Index

a
acaleph-like microcrawler 191
acetic acid (HAc) 125, 127, 131, 236
acid-induced swelling 151
acid-triggered burst release 176, 177, 178, 179, 181, 182
acorn-shaped configuration 203
acrylamide (AAm) 56, 68, 138, 149, 163, 174–177, 190, 195, 270
3-acrylamidophenylboronic acid (AAPBA) 136, 137, 138, 140, 141, 158
acrylic acid (AAc) 137, 138, 141, 142, 143, 144, 158
acrylonitrile butadiene styrene (ABS) 231, 233
actuators 55, 68, 79, 85, 103, 136, 137, 174, 207, 216, 270
adhesion energy 203, 204
adjustable controlled-release rate 145
adsorption capacity 73, 74, 75, 117
air-cooling 277, 279, 280, 281
alcohol-responsive burst release 171–174
algae cells 205
alginate(s) 6, 123, 131–136, 158, 211, 241, 242, 243, 244–248, 253
alginate hydrogel materials 135
alginate microcapsules 132
alginate microparticles 211
amide groups 55, 60, 61, 65, 171
ammonium persulfate (APS) 56, 57, 62, 86, 163, 190, 213, 217, 218
artificial spider web 248
asymmetry swelling/shrinking volume changes 189
2,2’-azobis(2-amidino-propane dihydrochloride) 168, 195
2,2’-azobis(2-amidino-propionaldehyde) 168
2,2’-azobis(2-methylpropionamidine) dihydrochloride (V-50) 91

b
B/A1/C double emulsions 39
B15C5Am. See benzo-15-crown-5-acrylamide (B15C5Am)
B18C6Am 68, 71, 73, 75, 195–200, 270, 281, 282, 283, 284, 286, 289
B18C6Am/Pb2+ complexes 68, 73, 75, 286
B18C6Am/Pb2+ host-guest complexes 68, 281
benzo-18-crown-6 73
benzo-15-crown-5-acrylamide (B15C5Am) 174, 175, 176, 177
benzophenone 270
benzyl benzoate (BB) 48, 91, 132, 147, 178, 179, 204, 236, 256
biomimetic soft microrobots 194
Bold’s Basal medium 279
bovine serum albumin (BSA) 117, 118, 135, 136, 195, 196, 197, 200, 201
bowl shape 188, 203, 204, 206
bromoeosin 236, 240, 241
BSA adsorption 117, 118

BSA-FITC 135, 136
soaked microcapsules 135
burst release 162–182
butyl acetate 168, 169, 179

C
Ca-alginate 134, 135, 136, 241, 242, 243, 244–248
microcapsules 134, 135
microfibers 244
CaCO₃ nanoparticles 48, 132, 138
capillary microfluidic device 93
capillary number 15
carboxymethylcellulose sodium (CMC) 225
cationic pH-responsive microcapsules 151
cell capture 205
cell culture 253, 267, 268, 272–281, 289
cell growth 223, 267, 279
chemical co-precipitation 145
chitosan microcapsules (CS) 147
Chlorella pyrenoidosa cells 279, 280
chlorotrtrimethylsilane 47
coaxial three-phase jets 224
co-delivery 217–218, 240
coefficient of variation (CV) 15, 40, 57, 82, 125, 163
co-encapsulation 11, 12, 24, 211, 212–217, 219
co-flow 4, 12, 13, 14, 15, 16, 86, 124, 132, 256, 257
microchannel 4
colloidal-scale hole-shell microparticles 187
complete engulfing configuration 36, 37
complexes’ stability constant (logK) 73
confined microreaction 161, 187, 201–207, 211
constant-flow pumps 14
constant-pressure pumps 14, 287
contact angle 203, 204
continuous fluid 13, 14, 15, 25, 37
controllable double emulsions 16
controllable emulsion droplets 12
controllable monodisperse single emulsions 14
controllably deformed emulsions 110
controllably deformed W/O/W emulsions 108, 118
controlled capture 187, 201–207
copper 47, 48, 49
core compartment 161, 162
core flow 223, 224, 236
core-sheath flow jet 224, 225, 226
templates 226
core-sheath microfibers 224–235
fabrication 224
morphological characterization 227
temperature regulation 230
thermal property 227
core-sheath poly(vinyl butyral) microfibers 224, 226
core-shell composite microfibers 5
core-shell configuration 203
core-shell microcapsules 4, 62, 64, 66, 75, 136, 161–183
core-shell microspheres 55, 68, 69, 70, 71, 72, 73, 74, 75
core-shell PNIPAM microcapsules 55, 63, 64, 65, 67, 75, 95, 169
coverslips 13, 14, 47, 255, 268, 269, 270, 273, 279
critical ethanol concentration value 255

