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1.1 Introduction

1.1.1 Historical Approach to Organic Semiconductors

Organic semiconductors have the potential to be used in future electronic
devices requiring structural flexibility and large-area coverage that can be fabri-
cated by low-cost printing processes. Ordinary organic materials such as plastics
(polyethylene) have primarily been regarded as typical electrical insulators.
However, graphite exhibits the high electrical conductivity [1], which has been
attributed to their molecular structures, which are made of network planes of the
conjugated double bonds of carbon atoms with the π-electrons. There exist some
organic molecules that have similar molecular structures, for example, aromatic
compounds. Around 1950, Eley [2], Akamatu and Inokuchi [3], and Vartanyan
[4] have reported that the phthalocyanines, violanthrones, and cyanine dyes
have semiconductive characters, respectively. These characters are attributed to
the intermolecular overlapping of the electron clouds of π-electrons in the con-
densed aromatic rings. These materials were named as organic semiconductors
[5]. However, in general, these organic semiconductors were still recognized as
the insulating materials because resistivity of these organic semiconductors is
much higher than that of inorganic semiconductors such as silicon and gallium
arsenide. The resistivity 𝜌 is given as

1
𝜌
= nq𝜇, (1.1)

where n, q, and 𝜇 represent the carrier concentration, elementary charge of a
carrier, and the electron (hole) mobility, respectively. The high resistivity of the
organic materials originates from the low carrier concentration and the low
mobility.

The carriers can be chemically doped by using the electron–donor–acceptor
complexes. In 1954, Akamatu et al. found that the electron–donor–acceptor
complex between perylene and bromine is relatively stable and has very
good electrical conductance [6]. In 1973, Ferraris et al. have reported that
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the complex between the electron donor tetrathiafulvalene (TTF) and the
electron acceptor tetracyano-p-quinodimethane (TCNQ) has the very high
conductivity comparable with the conductivities of metals such as copper [7].
Shirakawa et al. also showed that the organic polymer, polyacetylene, has a
remarkably high conductivity at room temperature by chemical doping with
iodine in 1977 [8]. These complexes are called organic conductors. The high
electrical conductivity accelerated interest in organic conductors, not only
because of their huge electrical conductivity but also by the possibility of
superconductivity [9].

The multicomponent systems as mentioned above have some disadvantageous
properties such as air and thermal instability in general. Therefore, semiconduct-
ing single-component organic compounds are likely to be much more suitable for
use as molecular devices. From a viewpoint of the electronic device applications,
mobility is very important to evaluate the device performance because it charac-
terizes how quickly an electron can move in a semiconductor when an external
electric field is applied. In 1960, Kepler [10] and LeBlanc [11] measured the mobil-
ity of an organic semiconductor by the time-of-flight (TOF) technique, where the
flight time of carriers in a given electric field is determined by observing an arrival
time kink in the current that is caused by a pulse-generated unipolar “charge car-
rier sheet” moving across a plane-parallel slice of a sample. They reported that
the anthracenes have the mobility of 0.1–2.0 cm2 V−1 s−1 at room temperature
and their mobilities increase as the temperature decreases. Friedman theoreti-
cally investigated the electrical transport properties of organic crystals using the
Boltzmann equation treatment of narrow-band limit in the case of small polaron
band motion [12]. Sumi also discussed the change from the band-type mobility
of large polarons to the hopping type of small polarons, using the Kubo formula
with the adiabatic treatment of lattice vibrations in the single-site approxima-
tion [13]. However, the mobility obtained by TOF technique is different from
the mobility of actual devices such as field-effect transistors (FETs) because the
charge carriers are induced at the interface between the organic semiconduc-
tor and the dielectric film by an applied gate voltage. Kudo et al. reported the
field-effect phenomena of merocyanine dye films and their field-effect mobilities
of 10−7–10−5 cm2 V−1 s−1 estimated from the measurements in 1984 [14]. Then,
Koezuka et al. fabricated the actual FET utilizing polythiophene as a semicon-
ducting material and reported the mobility of 10−5 cm2 V−1 s−1 [15].

