Contents

Foreword by Dr Hamaguchi xiii Foreword by Dr Noyori xv Preface xvii

- 1 Control of DNA Packaging by Block Catiomers for Systemic Gene Delivery System 1 Kensuke Osada
- 1.1 Introduction 1
- 1.2 Packaging of pDNA by Block Catiomers 2
- 1.2.1 Rod-Shaped Packaging of pDNA 3
- 1.2.2 Rod Shape or Globular Shape 5
- 1.3 Polyplex Micelles as a Systemic Gene Delivery System 6
- 1.3.1 Stable Encapsulation of pDNA Within Polyplex Micelles for Systemic Delivery 6

۱v

- 1.3.2 Polyplex Micelles for Efficient Cellular Entry 9
- 1.3.3 Polyplex Micelles for Safe Endosome Escape 11
- 1.3.4 Polyplex Micelles for Nuclear Translocation 13
- 1.3.5 Polyplex Micelles for Efficient Transcription 13
- 1.4 Design Criteria of Block Catiomers Toward Systemic Gene Therapy 14
- 1.5 Rod Shape or Toroid Shape 17
- 1.6 Summary 18 References 18
- 2 Manipulation of Molecular Architecture with DNA 25 Akinori Kuzuya
- 2.1 Introduction 25
- 2.2 Molecular Structure of DNA 25
- 2.3 Immobile DNA Junctions 26
- 2.4 Topologically Unique DNA Molecules 28
- 2.5 DNA Tiles and Their Assemblies 28
- 2.6 DNA Origami 30
- 2.7 DNA Origami as a Molecular Peg Board 32
- 2.8 Molecular Machines Made of DNA Origami 33
- 2.9 DNA Origami Pinching Devices 33

vi Contents

2.10	Novel Design Principles 35
2.11	DNA-PAINT: An Application of DNA Devices 36
2.12	Prospects 36 References 36
	Kereines 50
3	Chemical Assembly Lines for Skeletally Diverse Indole
	Alkaloids 43
	Hiroki Oguri
3.1	Introduction 43
3.2	Macmillan's Collective Total Synthesis by Means of Organocascade
2.2	Catalysis 45
3.3	Systematic Synthesis of Indole Alkaloids Employing Cyclopentene Intermediates by the Zhu Group 52
3.4	Biogenetically Inspired Synthesis Employing a Multipotent
5.1	Intermediate by the Oguri Group 58
	References 68
4	Molecular Technology for Injured Brain Regeneration 71
4.1	Itsuki Ajioka
4.1	Introduction 71 Biology of Americanopais 71
4.2 4.3	Biology of Angiogenesis 71 Angiogenesis for Injured Brain Regeneration 73
4.4	Molecular Technology to Promote Angiogenesis 74
4.5	Biology of Cell Cycle 75
4.6	Biology of Neurogenesis 77
4.7	Molecular Technology to Promote Neuron Regeneration 78
4.8	Conclusion 80
	References 80
5	Engineering the Ribosomal Translation System to Introduce
5	Non-proteinogenic Amino Acids into Peptides 87
	Takayuki Katoh
5.1	Introduction 87
5.2	Decoding the Genetic Code 88
5.3	Aminoacylation of tRNA by Aminoacyl-tRNA Synthetases 90
5.4	Methods for Preparing Noncanonical Aminoacyl-tRNAs 91
5.4.1	Ligation of Aminoacyl-pdCpA Dinucleotide with tRNA Lacking the
	3'-Terminal CA 91
5.4.2	Post-aminoacylation Modification of Aminoacyl-tRNA 93
5.4.3	Misacylation of Non-proteinogenic Amino Acids by ARSs 94
5.4.4	Flexizyme, an Aminoacylation Ribozyme 94
5.5	
	Methods for Assigning Non-proteinogenic Amino Acids to the
551	Methods for Assigning Non-proteinogenic Amino Acids to the Genetic Code 95
5.5.1 5.5.2	Methods for Assigning Non-proteinogenic Amino Acids to the Genetic Code 95 The Nonsense Codon Method 96
5.5.2	Methods for Assigning Non-proteinogenic Amino Acids to the Genetic Code 95 The Nonsense Codon Method 96 Genetic Code Reprogramming 97
5.5.2 5.5.3	Methods for Assigning Non-proteinogenic Amino Acids to the Genetic Code 95 The Nonsense Codon Method 96 Genetic Code Reprogramming 97 The Four-base Codon Method 98
5.5.2	Methods for Assigning Non-proteinogenic Amino Acids to the Genetic Code 95 The Nonsense Codon Method 96 Genetic Code Reprogramming 97 The Four-base Codon Method 98 The Nonstandard Base Method 100
5.5.2 5.5.3 5.5.4	Methods for Assigning Non-proteinogenic Amino Acids to the Genetic Code 95 The Nonsense Codon Method 96 Genetic Code Reprogramming 97 The Four-base Codon Method 98