cross linked polymer network 85
cross-linker 270

gluteraldehyde (GA) 146
cross linking degree 92, 96, 99, 101, 132, 259

18-crown-6 68
crown ether 73, 198
crystallization enthalpy 229

CS-M-T microcapsules 152
cyclohexane 168, 169
cylinder glass capillaries 12

d

DC749 44, 48
dehydrated Ca-alginate microfibers 244, 246
dehydrated spider-silk-like Ca-alginate microfibers 243, 244, 246
dehydration 69, 97, 244
deionized water 68, 69, 70, 71, 73, 74, 75, 81, 83, 108, 135, 138, 139, 163, 168, 169, 170, 173, 174, 175, 179, 190, 257, 270, 274
dense skin layer 98, 172, 227
density mismatch 188, 201, 207
de-swelling 59, 61, 85, 86, 145, 149, 151, 172, 198
dewetting 109, 110, 188, 207
differential scanning calorimeter (DSC) 227, 229, 230
diffusional permeability 145
diffusion-driven release systems 165
dimethoxy-2-phenylacetophenone (BDK) 63, 80, 81, 91, 138, 163, 168, 190, 191, 195, 213
2,2-dimethoxy-2-phenylacetophenone (BDK) 138, 163, 213
dimethyl sulfoxide (DMSO) 225, 226
diphenyliodonium nitrate (PAG) 132
direction-specific burst release 170, 171
dispersed fluid 14, 15
Disperse Red 242
Donnan potential 137, 281
double emulsion droplets 125
double emulsions, 3, 12, 35, 62, 123, 161, 188, 212
Dow Corning 749 (DC749) 38, 41, 44, 45, 47, 48, 50, 217
dripping 15, 18, 24
droplet coalescence 37, 47, 48, 50
droplet maker 22, 24, 25, 27
droplet-making units 12, 13, 14, 21
droplet-pairing 44, 45–47
droplet-triggered droplet formation 44

d

eccentric core-shell structures 188
eccentric oil core 168
EC microcapsule preparation 125
EGDMA dyed with LR300 116
emulsification 4, 11, 16, 17, 18, 19, 20, 21, 35, 91, 92, 93, 123, 124, 127, 132, 133, 158, 214
emulsion droplet 1, 2, 3, 4, 12–16, 19, 22, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 57, 58, 62, 63, 64, 81, 93, 94, 125, 127, 136, 140, 187
emulsion droplet system 1
encapsulation ratio 230, 231
energy storage 123, 223
systems 223
enhanced mass transfer 106, 118
epoxy resin 14, 80, 270, 272
equilibrium deswelling ratio 149
equilibrium state 58, 59, 99, 102, 274
ethanol-responsive permeability control 260, 263
ethanol-responsive volume change 255
ethoxylated trimethylolpropane triacrylate (ETPTA) 201, 202, 203, 204, 207
ethyl cellulose (EC) 123, 124–131
ethyl gallate (EG) 55, 62–67
evolved double emulsions 188, 207
expanded microchamber 38, 41, 45, 46