A major industrial breakthrough occurred in the application to electrolumi-
nescent (EL) devices. Tang and VanSlyke reported the first organic EL device
based on a π-conjugated molecular material in 1987 [16]. After that, typical
industrial applications spread to light-emitting diodes (LEDs) [17, 18] and solar
cells [19–21]. Recently, organic semiconductors are expected as the future
electronic device semiconducting materials requiring structural flexibility and
large-area coverage that can be fabricated by low-cost printing processes [22, 23].
However, we have a massive task for the realization of the “printed electronics,”
for example, increasing the mobility, improvement of the solubility, and thermal
durability, suppressing the variations of device characteristics, decreasing the
threshold voltage, and so on.
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Although π-conjugated polymers with aromatic backbones have been widely
investigated as soluble organic semiconductors, further improvement of
mobility of polymer semiconductors has disadvantages owing to the statistical
distribution of molecular size and structural defects caused by mislinkage of
monomers, which act as carrier traps in the semiconducting channel. Therefore,
small molecular materials, such as pentacene (see Figure 1.1a), have advantages
in terms of their well-defined crystal structure and ease of purification. At
first, the organic transistors were fabricated utilizing the organic polycrys-
tals. For example, the field-effect mobility of polycrystal thin-film transistors
(TFTs) increases in proportion to the grain size [63, 64]. The mobility in the
polycrystals is mainly limited by the grain boundaries, and the typical highest
value is generally below 1.0 cm2 V−1 s−1 at room temperature. The temperature
dependence with a thermally activated behavior indicates that the incoherent
hopping process of spatially localized carriers between trap sites is dominated
in the polycrystals [26]. In such a low-mobility regime, the charge transport
mechanism has been investigated theoretically using the Marcus theory [65, 66]
based on the small polaron model [67].
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Figure 1.1 Molecular structures of (a) pentacene, (b) rubrene, (c) DNTT, (d) C8-BTBT, and
(e) DNT-V. (f ) Annual change of the highest hole mobilities of different organic single-crystal
field-effect transistors in the literature, and (g) the distribution of the reported mobilities for
naphthalene [24], DNT-V [25], pentacene [26–35], DNTT [36–41], C8-BTBT [42–49], and rubrene
[29, 31], [50–62].
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1.1.2 Recent Progress and Requirements to Computational
“Molecular Technology”

Recent rapid progress in technology enables us to fabricate the very pure
rubrene single-crystal FETs (see Figure 1.1b) with the high carrier mobility up to
40 cm2 V−1 s−1 at room temperature [60], which exceeds the mobility of
amorphous silicon [68]. The high mobility attributes the exclusion of trap sites
such as grain boundary in organic semiconductors. The mobility monotonically
decreases with increasing temperature, 𝜇 ∝ T−n [54]. The power-law tempera-
ture dependence is a typical characteristic of coherent band transport by spatially
extended carriers, which is scattered by the molecular vibrations (phonons). The
rubrene single crystals obtained by the physical vapor deposition method show
the excellent high mobilities at room temperature, but their poor solubility is a
serious problem for the printed electronics. In 2006, Takimiya et al. reported
solution-processable organic semiconductors based on [1]benzothieno[3,2-
b][1]benzothiophene (BTBT) core [69] and dinaphtho[2,3-b:2′,3′-f ]thieno[3,2-b]
thiophene (DNTT) core [36] with high mobility and stability, as shown in
Figure 1.1c,d. Moreover, Okamoto et al. reported a new candidate semiconduct-
ing material based on V-shaped dinaphtho[2,3-b:2′,3′-d]thiophene (DNT-V)
core (Figure 1.1e), with high mobility, solubility, and thermal durability [25].
Figure 1.1f,g shows annual change of the highest hole mobilities of different
organic single-crystal FETs in the literature, and the distribution of the reported
mobilities for naphthalene [24], DNT-V [25], pentacene [26–35], DNTT [36–41],
C8-BTBT [42–49], and rubrene [29, 31, 50–62].

As shown above, new organic semiconductors with higher mobilities have
been required. It is a very important and an urgent issue for us to establish the
method and system for finding new organic semiconductors with high mobility
from among various kinds of the candidate materials. Computer simulation to
predict the mobility of candidate organic semiconductors becomes a powerful
tool to accelerate the material development.

1.2 Theoretical Description of Charge Transport
in Organic Semiconductors

As shown in Figure 1.2a, different from covalent crystals such as silicon,
organic semiconductors are formed with van der Waals interactions between
molecules [70]. The very weak interactions give the organic semiconductors the
property of mechanical flexibility and the solubility. Charge carriers in organic
semiconductors strongly couple with the molecular vibrations, namely, phonons.
The total Hamiltonian consists of that for the electron Ĥe, the phonon Ĥph, and
the interaction Ĥe−ph,

Ĥ = Ĥe + Ĥph + Ĥe−ph. (1.2)
The general expression can be given on the basis of molecular orbitals and the
eigenfunctions of phonon as follows:

Ĥe =
∑
m,n

h0
mnâ†

mân, (1.3)
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Figure 1.2 (a) Structure of a single crystal of pentacene. (b) HOMOs of the molecules labeled A
and B in (a). The transfer integral between molecules tAB is defined as the off-diagonal
elements of the Hamiltonian matrix Ĥ on the molecular orbital basis set.

Ĥph =
∑
𝜆,q

ℏ𝜔𝜆q

(
b̂†
𝜆qb̂𝜆q +

1
2

)
, (1.4)

