer 461
- 22.12 Examples of Transformers 462
- 22.12.1 Example 1: Calculation of the Continuous Short-Circuit Current 462
- 22.12.2 Example: Calculation of a Three-phase Transformer 462

23 Asynchronous Motors 467

- 23.1 Designs and Types 467
- 23.1.1 Principle of Operation (No-Load) 468
- 23.1.1.1 Motor Behavior 469
- 23.1.1.2 Generator Behavior 469
- 23.1.2 Typical Speed–Torque Characteristics 469
- 23.2 Properties Characterizing Asynchronous Motors 471
- 23.2.1 Rotor Frequency 471
- 23.2.2 Torque 471
- 23.2.3 Slip 472
- 23.2.4 Gear System 472
- 23.3 Startup of Asynchronous Motors 473
- 23.3.1 Direct Switch-On 473
- 23.3.2 Star Delta Startup 474
- 23.4 Speed Adjustment 479

- 23.4.1 Speed Control by the Slip 479
- 23.4.2 Speed Control by Frequency 479
- 23.4.3 Speed Control by Pole Changing 480
- 23.4.4 Soft Starters *481*
- 23.4.5 Example: Calculation of Overload and Starting Conditions 483
- 23.4.6 Example: Calculation of Motor Data 484
- 23.4.7 Example: Calculation of the Belt Pulley Diameter and Motor Power 485
- 23.4.8 Example: Dimensioning of a Motor 485

24 Questions About Book 487

- 24.1 Characteristics of Electrical Cables 487
- 24.2 Dimensioning of Electric Cables 487
- 24.3 Voltage Drop and Power Loss 488
- 24.4 Protective Measures and Earthing in the Low-voltage Power Systems 488
- 24.5 Short Circuit Calculation 488
- 24.6 Switchgear 489
- 24.7 Protection Devices 489
- 24.8 Electric Machines 489

References 491

Index 495