f
fast-responsive PNIPAM microgels 206, 207
Fe₃O₄ magnetic nanoparticles (MNPs) 68, 195
Fe₃O₄ nanoparticles 163, 164
ferrofluid 163, 168, 195, 241
fishbowl-shaped hole-shell microparticles 201, 204
FITC-dextran 156, 157
FITC-insulin 142, 143, 144
FITC-labeled BSA (BSA-FITC) 135, 136
FITC labeled insulin (FITC-insulin) 142, 143, 144
FITC-PNIPAM nanogels 201, 203, 205
flow circulation loop 268, 273
flow-focusing 4, 12, 13, 14, 21, 38, 41, 44, 46, 47, 50, 80
cross-junction geometry 14
generations 38, 41, 44, 46, 47, 50
flow rate change 268, 281, 282, 283
fluid heat exchange 268, 277
fluorescein isothiocyanate (FITC) 135, 136, 142, 143, 144, 156, 157, 201, 203, 205, 255, 257, 258, 259, 260, 261, 262, 263
fluorescence intensity 111, 143, 144, 156, 167, 258
fluorescent dye 62, 91, 180, 203
fluorescent dye Lumogen Red 300 (LR300) 62
fluorescent nanoparticles 167
fluorinated oil 37
Fluorochrome LR300 170
free radical polymerization 56, 80
freeze-dried PNIPAM microgels 96
functional microfibers 223–248
core-sheath microfibers (see core-sheath microfibers)
cylinder core flow 223
electrospinning and wet spinning 223
fabrication 224
peapod-like microfibers 235
spider-silk-like microfibers 241
functional nanoporous poly(MMA-co-EGDMA-co-GMA) microparticles 118
glass-capillary microfluidic device 12, 14, 15, 16, 17, 18, 20, 22, 108, 201, 224
glass plates 12, 21, 44, 46
glass slide 13, 14, 47, 80, 124, 132, 167, 255, 268, 270, 272, 273, 279
glucose-induced shrinking 138
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>glucose-induced swelling</td>
<td>137, 140, 141, 142, 143</td>
</tr>
<tr>
<td>glucose regulation</td>
<td>136</td>
</tr>
<tr>
<td>glucose-responsive microcapsules</td>
<td>123, 137, 138, 139, 140, 158</td>
</tr>
<tr>
<td>glucose-responsive release</td>
<td>142, 143, 144</td>
</tr>
<tr>
<td>glutaraldehyde (GA)</td>
<td>146, 147, 181, 236</td>
</tr>
<tr>
<td>glycerin</td>
<td>108, 138, 195</td>
</tr>
<tr>
<td>glycerol</td>
<td>62, 81, 91, 201, 212, 217, 218</td>
</tr>
<tr>
<td>glycylid methacrylate (GMA)</td>
<td>114–116, 117, 118</td>
</tr>
<tr>
<td>gold nanoparticles</td>
<td>205</td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Hagen-Poiseuille's law</td>
<td>281</td>
</tr>
<tr>
<td>heavy metal</td>
<td>67, 71, 72</td>
</tr>
<tr>
<td>ions</td>
<td>71, 72</td>
</tr>
<tr>
<td>hierarchically engineered poly(methyl methacrylate-co-ethylene glycol dimethacrylate)</td>
<td></td>
</tr>
<tr>
<td>(poly(MMA-co-EGDMA)) microcapsules</td>
<td>108</td>
</tr>
<tr>
<td>hierarchical porous microcapsules</td>
<td>105–118</td>
</tr>
<tr>
<td>hierarchical porous poly(MMA-co-EGDMA-co-GMA) microcapsules</td>
<td>108, 113, 114, 115, 116, 117, 118</td>
</tr>
<tr>
<td>hierarchical porous structures</td>
<td>105, 106, 107, 108, 116, 118</td>
</tr>
<tr>
<td>higher order multiple emulsions</td>
<td>11, 12, 19, 41–44, 46, 212, 219</td>
</tr>
<tr>
<td>high interconnectivity</td>
<td>105</td>
</tr>
<tr>