Ĥe−ph =
∑
m,n

∑
𝜆,q

ℏ𝜔𝜆qg𝜆q
mnâ†

mân(b̂
†
𝜆q + b̂𝜆−q), (1.5)

where â†
n and b̂†

𝜆q represent the creation operator of electron at the nth orbital and
the correlation operator of phonon with mode 𝜆, wave-vector q, and the vibration
frequency 𝜔𝜆q. Here, h0

mn(m≠n) and h0
nn are the transfer integral t0

mn between nth
and mth molecular orbitals and the orbital energy 𝜀0

n at the equilibrium position,
respectively. As an example, the highest occupied molecular orbitals (HOMOs)
of the pentacene molecules are shown in Figure 1.2b [70]. The dimensionless
electron–phonon coupling constant is defined by [71, 72]

g𝜆q
nm ≡ ∑

k,s

√
1

2ℏMN𝜔3
𝜆q

eiqRk

(
𝜕hnm

𝜕Rks

)
e𝜆q

s , (1.6)

where e𝜆q
s is the phonon eigenvector representing the direction of displacement

of sth atom. M and N represent the mass of a single molecule and the number of
unit cells. The position of sth atom in kth unit cell is given by Rks = rs + Rk , where
the relative position of sth atom in the unit cell is represented by rs, and Rk is the
position vector of kth unit cell. The change in transfer integral due to molecular
vibration (𝜕h∕𝜕R) is an intrinsic meaning of the electron–phonon interaction.

The relation between the mobility 𝜇 and the diffusion coefficient D is well used
in theoretical studies of transport of carrier with charge q in organic semicon-
ductors and known as the Einstein relation

𝜇 =
qD
kBT

, (1.7)

where kBT is the thermal energy defined as the product of the Boltzmann con-
stant and the temperature. The problem remained is how we obtain the diffusion
coefficient from the general Hamiltonian of Eqs. (1.3)–(1.5).
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1.2.1 Incoherent Hopping Transport Model

The semiclassical Marcus theory [65, 66] based on the small polaron model [67]
describes the hopping motion of charge carriers that are self-trapped in a sin-
gle molecule by their induced intramolecular deformations. The schematic pic-
ture of hopping motion is shown in Figure 1.3a [70]. Before injection of a charge
carrier, all molecules in the organic semiconductor are in the neutral state. As
shown in Figure 1.3b, when a charge carrier is injected into a single molecule,
the state is changed from the most stable neutral state (i) to the charged state
(ii). Then, the state (ii) relaxes into the most stable charged state (iii) by their
induced intramolecular distortion. If we assume that the transfer integrals are
much smaller than the magnitude of electron–phonon couplings, the hopping
rate to neighboring jth molecule can be calculated using the perturbation theory
and takes the following thermally activated form:

1
𝜏

hop
j

=
|t0

j |2
ℏ

√
π

𝜆kBT
e−

𝜆

4kBT , (1.8)

where t0
j is the transfer integral at the equilibrium position. The quantity

𝜆 ≡ 𝜆(1) + 𝜆(2) is the reorganization energy. Here, two components 𝜆(1) and 𝜆(2)

correspond to going into a charged state and returning to a neutral state as
shown in Figure 1.3b.

Moreover, we assume that the quantum coherence is lost after each hopping
event, the diffusion coefficient is given by

Dhop =
∑

j
a2

j

Pj

𝜏
hop
j

, (1.9)

where aj represents the intermolecular distance and the hopping probability is
defined by Pj ≡ (𝜏hop

j )−1∕
∑

k(𝜏
hop
k )−1. Finally, we can obtain the thermally acti-

vated form of hopping mobility using the Einstein relation of Eq. (1.7). In the case
of simple one-dimensional molecular crystals with the intermolecular transfer
integral t and the intermolecular distance a, the hopping mobility is written by

𝜇hop = 1
2

a2|t|2
ℏ

q
kBT

√
𝜋

𝜆kBT
e−

𝜆

4kBT . (1.10)
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Figure 1.3 (a) Schematic picture of the hopping transport. Charge carrier localized at a
molecule moves to the neighboring molecules by the thermally activated hopping process.
(b) Potential energy surface for the neutral state and the charged state of the single molecule.
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Figure 1.4 Temperature-dependent behavior of the hopping and band mobilities of
pentacene single crystal with the transfer integrals between adjacent molecules are 43.6, 71.5,
and −111.3 meV [73]. The reorganization energy of a pentacene molecule is 𝜆 =92 meV and
the calculated hopping mobility is shown by the black triangles. For the reference, the
hopping mobilities are calculated for the several reorganization energies from 1 to 400 meV.
The calculated band mobility is represented by the white squares. Source: Ishii et al. 2017 [73].
Reproduced with permission of American Physical Society.

Figure 1.4 shows the temperature-dependent behavior of the hopping mobility
of the two-dimensional pentacene single crystal by the black triangles. The
calculated intermolecular transfer integrals 43.6, 71.5, and −111.3 meV [73]
are comparable to the reorganization energy 𝜆 = 92 meV. Interestingly, the
calculated hopping mobility of pentacene single crystal exhibits temperature-
independent mobility around room temperature with a mobility of ∼ 1 cm2 V−1

s−1. The calculated results seem to well explain the experimentally observed
temperature-independent mobility [27]. However, the Marcus theory is generally
applicable for t ≪ 𝜆. It indicates that we should not employ the Marcus theory
for the analysis of charge transport of high-mobility organic semiconductors.