- 5.7 Improvement of the Substrate Tolerance of Ribosomal Translation *103*
- 5.8 Ribosomally Synthesized Noncanonical Peptides as Drug Discovery Platforms *104*
- 5.9 Summary and Outlook *105* References *106*
- 6 Development of Functional Nanoparticles and Their Systems Capable of Accumulating to Tumors 113 Satoru Karasawa
- 6.1 Introduction *113*
- 6.2 Accumulation Based on Aberrant Morphology and Size *114*
- 6.3 Accumulation Based on Aberrant pH Microenvironment 117
- 6.4 Accumulation Based on Temperature of Tumor Microenvironment *124*
- 6.5 Perspective 129 References 129
- 7 Glycan Molecular Technology for Highly Selective *In Vivo* Recognition 131

Katsunori Tanaka

- 7.1 Molecular Technology for Chemical Glycan Conjugation 133
- 7.1.1 Conjugation to Lysine 133
- 7.1.2 Conjugation to Cysteine 133
- 7.1.3 Bioorthogonal Conjugation 136
- 7.1.4 Enzymatic Glycosylation 136
- 7.2 In Vivo Kinetic Studies of Monosaccharide-Modified Proteins 137
- 7.2.1 Dissection-Based Kinetic and Biodistribution Studies: Effects of Protein Modification by Galactose, Mannose, and Fucose *137*
- 7.2.2 Noninvasive Imaging of *In Vivo* Kinetic and Organ-Specific Accumulation of Monosaccharide-Modified Proteins *138*
- 7.3 In Vivo Kinetic Studies of Oligosaccharide-Modified Proteins 139
- 7.3.1 *In Vivo* Kinetics of Proteins Modified by a Few Molecules of *N*-glycans *139*
- 7.3.2 *In Vivo* Kinetics of Proteins Modified by Many *N*-glycans: Homogeneous *N*-glycoalbumins *141*
- 7.3.3 *In Vivo* Kinetics of Proteins Modified by Many *N*-glycans: Heterogeneous *N*-glycoalbumins 145
- 7.3.4 Tumor Targeting by *N*-glycoalbumins *148*
- 7.3.5 Glycan Molecular Technology on Live Cells: Tumor Targeting by *N*-glycan-Engineered Lymphocytes 148
- 7.4 Glycan Molecular Technology Adapted as Metal Carriers: *In Vivo* Metal-Catalyzed Reactions within Live Animals 150
- 7.5 Concluding Remarks 153 Acknowledgments 155 References 155