<td>highly-interconnected hierarchical porous structures</td>
<td>105, 106–108, 118</td>
</tr>
<tr>
<td>highly monodisperse size</td>
<td>15, 18</td>
</tr>
<tr>
<td>hole-shell microcapsules</td>
<td>187–207</td>
</tr>
<tr>
<td>hole-shell structures</td>
<td>188, 203, 205</td>
</tr>
<tr>
<td>hollow calcium alginate microcapsules</td>
<td>123, 134, 158</td>
</tr>
<tr>
<td>hollow fiber membranes</td>
<td>5</td>
</tr>
<tr>
<td>hollow microcapsules</td>
<td>123–158, 162</td>
</tr>
<tr>
<td>hollow tubular microfibers</td>
<td>5</td>
</tr>
<tr>
<td>homogenizer-produced W/O emulsions</td>
<td>166</td>
</tr>
<tr>
<td>hydrated Ca-alginate microfibers</td>
<td>243</td>
</tr>
<tr>
<td>hydrogel microcapsules</td>
<td>55–75</td>
</tr>
<tr>
<td>hydrogel microvalve</td>
<td>267, 268, 269, 270, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 289</td>
</tr>
<tr>
<td>hydrogel-microvalve-integrated micro-heat-exchanging system</td>
<td>273, 277</td>
</tr>
<tr>
<td>hydrogen-bonding interaction</td>
<td>55</td>
</tr>
<tr>
<td>hydrophilic microlancets</td>
<td>48</td>
</tr>
<tr>
<td>hydrophilic spider-silk-like Ca-alginate microfiber</td>
<td>247</td>
</tr>
<tr>
<td>hydrophilic-swelling/hydrophobic-shrinking phase changes</td>
<td>162</td>
</tr>
<tr>
<td>hydrophobic interaction</td>
<td>60, 62, 65</td>
</tr>
<tr>
<td>1-hydroxy-cyclohexyl-phenylketone</td>
<td>270</td>
</tr>
<tr>
<td>hydroxyethyl cellulose (HEC)</td>
<td>47, 147, 151, 152, 178, 241</td>
</tr>
<tr>
<td>2-hydroxyethyl methacrylate (HEMA)</td>
<td>79–84, 103</td>
</tr>
<tr>
<td>2-hydroxy-2-methyl-1-phenyl-1-propanone (HMPP)</td>
<td>108, 201, 204</td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>imitated solar irradiation</td>
<td>234, 235</td>
</tr>
<tr>
<td>in-chip membranes</td>
<td>253, 254, 264</td>
</tr>
<tr>
<td>inclusion constant</td>
<td>68, 286</td>
</tr>
<tr>
<td>independent single emulsion droplets</td>
<td>39</td>
</tr>
<tr>
<td>initiator</td>
<td>56, 57, 62, 81, 86, 87, 91, 138, 163, 213, 218</td>
</tr>
<tr>
<td>injection tube</td>
<td>14, 16, 57, 91, 108, 226, 236, 241</td>
</tr>
<tr>
<td>inner fluid</td>
<td>14, 22, 93, 94, 109, 125, 127, 138, 140, 146, 147, 178, 179, 201, 212, 214, 218, 226, 227</td>
</tr>
<tr>
<td>in situ polymerization</td>
<td>202, 268</td>
</tr>
<tr>
<td>insulin</td>
<td>136, 142, 143, 144, 253</td>
</tr>
<tr>
<td>interfaces</td>
<td>1, 2, 3–6, 37, 59, 93, 95, 105, 106, 117, 125, 163, 178, 191, 202, 204, 237, 253, 254, 255, 257, 258, 264, 295, 296</td>
</tr>
<tr>
<td>interfacial energy</td>
<td>36, 188</td>
</tr>
<tr>
<td>interfacial reactions</td>
<td>253, 254</td>
</tr>
</tbody>
</table>
interfacial tension 15, 16, 36, 37, 38, 39, 45, 83, 204
internal gelation 123, 132, 134, 158
ionic crosslinking 132
isolated co-encapsulation 211, 212, 213, 215, 217, 219
isopentyl acetate 195
isopropanol 86, 87, 91, 92, 93, 94, 95, 133, 139, 140, 148, 178, 257
isothermal volume phase transition 58, 59, 60