1.2.2 Coherent Band Transport Model

The band transport model starts from the solution of the electronic problem
in an unperturbed, perfect lattice (perfect periodicity). In this limit, the elec-
trons form the Bloch waves identified by a well-defined momentum k and the
energy band dispersion E(k). As an example, the HOMO band dispersion cal-
culated by the density functional theory (DFT) using the plane-wave basis set is
shown in Figure 1.5b [70]. The existence of HOMO band dispersion of pentacene
crystal [74–77] is experimentally demonstrated using angle-resolved photoelec-
tron spectroscopy (ARPES). Quantum mechanics tells us that a charge carrier
having the effective mass m(k) propagates at the group velocity v(k) without



8 1 Charge Transport Simulations for Organic Semiconductors

(a) (b)

–1.0

–0.8

–0.6

–0.4

–0.2

X XSYΓ
Wave number k

E
n

e
rg

y
 E

(k
) 

(e
V

)

Plane wave

h

Scattered 
by phonons

a

b

Figure 1.5 (a) Schematic picture of the band transport. Extended charge carriers are
described by the Bloch states with the wave-vector k and scattered by the molecular
vibrations (phonons). (b) HOMO bands obtained from DFT using the plane-wave basis set with
symmetry points of Γ(0, 0, 0), X(1/2, 0, 0), Y(0, 1/2, 0), and S(1/2, 1/2, 0). The Fermi energy is
located at E = 0 eV.

any scattering in the perfect lattice. The effective mass and the group velocity
are obtained from the band dispersion as follows: v(k) ≡ 𝜕E(k)∕ℏ𝜕k and m(k) ≡
(𝜕2E(k)∕ℏ2𝜕k2)−1. However, as shown in Figure 1.5a, even if the perfect single
crystal can be made, the molecular vibrations disturb the periodicity and become
a dominant origin of electric resistance at room temperature. Scattering of the
Bloch states by the molecular vibrations is included as a perturbation in the band
transport model. The momentum relaxation time (scattering time) of 𝜏band is
given by Fermi’s golden rule,

1
𝜏band(k)

= 2π
ℏ

∑
k′

∑
𝜆q

|⟨k′|Ĥ|k⟩|2
× 𝛿(E(k′) − E(k) ± ℏ𝜔𝜆q)(1 − cos 𝜃k′k), (1.11)

where |k⟩ represents the eigenfunction of Ĥe with the eigenenergy E(k) in the
momentum representation, and 𝜃k′k is the angle between k and k′. In the acoustic
deformation potential model for two-dimensional transport [78], the relaxation
time can be calculated as

1
𝜏band(T)

=
𝜀2

acmdkBT
ℏ3BLeff

. (1.12)

Here, 𝜀ac is the acoustic deformation potential defined by 𝜀ac ≡ ΩdEhbm∕dV ,
where Ehbm represents the value to the HOMO band maximum. The
acoustic deformation potential should be the quantity as a function of the
electron–phonon coupling constant g of Eq. (1.6). B is the elastic modulus, Leff is
the effective channel width of carrier confinement layer, and md is the density of
states mass, which is equal to

√
mamb. ma and mb represent the effective mass

at the HOMO band maximum along a and b axes, respectively.
Different from the hopping model, the diffusion coefficient along x axis is

defined as Dband
x ≡ ∫ +∞

0 𝑣x(s)𝑣x(0)ds, using the velocity correlation functions,
where 𝑣x(s) is the x component of the group velocity v at time s. When the
velocity correlation is disappeared by the molecular vibrations, the diffusion
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coefficient is calculated as

Dband
x = ∫ +∞

0 𝑣2
x exp

( −s
𝜏band

)
ds,

= 𝑣2
x𝜏

band.
(1.13)

The band mobility is obtained from the Einstein relation of Eq. (1.7) as follows:

𝜇band
x =

q
kBT

𝑣2
x𝜏

band,

=
q𝜏band(T)

mx
,

=
q

mx

ℏ3BLeff

𝜀2
acmdkBT

.

(1.14)

Here, the relation between the kinetic energy and the temperature, 3
2
m𝑣2 = 3

2
kBT ,

has been used. The calculated band mobility decreases with increasing tem-
perature, according to 𝜇 ∝ T−1 shown by the white squares in Figure 1.4. Such
power-law temperature dependence is a typical character of coherent band trans-
port and has been observed in some experiments for organic single crystals with
high mobility [24, 45, 54, 55]. Moreover, recent experiments of Hall effects on the
organic FETs provide us with an evidence of possible coherent charge transport
in the organic semiconductors [55, 56, 59, 79]. On the other hand, a difficult
problem is still remained in the coherent band picture. That is, the estimated
mean free path is comparable to or shorter than the distance between adjacent
molecules [27], which implies a breakdown of the coherent band transport.

1.2.3 Coherent Polaron Transport Model

Some experiments reported that the width of HOMO bands observed by the
ARPES is narrowing with increasing temperature [76, 77]. This phenomenon is
known as the band narrowing and can be rationalized by means of the concept
of polaron, as described in the following. When there exist the electron–phonon
interactions, the bare electrons get dressed by phonons (molecular vibrations)
and form quasiparticles called polarons. The charge carriers have to carry the
phonon cloud as well, which always accompanies the carrier. With increasing
temperature, the effective mass of polaron becomes larger since much more
phonons are available that coupled to the charge carrier.

