
1

1

Introduction to Multiferroics and Its Application
Qu Yang, Bin Peng, Ziyao Zhou, and Ming Liu

Xian Jiaotong University, School of Electronic and Information Engineering, Electronic Materials Research
Laboratory, Key Laboratory of the Ministry of Education, State Key Laboratory for Mechanical Behavior of
Materials, 28 W. Xianning Road, Xi’an, Shaanxi 710049, China

This chapter gives an introduction to multiferroics including the concept,
characteristics, advantages, and existing researches toward potential applica-
tions. Voltage-controlled ferromagnetism based on multiferroic heterostructures
is focused here because of the capacity for low energy dissipation, high signal-to-
noise ratio, etc. We discuss the basic understanding and potential applications.

1.1 Concept of Multiferroics and the Existing
Magnetization Manipulation Methods for Practical
Applications

Of late, multiferroic materials have been very popular in spintronics [1]. They
simultaneously occupy ferromagnetic (FM) and ferroelectric (FE) orders,
enabling magnetism to be manipulated by an electric field (E-field) or vice
versa [2–19]. Therefore, multiferroic materials are very promising in producing
multifunctional, miniature, high-speed devices [1]. So far, several methods
(e.g. electric currents, voltages, thickness, or temperature) based on multi-
ferroic materials have been well established to manipulate magnetization to
realize applications like sensors, magnetic random access memories (MRAMs),
radiofrequency (RF)/microwave systems, and so on [20–22]. Methods like
electric currents manage to control high-anisotropy magnetic cells through the
current-induced spin/strain-transfer torque (STT), thus holding out prospects
for magnetic devices like information storage devices [23]. Multiferroic devices
with voltage controlling techniques have low energy dissipation and high
signal-to-noise ratio due to the absence of electromagnets [18, 22]. These
methods can largely reduce the accumulation of heat as well as increase the
integrated quality by substitutional magnetoelectric (ME) coupling [18, 20].
Meanwhile, accompanied by increasing memory density and decreasing mass,
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the voltage modulation is preferred for satellite, radar, and portable electronic
devices where volume, mass, and energy consumption are precious [22].

1.2 Typical Multiferroic Heterostructures and Their
Characteristics

Although extensive work has been carried out in single-phase multiferroic com-
pounds like BiFeO3, they are still limited in achieving controllable modulation
with ME coupling while at room temperature [24]. On the contrary, multiferroic
heterostructures that integrate individual magnetic and FE materials have
strong room-temperature ME effects, and are more likely to be utilized in ME
devices in the near future [24]. Besides, they are also favored for the flexibility
of material choices and device designs [24]. Multiferroic heterostructures, like
Fe3O4/PMN–PT (lead magnesium niobate–lead titanate), FeGaB/Si/PMN–PT,
and YIG (yttrium iron garnet)/PMN–PT, have been explored on the basis of
particular FE crystal material (PMN–PT) with a large piezoelectric coefficient
[1, 5]. With the external electric field (E-field) applied along the PMN–PT sub-
strates, these heterostructures should obtain strains and charge accumulations
[1, 20]. It provides a great opportunity for the adjacent magnetic layers to achieve
magnetic anisotropy and, eventually, to obtain a large change of ferromagnetic
resonance (FMR) through the inverse magnetoelastic coupling [1, 20]. What is
more, it is also demonstrated that FM/FE heterostructures are exceptionally use-
ful in the applications of STT random access memory due to the strain-induced
magnetostatic surface spin waves as well as the strain-controlled repeatable and
nonvolatile magnetic anisotropy reorientation [20]. Here, we mainly focus on
the voltage-controlled ferromagnetism based on multiferroic heterostructures
and discuss recent progress in the fundamental understanding and the potential
applications.
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