J
Janus microspheres 4
jetting 15

K
K\(^+\)-recognition 174, 175
K\(^+\)-responsive
 burst release 174–176
 core-shell microcapsules 174, 175
K\(^+\)-triggered volume shrinking 175

L
lab-on-a-chip 1, 2
laminar flow 1, 2, 4, 5, 6, 253, 254, 257, 264
 interfaces 1, 6, 253, 264
lead (Pb\(^{2+}\)) 67
linear solid microfibers 5
liquid droplets 11
liquid extractors 22, 23, 25, 26, 213
liquid-liquid interfaces 1, 2, 3–6, 295, 296
lithographically fabricated devices 35
lithography 12, 268
lock-key 206
log K 73
lower critical solution temperature
 (LCST) 55–58, 61, 62
LR300. See Lumogen Red 300 (LR300)

m
magnetic-guided
 assembly 245, 246
magnetic-guided
 patterning 244–246
magnetic-guided targeting delivery 152, 163, 164
magnetic hierarchical porous
 poly(MMA-co-EGDMA-co-GMA) microparticles 117
magnetic knots 242, 243, 244, 245
magnetic minipillars 244, 245, 246
magnetic nanoporous
 poly(MMA-co-EGDMA-co-GMA) microparticles 117
magnetic PNB core-shell microspheres 74, 75
magnetic spindle-knots 224, 241, 242, 243, 244, 246–248
magnetic targeting 145
manually assembled glass-capillary devices 35
mass transfer 1, 2, 11, 35, 79, 105, 107, 111, 112, 118, 207, 283, 295, 296
mass transport 187
MC-W-W EC microcapsules 127
mechanical strength 83, 112, 165, 217, 231
melting enthalpy 229, 230
membrane-in-a-chip
 in biomedical fields 253
 ethanol-responsive self-regulation 260
 fabrication of 254
 nanogel-containing smart membrane 253, 255
 reversible and repeated
 thermo/ethanol-responsive self-regulation 263
 in situ formation 253
smart membranes 253
temperature-responsive self-regulation of the membrane permeability 257
membrane permeability 254, 255, 256, 257–264
methanol 172, 173, 174
methyl methacrylate (MMA) 79–84, 103, 108, 111, 113, 114, 115, 116, 117, 118, 201
micro-actuator 195, 196, 197, 198, 199–201
micro-analysis 1, 4, 5
microcapsules, 1, 11, 35, 55, 91, 123, 161, 211, 295
microchannel, 1, 11, 37, 170, 195, 213, 223, 253, 267, 295
microfibers 2, 3–6, 223–248, 295
microfluidic-constructed stable phase interface structure systems 2
microfluidic device 1, 11–31, 35–51, 56, 62, 63, 68, 69, 70, 75, 80, 81, 86, 87, 91, 92, 93, 94, 108, 109, 124, 125, 132, 138, 139, 146, 147, 163, 169, 178, 190, 195, 196, 197, 201, 202, 212, 213, 217, 223, 224, 225, 226, 236, 241, 242
microfluidic emulsification 132, 133
microfluidic flow control system (MFCS) 273, 274, 277, 283, 287
microfluidic laminar flow technology 5
controllable fabrication of functional materials 1
microscale closed liquid-liquid interfaces 3
microscale nonclosed annular laminar interfaces 5
microscale nonclosed layered laminar interfaces 4
technology 1, 2, 4, 6, 83, 136, 295, 296, 297
microgel-based Pb2+ sensor 272
microgel-incorporated glass capillary 271, 272
micro-heat-exchanger 273, 274, 277, 278, 279
micro-heat-exchanging system 268, 273–274, 277, 279
micro-lancet 37, 38, 47, 48, 49, 50, 51
microlancets 48
micrometer-sized pores 105, 106, 107, 108–118
micro-reaction 1, 4, 5, 50, 51, 161, 187, 201–207, 211, 219, 253
microscale closed liquid-liquid interfaces 3
microscale emulsion interfaces 4
microscale nonclosed layered laminar interfaces 4
micro-scale phase interfaces 3
microscope glass slides and coverslips 14
micro-separation 1, 4, 5
microsphere(s), 1, 11, 55, 79, 123, 161, 192, 295
microvalve-controlled water cooling 277, 278, 280, 281
microvalve-in-a-chip 267–289
mask-based lithography 268
Pb2+-responsive hydrogel microvalve 270
in situ polymerization 268
thermo-responsive hydrogel microvalve 268
microvalve-integrated micro-heat-exchanging system 273