Hannewald et al. have derived analytically the total Hamiltonian of coherent
polaron H̃ from Ĥ of Eq. (1.2), using the method of the Lang-Firsov canonical
transformation [71, 72, 80],

H̃ = eŜĤeŜ†
, (1.15)

≃
∑
m,n

t̃mnâ†
mân + Ĥph, (1.16)

where Ŝ ≡ ∑
m,nĈmnâ†

mân and Ĉmn ≡ ∑
𝜆,qg𝜆q

mn(b̂†
𝜆q − b̂𝜆−q). To get Eq. (1.16)

from Eq. (1.15), they have assumed that the electron–intramolecular vibration
coupling is much stronger than the electron–intermolecular vibration coupling
(|gmm| ≫ |gmn|) and the coherent part is dominant than the incoherent hopping
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Figure 1.6 (a) HOMO band dispersion of bare electron of the pentacene single crystal. (b)
Schematic picture of band narrowing by polaron formation.

part described by the Marcus theory. The transfer integrals of coherent polaron t̃
are expressed using the bare transfer integral t0, the electron–phonon couplings
g and the number of phonons n as follows:

t̃mn ≃ t0
mn exp

{
−
∑
𝜆,q

(
n𝜆q +

1
2

) |g𝜆q
mm − g𝜆q

nn |2
}

, (1.17)

where n𝜆q = (exp(ℏ𝜔𝜆q∕kBT) − 1)−1. The band narrowing is included in this
expression because t̃ is always smaller than t0. The schematic pictures of HOMO
band dispersion for bare electrons and for polarons are shown in Figure 1.6a,b,
respectively.

In analogy with the band mobility of Eq. (1.14), the coherent polaron mobility
is obtained using the effective mass of polaron band,

𝜇
polaron
x =

q𝜏
m̃x(T)

. (1.18)

Here, 𝜏 is the scattering time by static disorders such as impurities and
defects. Although the temperature dependence of polaron mobility exhibits the
power-law behavior around room temperature, different from the band mobility,
the effective mass of polaron, not the scattering time 𝜏 , decides the temperature
dependence of mobility.

Band narrowing is a prominent feature of the polaron model. However, as
already discussed in Section 1.2.1, the polaron concept is strictly valid only when
the transfer integrals are much smaller than the reorganization energy. This
condition is actually hardly fulfilled in a number of organic semiconductors.
Recently, Brédas and coworkers theoretically demonstrated that the thermal
expansion of the crystal structures, rather than the polaron formations, is
the main factor responsible for the thermal bandwidth narrowing in organic
semiconductors [81].

1.2.4 Trap Potentials

Most theoretical studies try to understand the intrinsic transport nature,
namely, the thermally activated hopping behavior for low mobility and the
power-law temperature-dependent band-like behavior for high mobility, in
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Figure 1.7 Schematic picture of various extrinsic disorders and the depth of trap potential.

organic semiconductors by taking the electron–phonon couplings into account.
However, experimental data obtained on high-quality single crystals indicate
that the appearance of an activated transport is in many instances more likely due
to the presence of extrinsic disorder effects such as structural disorder, chemical
defects [82], interaction with the substrate [57] and so on (see Figure 1.7) [70].
Such extrinsic disorders inevitably exist in actual devices and trap the carriers,
resulting in decreasing the mobility. The existence of carrier-trap potentials has
been confirmed by atomic force microscope potentiometry [63] and electron
spin resonance spectra [83]. The depth of trap potentials W is in the range of
10–102 meV, which is comparable to the magnitude of transfer integrals [84].

1.2.5 Wave-packet Dynamics Approach Based on Density
Functional Theory

As discussed in Sections 1.2.1–1.2.4, the polaron concept is valid in the case
of t ≪ 𝜆, whereas the band transport, where charge carriers are scattered
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by phonons, is applicable in the case of t ≫ 𝜆. However, for typical organic
semiconductors the transfer integrals t are in the range 10–102 meV, which
has similar energetic orders of reorganization energy 𝜆. Furthermore, the
transfer integrals t are comparable to the depth of carrier-trap potentials W . It is
important for us to understand the carrier transport mechanism in competition
among the electron–phonon scatterings, the polaron formations, and the trap
potentials. Especially, a unified theoretical description from the thermally acti-
vated hopping transport behavior to the band-like transport behavior represents
a very challenging problem.

Therefore, I have developed the methodology named the time-dependent
wave-packet diffusion (TD-WPD) method [73, 85–88], which enables us to carry
out the transport calculations including the strong electron–phonon couplings
and the trap potentials on equal footing without perturbative treatment. The
mobility of a charge q along the x direction for an organic semiconductor with
volume Ω is calculated using the following Kubo formula:

𝜇x = lim
t→+∞

q
n ∫

+∞

−∞
dE

(
−

df
dE

)⟨
𝛿(E − Ĥe)