viii Contents

8	Molecular Technology Toward Expansion of Nucleic Acid
	Functionality 165
	Michiko Kimoto and Kiyohiko Kawai
8.1	Introduction 165
8.2	Molecular Technologies that Enable Genetic Alphabet
	Expansion 168
8.2.1	Nucleotide Modification 168
8.2.2	Unnatural Base Pairs (UBPs) as Third Base Pairs Toward Expansion of
	Nucleic Acid Functionality 168
8.2.3	High-Affinity DNA Aptamer Generation Using the Expanded Genetic
	Alphabet 169
8.3	Molecular Technologies that Enable Fluorescence Blinking
	Control 171
8.3.1	Single Molecule Detection Based on Blinking Observations 171
8.3.2	Blinking Kinetics 172
8.3.3	Control of Fluorescence Blinking by DNA Structure 174
8.3.3.1	Triplet Blinking 174
8.3.3.2	Redox Blinking 175
8.3.3.3	Isomerization Blinking 176
8.4	Conclusions 178
	Acknowledgments 178
	References 178
9	Molecular Technology for Membrane Functionalization 183
	Michio Murakoshi and Takahiro Muraoka
9.1	Introduction 183
9.2	Synthetic Approach for Membrane Functionalization 185
9.2.1	Formation of Multipass Transmembrane Structure 185
9.2.2	Formation of Supramolecular Ion Channels 187
9.2.3	Demonstration of Ligand-Gated Ion Transportation 187
9.2.4	Light-Triggered Membrane Budding 190
9.3	Semi-biological Approach for Membrane Functionalization 191
9.3.1	Mechanical Analysis of the Transmembrane Structure of Membrane
	Proteins 191
9.3.2	Development of the Nanobiodevice Using a Membrane Protein
0 2 2	Expressing in the Inner Ear 193
9.3.3	Expressing in the Inner Ear 193 Improvement of Protein Performance by Genetic Engineering 198
9.3.3	
9.3.3	Improvement of Protein Performance by Genetic Engineering 198 References 199
9.3.3	Improvement of Protein Performance by Genetic Engineering 198
	Improvement of Protein Performance by Genetic Engineering 198 References 199
	Improvement of Protein Performance by Genetic Engineering 198 References 199 Molecular Technology for Degradable Synthetic Hydrogels for Biomaterials 203 Hiroharu Ajiro and Takamasa Sakai
	Improvement of Protein Performance by Genetic Engineering 198 References 199 Molecular Technology for Degradable Synthetic Hydrogels for Biomaterials 203 Hiroharu Ajiro and Takamasa Sakai Scope of the Chapter 203
	Improvement of Protein Performance by Genetic Engineering 198 References 199 Molecular Technology for Degradable Synthetic Hydrogels for Biomaterials 203 Hiroharu Ajiro and Takamasa Sakai Scope of the Chapter 203 Degradation Behavior of Hydrogels 203
10	Improvement of Protein Performance by Genetic Engineering 198 References 199 Molecular Technology for Degradable Synthetic Hydrogels for Biomaterials 203 Hiroharu Ajiro and Takamasa Sakai Scope of the Chapter 203 Degradation Behavior of Hydrogels 203 Polylactide Copolymer 205
10 10.1	Improvement of Protein Performance by Genetic Engineering 198 References 199 Molecular Technology for Degradable Synthetic Hydrogels for Biomaterials 203 Hiroharu Ajiro and Takamasa Sakai Scope of the Chapter 203 Degradation Behavior of Hydrogels 203 Polylactide Copolymer 205 Trimethylene Carbonate Derivatives 207
10 10.1 10.2	Improvement of Protein Performance by Genetic Engineering 198 References 199 Molecular Technology for Degradable Synthetic Hydrogels for Biomaterials 203 Hiroharu Ajiro and Takamasa Sakai Scope of the Chapter 203 Degradation Behavior of Hydrogels 203 Polylactide Copolymer 205