microvalves 123, 145, 147, 155, 157, 158, 267–289
middle fluid 16, 108, 109, 125, 138, 140, 146, 147, 163, 178, 190, 201, 204, 212, 213, 217, 218, 226, 227
monodisperse calcium alginate hollow microcapsules
droplet generation and ionic cross-linking 132
microfluidic fabrication strategy 132
morphologies and structures of 133
monodisperse controllable double emulsions 38
monodisperse core-shell hydrogel microparticles, Pb\(^{2+}\) adsorption behaviors 71
core-shell microspheres 68
industrial wastewater 68
microfluidic fabrication 68
thermo-responsive swelling/shrinking configuration change 68
monodisperse core-shell microcapsules alcohol-responsive burst release 171
chitosan microcapsules 179
controllable fabrication 161
direction-specific thermo-responsive burst release 168
double emulsions 161
fabrication 177
K\(^{+}\)-responsive burst release 174
microfluidic strategy 162
nanoparticles 166
oil-soluble substances 162
pH-responsive burst release 176
monodisperse core-shell PNIPAM hydrogel microparticles, ethyl gallate antioxidan
t activity 62
intact-to-broken transformation behaviors 65
microfluidic fabrication 62
thermo-responsive phase transition behaviors 65
volume phase transition temperature 62
monodisperse emulsion droplets 12, 13
monodisperse ethyl cellulose hollow microcapsules
microfluidic fabrication strategy 124
morphologies and structures of 125
monodisperse glucose-responsive hollow microcapsules
hollow microcapsules glucose-responsive behaviors of 140
microcapsules 140
glucose-responsive drug release behaviors 142
microfluidic fabrication strategy 136
sugar-responsive systems 136
tumor cells 136
monodisperse higher-order multiple emulsions 41
monodisperse hole-shell microparticles core droplet 188
effect of inner cavity 191
functionality 205
interfacial properties 188
microfluidic fabrication 201
microfluidic strategy 188
particle-template/emulsion-template methods 187
Pb\(^{2+}\) sensing and actuating 195
poly(NIPAM-co-B18C6Am) 195,
196, 199, 200
shell droplet 188
structure control 203
thermo-driven crawling movement 188, 190, 193
versatility 187
monodisperse multi-stimuli-responsive hollow microcapsules controlled-release characteristics 154
environmental changes 144
intelligent drug delivery systems 144
microfluidic fabrication strategy 145
microvalves 145
“on-off” mechanism 144
pH 145
site-specific targeting 158
stimuli-responsive behaviors 150
monodisperse oil droplets 239
monodisperse oil-in-water (O/W) emulsions 80
monodisperse oil-in-water-in-oil (O/W/O) emulsions 41, 68, 91
monodisperse PNIPAM hydrogel microparticles, tannic acid
microfluidic fabrication 56
volume phase transition behaviors 57
monodisperse porous microparticles 79
monodisperse porous poly(HEMA-MMA) microparticles biodegradability 79
microfluidic fabrication strategy 80
structures 82
monodisperse quadruple-component O/W/O double emulsions 214
monodispersity 11, 14, 24, 40, 55, 57, 71, 79, 80, 82, 83, 93, 131, 134, 140, 149, 150, 187, 204
multicompartment microparticles 211–219
compound-fluidic electrospray technique 211
controllable co-encapsulation 213
encapsulation systems 211
fabrication 212
immunoprotection 211
isolated co-encapsulation 211
microbioreactions 211
multi-core/shell microparticles 212
synergistic release 216
Trojan-horse-like microparticles 217
troublesome multi-step process 211
multicomponent multiple emulsions 11, 12, 14, 22–31, 27, 213
multi-core microspheres 4
multi-core/shell microparticles 212–217
multiple emulsions 3, 4, 11–31, 35–51, 158, 211, 212, 213, 219
multi-stimuli-responsive microcapsules 123, 144–157