Ω
{x̂(t) − x̂(0)}2

t

⟩
, (1.19)

where the concentration of charge carriers is obtained by n = ∫ dEf (E)⟨𝛿(E −
Ĥe)⟩∕Ω. The Heisenberg picture of the position operator is defined by x̂(t) =
Û†(t)x̂Û(t), where Û(t = NtΔt) ≡ ΠNt−1

n=0 exp{iĤe(nΔt)Δt∕ℏ} is the time evolu-
tion operator. The dynamical change of electronic states induced by molecular
vibrations and distortions is included in the time-dependent expression of Hamil-
tonian Ĥe(t). The quantity ⟨· · ·⟩ is evaluated as

∑Nwp

m=1⟨Ψm(0)| · · · |Ψm(0)⟩∕Nwp,
where Nwp is the number of random-phase wave-packets |Ψm(0)⟩. Note
that when the Fermi distribution function is approximated as f (E) ≃
e−𝛽(E−EF), the Einstein relation 𝜇x = qDx∕kBT of Eq. (1.7) can be repro-
duced from Eq. (1.19), where the diffusion coefficient Dx is defined as
Dx ≡ limt→+∞(1∕t)[∫ dEf (E)⟨𝛿(E − Ĥe){x̂(t) − x̂(0)}2⟩]∕[∫ dEf (E)⟨𝛿(E − Ĥe)⟩].

From Eqs. (1.3) and (1.5), the transfer integrals including the electron–phonon
couplings are written by

tmn = t0
mn +

∑
𝜆,q

ℏ𝜔𝜆qg𝜆q
mn(b̂†

𝜆q + b̂𝜆−q). (1.20)

Then, to reduce the calculation cost, I adopt the semiclassical approximation
to evaluate the molecular vibrations. The phonon operators are replaced by the
displacements of molecules, where the displacement of the sth molecule in the
kth unit cell is defined asΔRks =

∑
𝜆,qX𝜆qeiqRk e𝜆q

s with X𝜆q =
√

ℏ∕2MN𝜔𝜆q(b̂
†
𝜆q +

b̂𝜆−q). Furthermore, I assume that the transfer integrals tmn depend solely on the
relative coordinate Rmn ≡ Rm − Rn, then the semiclassical expression of transfer
integrals of Eq. (1.20) is obtained as

tmn(t) ≃ t0
mn +

𝜕hmn

𝜕Rmn
ΔRmn(t), (1.21)

where ΔRmn(t) represents the change in intermolecular distance at time t due to
molecular vibrations. The equation of motion for the nth molecule with mass M is
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derived from the canonical equation MΔR̈n = −𝜕Etot({ΔRij})∕𝜕ΔRn, where Etot
is the total energy defined by the summation of electron energy and the molec-
ular vibration energy including these interactions [87]. By extracting ΔRmn(t) at
each time step of the molecular dynamics calculations, I can introduce the effects
of strong electron–phonon couplings as the ever-changing transfer integral and
obtain the mobility from Eq. (1.19). Flowchart of numerical calculations for evalu-
ating the mobility using the wave-packet dynamics combined with the molecular
dynamics and the schematic picture are shown in Figure 1.8 [70].

To reduce the computational cost, I employ the Chebyshev polynomial expan-
sion of the time evolution operator [85, 89],

ei Ĥe (t)
ℏ

Δt =
+∞∑
n=0

e−i aΔt
ℏ hninJn

(
−bΔt

ℏ

)
Tn

(
Ĥe(t) − a

b

)
, (1.22)

where the HOMO band is included within the energy interval [a − b, a + b],
and h0 = 1 and hn = 2 (n ≥ 1). The Chebyshev polynomials obey the following
recursive relation: Tn+1(x) = 2xTn(x) − Tn−1(x) with T0(x) = 1 and T1(x) = x. As
a result, the approach enables us to perform the order-N computation. Figure 1.9
shows the computing time and memory usage as a function of the number of
molecules N . I confirm that the order-N calculations with respect to both the
computing time and the memory usage are realized for the system of up to
108 molecules. The maximum system size corresponds to the two-dimensional
monolayer organic semiconductor with each side length of a few micro meters.
This shows that I can directly compare the transport properties calculated from
atomistic treatments with the experimentally observed one.

Using the dimer approach [90, 91], I evaluate the transfer integrals t, the elas-
tic constants K , and the electron–phonon couplings (𝜕t∕𝜕ΔR) from the DFT

103 104 105 106 107 108
10–3

10–2

10–1

100

101

102

10–3

10–2

10–1

100

101

102

C
o
m

p
u
ti
n
g
 t
im

e
 (

h
)

M
e
m

o
ry

 u
s
a
g
e
 (

G
B

)

Number of molecules

~1 μm

~1 μm

Pentacene single crystal

Figure 1.9 Computing time and memory usage per one wave-packet as a function of number
of molecules on the TD-WPD method. The number of molecule of two-dimensional monolayer
pentacene single crystal with each side length of 1 μm is shown as an example. The number of
time step is set to 1000.
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calculations [92] including the van der Waals interactions at the DFT-D level
[93] with the Becke three-parameter Lee–Yang–Parr (B3LYP) functional in con-
junction with the 6-31G(d) basis set. The all material parameters can be obtained
from the DFT calculations, and the TD-WPD method enables us to evaluate the
mobility of any organic semiconductors without fitting parameters.