11	Molecular Technology for Epigenetics Toward Drug
	Discovery 219
	Takayoshi Suzuki
11.1	Introduction 219
11.2	Epigenetics 219
11.3	Isozyme-Selective Histone Deacetylase (HDAC) Inhibitors 221
11.3.1	Identification of HDAC3-Selective Inhibitors by Click Chemistry
	Approach 221
11.3.2	Identification of HDAC8-Selective Inhibitors by Click Chemistry
	Approach and Structure-Based Drug Design 224
11.3.3	Identification of HDAC6-Insensitive Inhibitors Using C-H Activation
	Reaction 224
11.3.4	Identification of HDAC6-Selective Inhibitors by Substrate-Based Drug
	Design 228
11.3.5	Identification of SIRT1-Selective Inhibitors by Target-Guided
	Synthesis 228
11.3.6	Identification of SIRT2-Selective Inhibitors by Structure-Based Drug
	Design and Click Chemistry Approach 232
11.4	Histone Lysine Demethylase (KDM) Inhibitors 234
11.4.1	Identification of KDM4C Inhibitors by Structure-Based Drug
	Design 235
11.4.2	Identification of KDM5A Inhibitors by Structure-Based Drug
	Design 237
11.4.3	Identification of KDM7B Inhibitors by Structure-Based Drug
	Design 238
11.4.4	Identification of LSD1 Inhibitors by Target-Guided Synthesis 239
11.4.5	Small-Molecule-Based Drug Delivery System Using LSD1 and its
	Inhibitor 250
11.5	Summary 253
	References 254
12	Molecular Technology for Highly Efficient Gene Silencing:
12	DNA/RNA Heteroduplex Oligonucleotides 257
	Kotaro Yoshioka, Kazutaka Nishina, Tetsuya Nagata, and Takanori Yokota
12.1	Introduction 257
12.1	Therapeutic Oligonucleotides 257
12.2.1	siRNA 257
12.2.1	ASO 258
12.2.2	Chemical Modifications of Therapeutic Oligonucleotide 259
12.3.1	Modifications of Internucleotide Linkage 259
12.3.1	Modifications of Sugar Moiety 260
12.3.2	Ligand Conjugation for DDS 261
12.4.1	Development of Ligand Molecules for Therapeutic
14, 1, 1	Oligonucleotides 261
12.4.2	Vitamin E for Ligand Molecule 261
12.4.3	siRNA Conjugated with Tocopherol 261
12.4.4	ASO Conjugated with Tocopherol 261
12.4.4	DNA/RNA Heteroduplex Oligonucleotide 262
14.0	2111, Marine Couples Ongonacional 202

x Contents

- 12.5.1 Basic Concept of Heteroduplex Oligonucleotide 262
- 12.5.2 HDO Conjugated with Tocopherol (Toc-HDO) 264
- 12.5.2.1 Design of Toc-HDO 264
- 12.5.2.2 Potency of Toc-HDO 264
- 12.5.2.3 Adverse Effect of Toc-HDO 266
- 12.5.2.4 Mechanism of Toc-HDO 268
- 12.6 Future Prospects 269 References 269
- 13 Molecular Technology for Highly Sensitive Biomolecular Analysis: Hyperpolarized NMR/MRI Probes 273 Shinsuke Sando and Hiroshi Nonaka
- 13.1 Hyperpolarization 273
- 13.2 Requirements for HP Molecular Imaging Probes 275
- HP ¹³C Molecular Probes for Analysis of Enzymatic Activity 277 13.3
- 13.3.1 [1-¹³C]Pyruvate 277
- 13.3.2 HP ¹³C Probes for Analysis of Glycolysis and Tricarboxylic Acid Cycle 278
- γ -Glutamyl-[1-¹³C]glycine: HP ¹³C Probe for Analysis of γ -glutamyl 13.3.3 Transpeptidase 278
- [1-¹³C]Alanine-NH₂: HP ¹³C Probes for Analysis of 13.3.4 Aminopeptidase N 282
- 13.4 HP ¹³C Molecular Probes for Analysis of the Chemical Environment 28.3
- [1-¹³C]Bicarbonate 13.4.1 283
- [1-¹³C]Ascorbate and Dehydroascorbate 283 13.4.2
- ^{[13}C]Benzoylformic Acid for Sensing H₂O₂ 284 13.4.3
- $[^{13}C,D_3]$ -p-Anisidine for Sensing of HOCl 284 13.4.4
- 13.4.5 ^{[13}C,D]EDTA for Sensing of Metal Ions 285
- HP ¹⁵N Molecular Probes 286 13.5
- 13.6 A Strategy for Designing HP Molecular Probes 287
- Scaffold Structure for Design of ¹⁵N HP Probes: [¹⁵N,D₉]TMPA 288 13.6.1
- 13.6.1.1 [¹⁵N,D₁₄]TMPA 291
- Scaffold Structure for Designing ¹³C Hyperpolarized Probes 292 13.6.2
- 13.7 Conclusion 294 References 294
- 14 Molecular Technologies in Life Innovation: Novel Molecular **Technologies for Labeling and Functional Control of Proteins** Under Live Cell Conditions 297