n
Na-alginate 132, 133, 241
nanogel(s) 201, 203, 253, 254, 255–264
nanogel-containing chitosan membrane 255, 256, 257, 260, 262
nanogel-containing membrane 254, 257, 258, 259, 260, 261, 262, 263, 264
nanogel-containing smart membranes 253, 254, 255–257, 264
nanoparticles 166
nanoparticles-in-microcapsule system 166
nanoporous PEGDMA microparticles 113, 117
nano-porous poly(MMA-co-EGDMA-co-GMA) microparticles 117, 118
nano-porous structure 107, 108, 111, 112, 113, 114, 116, 117, 118
nanovalves 255, 256, 257, 264
N-butyl acetate 241, 242, 244
N-2-microgel 98
N,N′-methylene-bis-acrylamide (MBA) 86, 190
N,N′-methylene-bis-acrylamide (MBA) 56, 62, 86, 91, 92, 93, 96, 97, 99, 100, 102, 138, 163, 168, 190, 195, 212, 217, 270
N,N,N′,N′-tetramethylethylenediamine (TEMED) 56, 57, 86, 218
n-octane 227
non-engulfing configuration 36
nonporous PEGDMA microparticles 113, 117
non-spherical particles 4, 11, 35
oil-core/hydrogel-shell microcapsules 163
oil-filled compartments 162
oil-in-water-in-oil (O/W/O) emulsion droplets 62
oil-in-water-in-oil-in-oil (O/W/O/O) triple emulsions 43
oil-in-water-in-oil-in-water-in-oil (O/W/O/W/O) quadruple emulsions 41
oil-in-water (O/W) primary emulsions 91
oil jets 44, 45, 46
oil-soluble 2,2-dimethoxy-2-phenylacetophenone (BDK) 80
oil-soluble substances 162
oil/water interface 95
oleic-acid-modified magnetic nanoparticles (OA-MNPs) 195, 197
on-demand release 211, 212
OP-10 181
open-celled porous microgels 96
open-celled porous PNIPAM microgels 91, 92, 93, 102
open-celled porous structure 90–103
OPH-2 and OPI-2 microgels 99
osmotic pressure 73, 127, 131, 198, 281
outer fluid 14, 69, 108, 109, 124, 125, 126, 127, 128, 129, 130, 131, 133, 138, 139, 146, 147, 163, 178, 190, 201, 213, 225, 226
O/W emulsions 3, 80
O/W/O double emulsion droplets 64
O/W/O double emulsions 3, 4, 18, 24, 27, 39, 41, 42, 43, 44, 45, 46, 50, 51, 63, 64, 68, 70, 71, 132, 133, 134, 138, 139, 146, 147, 149, 162, 163, 164, 177, 178, 181, 190, 212, 213, 214
O/W/O/O triple emulsions 43, 46
O/W/O/W triple emulsions 28
parallel laminar flows 253, 254
partial engulfing configuration 36, 37
partially dewetting 110, 188
pathologically acidic conditions 154
Pb$^{2+}$-adsorption 73, 74, 75
Pb$^{2+}$ detection platform 272, 281, 282, 283–288
Pb$^{2+}$ pollution discharge 289
Pb$^{2+}$-recognition 68
Pb$^{2+}$-responsive hydrogel microvalve 268, 270, 272, 281
Pb$^{2+}$-responsive microgel
pollution warning 287
real-time online detection of trace Pb$^{2+}$ 281
selectivity and repeatability of the Pb$^{2+}$ detection platform 284
sensitivity of the Pb$^{2+}$ detection platform 283
wastewater 289
Pb$^{2+}$-responsive
P(NIPAM-co-B18C6Am) microgel 281, 282
Pb$^{2+}$ sensing 195–201, 282
Pb$^{2+}$ sensing and actuating 195
PDMS microfluidic device 12, 14, 15
peapod-like chitosan microfibers 235, 236, 237, 239, 240
peapod-like jet 236–239
peapod-like jet containing discrete oil droplets 237
peapod-like microfibers 235–241
fabrication 236
flow rates 236
synergistic encapsulation 240
peristaltic pump 273, 274, 286, 287
permeability coefficient 154, 155, 156, 157
PGPR90 48
phase change materials 223, 224–235, 248
phenols 60, 62, 65
photoacid generator 132, 133
Index