1.3 Charge Transport Properties of Organic
Semiconductors

1.3.1 Comparison of Polaron Formation Energy with Dynamic
Disorder of Transfer Integrals due to Molecular Vibrations

First, the polaron formation energy of pentacene single crystal was investigated.
For the simplicity, the one-dimensional crystal was employed [87]. The polaron
state is obtained by self-consistent calculations to minimize the total energy
Etot with respect to the molecular displacements ΔR, namely, 𝜕Etot∕𝜕ΔR = 0
[94, 95]. When evaluating the reorganization energy used in the Marcus theory,
one assumes the small polaron, thus the calculation is done for an isolated single
molecule in general. As shown in Figure 1.10a, the evaluated binding energy of
small polaron is 93 meV, which is enough larger than the thermal energy at room
temperature [70]. However, there exist large transfer integrals of a few 10 meV
between molecules in the organic semiconductor. It is considered that the
polaron state is spatially extended over the crystal. Therefore, the binding energy
of polaron state in the crystal having transfer integrals of 75 meV was calculated.
The polaron binding energy decreases to only 14 meV, which indicates that the
polaron is unstable in the crystal around room temperature.

Then, the dynamic disorder of the transfer integrals, induced by the molecular
vibrations, was investigated. Figure 1.10b shows the time-dependent transfer
integrals tmn(t) defined by Eq. (1.21) for several intermolecular bonds at 300 K
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Figure 1.10 (a) Schematic picture of a polaron state in an isolated pentacene molecule and in
a pentacene single crystal. The calculated binding energies of polaron state and their size are
also shown. (b) Fluctuation of some transfer integrals between molecules induced by the
intermolecular vibrations.
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[70]. The transfer integral without any molecular vibration t0
mn is 75 meV and

shown by the red dashed line for comparison. The amplitude of the thermally
fluctuating transfer integrals corresponding to the second term of Eq. (1.21)
reaches 80 meV, which is comparable with t0

mn. This calculated result indicates
that the electron–phonon scattering cannot be treated by the perturbation
theory such as band transport theory discussed in Section 1.2.2. Furthermore,
it can be concluded that the polaron state with the binding energy 14 meV is
completely destroyed by the strong dynamic disorder of transfer integrals.

1.3.2 Temperature Dependence of Mobility

Before discussing extrinsic effects of trap potentials on the charge transport, the
intrinsic transport of organic semiconductors without the trap potential will be
investigated. Figure 1.11a shows the logarithmic plot of mobility 𝜇 as a func-
tion of temperature [70]. As shown by the white circles, the calculated mobility
𝜇 decreases monotonically with increasing temperature approximately by the
power-law dependence, which shows apparent evidence of the band-like trans-
port. Similar power-law dependence has been reported in other theoretical works
[96, 97]. The mean free path is one of the important quantities to understand
the transport mechanism, since if the mean free path is shorter than the inter-
molecular distance, then the concept of band transport is break down. The mean
free path defined by lmfp ≡ 𝑣x𝜏 can be obtained as lmfp ≡ limt→+∞Dx(t)∕𝑣x in the
TD-WPD formalism. White circles in Figure 1.11b show that the calculated mean
free path is approximately 10 times longer than the intermolecular distance at
room temperature [70]. It supports that the band-like transport can be realized
when the trap potential is absent. However, the ideal coherent band transport is
not realized in organic semiconductors because the HOMO band-edge states are
spatially localized owing to the strong electron-phonon scatterings [96–99].

Next, how the mobilities are affected by the extrinsic trap potentials will
be investigated, which are caused by chemical impurities, defects, randomly
oriented dipoles in gate dielectric, and so on. To take the trap potentials into
account, the author introduces the Anderson-type static-disorder potentials,
which modulate the on-site orbital energies randomly within the energy width
[−W∕2,+W∕2] as shown in Figure 1.11c [70]. Some experiments show that
the depth of trap potentials are estimated as about 50 meV [84]; thus, W is
changed from 50 to 200 meV in this study. By the introduction of the trap
potentials W , the magnitude of mobility is significantly decreased from 102 to
10−1 cm2 V−1 s−1. Furthermore, the author obtained a change in the temperature
dependence from power-law dependence to thermally activated behavior via
temperature-independent behavior. This behavior is experimentally observed in
pentacene and rubrene devices [26, 27, 57]. When W = 200 meV, the mean free
path is shorter than the intermolecular distance. It implies that the concept of
band transport is break down, which is consistent with the hopping transport
behavior of mobility. These calculated results indicate that competition between
the electron–phonon scattering and the trap potential provides important clues
to understand the transport nature of organic semiconductor devices.
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Figure 1.11 (a) Temperature dependence of mobility of pentacene single crystals for several
magnitudes of trap potential W . (b) Mean free path normalized by the intermolecular distance
a vs temperature characteristics for several W . (c) Schematic picture of electron (hole)
transport of organic semiconductor on the gate dielectric. Randomly oriented dipoles in gate
dielectric are possible origin of trap potentials. If the transfer integral t0 is larger than the trap
potential W , the electron–phonon scattering is dominated, thus the mobility decreases as
increasing temperature. On the other hand, if W > t0, the charge carrier is trapped tightly by
the potential W ; Therefore, the transport properties are close to typical thermally activated
behaviors.