Itaru Hamachi, Shigeki Kiyonaka, Tomonori Tamura, and Ryou Kubota

- 14.1 General Introduction 297
- 14.2 Ligand-Directed Chemistry for Neurotransmitter Receptor Proteins Under Live Cell Condition and its Application 300
- Affinity-Guided DMAP Reaction for Analysis of Live Cell Surface 14.3 Proteins 308
- 14.4 Coordination Chemistry-Based Chemogenetic Approach to Switch the Activity of Glutamate Receptors in Live Cells 312
- 14.5 Concluding Remarks 320 References 321

Contents xi

- 15 Molecular Technologies for Pseudo-natural Peptide Synthesis and Discovery of Bioactive Compounds Against Undruggable Targets 329 Joseph M. Rogers and Hiroaki Suga
- Introduction 329 15.1
- 15.2Peptides Could Target Undruggable Targets 330
- 15.2.1 Druggable Proteins 330
- Undruggable Proteins 332 15.2.2
- 15.2.3 Natural Peptides as Drugs 333
- Modification to Peptides can Improve Their Drug-Like 15.2.4 Characteristics 334
- 15.2.4.1 Macrocyclization 334
- 15.2.4.2 Amino Acids with Unnatural Side Chains 335
- 15.2.4.3 Backbone Modifications Including N-Methylation 335
- 15.2.4.4 Cyclosporin A Membrane-Permeable Anomaly 336
- 15.2.4.5 Membrane Permeability Cannot be Calculated from Amino Acid Content 336
- 15.2.5 Cyclosporin – The Inspiration for the Cyclic Peptide Approach to Undruggable Targets 337
- Molecular Technologies to Discover Functional Peptides 337 15.3
- 15.3.1 Ribosomal Synthesis of Peptides 337
- 15.3.2 Natural Peptide Synthesis is an Efficient Method to Generate Huge Libraries 339
- 15.3.3 Selection Methods 340
- 15.3.3.1 Intracellular Peptide Selection 340
- 15.3.3.2 Phage Display 341
- 15.3.3.3 A Cell-Free Display, mRNA Display 345
- Other Methods of Selection 347 15.3.4
- 15.4 Molecular Technology for Pseudo-natural Peptide Synthesis and Its Use in Peptide Drug Discovery 347
- The Need for Pseudo-natural Synthesis The Limitations of 15.4.1SPPS 348
- 15.4.2 Intein Cyclization and SICLOPPS 348
- 15.4.3 Post-translation Modification 351
- Genetic Code Expansion 352 15.4.4
- 15.4.5 Replacing Amino Acids in Translation 354
- 15.4.6 Genetic Code Reprogramming 355
- 15.4.6.1 Flexizymes 355
- 15.4.6.2 RaPID System 356
- 15.5Conclusion 361 Acknowledgment 361 References 362

Index 371