1.3.3 Evaluation of Intrinsic Mobilities for Various Organic
Semiconductors

Finally, the author evaluated the intrinsic mobilities of representative organic
semiconductors. Numerical evaluation of the intrinsic mobilities for various
materials becomes a useful technique to find promising high-mobility materials
suitable for organic electronics from among a number of candidate materials.
Especially, the author focuses on the magnitude relation of mobilities among
the various materials. As a demonstration, the TD-WPD method to the naph-
thalene, DNT-V, pentaene, DNTT, C8-BTBT, and rubrene single crystals was
applied. Figure 1.12b shows the mobilities obtained by the TD-WPD method.
The distributions of experimentally observed mobilities in Figure 1.1g are shown
by vertical bars. It can be confirmed that the calculation results well reproduce
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Figure 1.12 (a) Band and hopping mobilities at 300 K are plotted by squares and triangles,
respectively, for naphthalene, DNT-V, pentacene, DNTT, C8-BTBT, and rubrene. (b) Mobilities at
300 K calculated by TD-WPD method for naphthalene, DNT-V, pentacene, DNTT, C8-BTBT, and
rubrene. Note that the mobility divided by 10 for the results of TD-WPD method was plotted.
Here, same material parameters, such as the transfer integrals, are employed even in above
different theories. For comparison, the distributions of mobilities observed at room
temperature are drawn by vertical bars.

the magnitude relation of experimentally observed mobilities for these materials.
Note that the mobility divided by 10 for the results of TD-WPD method was
plotted, since the wave-packet approach overestimates the magnitude of intrinsic
mobility. The possible origin of the overestimation is suggested in some papers
[99, 100], but still under consideration. For comparison, the band and hopping
mobilities are shown in Figure 1.12a. The band and hopping mobilities cannot
reproduce the magnitude relation of mobilities for some materials discussed
here. For example, although the C8-BTBT exhibits high mobility in experiments,
the calculated hopping mobility is the lowest among the materials discussed here.
The calculated band mobility of naphthalene is very high, whereas the mobility
observed in experiment is quite low. In comparison with the conventional band
and hopping models, the TD-WPD method is expected to become a useful tool to
estimate and predict the magnitude relation of mobilities for candidate materials.

1.4 Summary

Organic semiconductors are expected to become key materials for realizing
the printed electronics. New organic semiconductors with higher mobility
have been strongly desired. However, in general, it requires time-consuming
processes to synthesize these molecules, fabricate devices using the molecules,
and evaluate the device performance. It is a very important and an urgent issue
for us to establish the numerical simulation method for finding new organic
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semiconductors with high mobility from among various kinds of the candidate
materials. Evaluating the intrinsic charge transport properties of organic semi-
conductors requires a new theory that is able to describe the electron–phonon
coupling using nonperturbative manner.

The author introduced some recent topics in the field of charge transport of
organic semiconductors and presented the fundamental transport theories from
an atomistic viewpoint. Then, the author’s theoretical study using the TD-WPD
method was presented, which enables us to evaluate the transport properties
taking into account the electron–phonon couplings and the trap potentials on
an equal footing without any perturbative treatment. Using this method, it was
shown that the calculated temperature dependence of mobility of pentacene
single crystal agrees well with experimentally observed characteristics. Further-
more, the calculated mobilities of representative organic semiconductors well
reproduce the magnitude relation of experimentally observed mobilities. These
calculated results indicate that, in comparison with the conventional band and
hopping models, the TD-WPD method is expected to become a useful tool to
estimate and predict the magnitude relation of mobilities for candidate materials.

1.4.1 Forthcoming Challenges in Theoretical Studies

As far as I know, the theoretical studies on the charge transport of organic
semiconductors are divided into two approaches. One is the coherent transport
approach based on the band transport, including my present study, and induces
decreases in mobility with increasing temperature. Thermally activated behavior
is seen only if the trap potentials are introduced into the crystal. Another one is
the incoherent transport approach based on the Marcus theory, which induces
the thermally activated behavior even if there are no trap potentials in crystals.
Recently, a new incoherent transport approach based on a flexible surface hop-
ping scheme was applied to a model Hamiltonian and showed the crossover from
hopping transport at low electronic couplings to a band-like transport at high
couplings [101]. The two approaches mentioned above give similar temperature
dependences of mobility, but the physical origins are considerably different from
each other. Systematic understanding of these different approaches remains an
important issue.

When we try to predict the transport properties of new organic semiconduc-
tors, the precise crystal structure is the required information. Therefore, the the-
oretical prediction of packing structure of molecular crystal is very important.
But it is known as a difficult problem in general because there exists a number of
crystalline polymorphs reflecting the weak intermolecular interactions.

Furthermore, one of the main scientific challenges is to identify the micro-
scopic origin of trap potentials in realistic organic devices. In this study, the
Anderson-type static disorder potentials using W as a parameter were intro-
duced. The inclusion of more realistic trap potentials is crucial for understanding
and improving the device performance of organic semiconductors.
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