photoacid generator diphenyliodonium nitrate (PAG) 132
photo-initiator 63, 80, 108, 138, 163, 190, 191, 213, 270
photoinitiator dimethoxy-2-phenyl-acetophenone (BDK) 63
pH-responsive burst release 176–182
pH-responsive capsule membrane 123, 158
pH-responsive controlled-release behaviors 154
pH-responsive core-shell microcapsules 177
pH-responsive swelling 147, 151, 152
physiological temperature 136, 137, 141, 142
pK_a 137, 140, 146, 147, 151, 154, 516
plug-n-play microfluidic devices 21
Pluronic F127 62, 91, 108, 125, 132, 138, 147, 163, 168, 178, 190, 195, 201, 212
P(NIPAM-co-B18C6Am) microgel 270, 281, 282, 283, 286
PNB microactuators 195, 196, 197, 198, 199, 200, 201
PNIPAM hydrogel 55–61, 95, 166, 172, 189, 191, 192, 193, 195, 216, 270, 274, 276, 289
microvalve 270
shell 166, 216
PNIPAM microactuators 198
PNIPAM microgels 55, 56, 57, 58, 59, 60, 61, 75, 79, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 206, 207
PNIPAM microparticles with open-celled porous structure microfluidic fabrication strategy 91
morphologies and microstructures 93
thermo-responsive volume change behaviors 98
PNIPAM microspheres 57, 58, 62, 65, 192, 193
PNIPAM polymeric networks 59, 61, 73
pollution terminating 289
pollution warning 286, 287–289
poly(EGDMA) (PEGDMA) 111
poly(HEMA-MMA) 79–84, 103
poly(hydroxyethyl methacrylate-methyl methacrylate) (poly(HEMA-MMA)) 79
poly(methyl methacrylate) (PMMA) 79
poly(MMA-co-EGDMA) 108, 111, 113, 114, 115, 116
poly(N-isopropylacrylamide) (PNIPAM) 55, 79, 136, 162, 189, 254, 270
poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-AAm)) 149
poly(N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide) (PNB) 175
poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (PNB) 68, 270
poly(NIPAM-co-AAm-co-B15C5Am) (PNAB) 175, 176, 177
poly(NIPAM-co-AAPBA) (PNA) 138, 140, 141
poly(NIPAM-co-AAPBA-co-AAc) (PNAA) 138, 141, 142, 143, 144, 158
poly(NIPAM-co-B15C5Am) 176
poly(vinyl alcohol) (PVA) 81, 217, 218
poly(vinyl butyral) (PVB) 224, 225, 226, 227, 228–235
poly(vinyl pyrrolidone) (PVP) 79, 80, 81, 82, 83, 103
poly(HEMA-MMA) copolymers 80
polydimethylsiloxane (PDMS) 12, 14, 15, 217, 244, 253
plates 12
polyelectrolyte microparticles 38, 211
polyethylene (PE) 80, 132, 270
Polylfluor 570, 255, 256
polyglycerol polyricinoleate (PGPR 90 or PGPR) 38, 41, 43, 44, 45, 46, 50, 56, 57, 62, 63, 81, 86, 91, 108, 110, 111, 112, 113, 116, 132, 138, 147, 163, 168, 178, 190, 195, 204, 212
poly(NIPAM-co-B18C6Am) hole-shell microparticles
 effect of hollow cavity 199
 effect of Pb$^{2+}$ 196
 magnetic-guided targeting behavior 195
micromanipulation 200
poly(N-isopropylacrylamide) (PNIPAM) hydrogel 189
poly(PNIPAM-co-B18C6Am) (PNB) hydrogel 195
polymeric microparticles 187
polymeric networks 55, 59, 60, 61, 73, 80, 86, 88, 100, 102
poly(NIPAM-co-AAPBA-co-AAc) (PNAA) microcapsule 138
poly(NIPAM-co-AAm-co-B15C5Am) microcapsules 177
poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide)
 (P(NIPAM-co-B18C6Am)) microgel 68, 270, 281, 282, 283, 286
poly(N-isopropylacrylamide) (PNIPAM) microgels 85
poly(methyl methacrylate-co-ethylene glycol dimethacrylate)
 (poly(MMA-co-EGDMA)) microparticles 108, 111, 113, 114, 115, 1164
poly(MMA-co-EGDMA) microparticles 108, 111
poly(MMA-co-EGDMA-co-GMA)
 microparticles 114, 115, 116, 117, 118
poly(N-isopropylacrylamide) (PNIPAM) nanogels 254
poly(N-isopropylacrylamide-co-methyl methacrylate-co-allylamine)
 nanogels 201
poly(dimethylsiloxane) oil (PDMS) 217
poly(methyl methacrylate) (PMMA) particles 79
poly(HHEMA-MMA) porous microspheres 80, 82
poly(vinyl butyral) (PVB) resin 225
polystyrene (PS) 86, 87, 88, 195, 196
polystyrene beads 86, 87, 88
poly(N-isopropylacrylamide-co-acrylamide)
 (P(NIPAM-co-AAm)) sub-microspheres 149
pore size 5, 105, 106, 108, 113, 118, 135
porogens 79, 80, 82, 83, 86, 91, 103
porosity 83, 103, 105, 106, 108, 109, 112, 113, 118
porous microparticles 79–103, 105–118
porous PNIPAM microparticles with tunable response behaviors
 dramatic response and stimuli-specific behavior 85
gel swelling 85
heterogeneous internal microstructures 85
linear side chains 85
microfluidic fabrication strategy 86
temperature-dependent equilibrium volume-deswelling ratio 85
tunable response behaviors 87
void structures 86
porous polymeric microparticles 105, 106
post-array-containing microfluidic device 16
precipitation polymerization 145, 255
precursor droplets 40, 41, 42, 44
programmed synergistic release
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(NIPAM-co-AAm) sub-microspheres</td>
<td>149</td>
</tr>
<tr>
<td>pulsed release</td>
<td>218</td>
</tr>
<tr>
<td>PVB/8P microfibers</td>
<td>229</td>
</tr>
<tr>
<td>PVB/24P microfibers</td>
<td>230, 233, 235</td>
</tr>
<tr>
<td>quadruple-component double emulsions</td>
<td>22–28, 169, 214</td>
</tr>
<tr>
<td>quadruple-component O/W/O double emulsions</td>
<td>213</td>
</tr>
<tr>
<td>quadruple emulsions</td>
<td>21, 212, 219</td>
</tr>
<tr>
<td>quintuple-component double emulsions</td>
<td>22, 27, 29</td>
</tr>
<tr>
<td>quintuple-component multiple emulsions</td>
<td>29</td>
</tr>
<tr>
<td>quintuple-component triple emulsions</td>
<td>22, 27, 29</td>
</tr>
<tr>
<td>real-time detection</td>
<td>268, 281–289</td>
</tr>
<tr>
<td>real-time on-line detection of trace Pb²⁺</td>
<td>281–283</td>
</tr>
<tr>
<td>real-time Pb²⁺ detection</td>
<td>281, 289</td>
</tr>
<tr>
<td>response rate</td>
<td>59, 88, 90, 91, 99, 100, 103, 144, 192, 193, 200</td>
</tr>
<tr>
<td>reversible glucose-induced swelling/shrinking behaviors</td>
<td>137</td>
</tr>
<tr>
<td>reversible glucose-responsive swelling/shrinking</td>
<td>138</td>
</tr>
<tr>
<td>reversible swelling/shrinking volume transitions</td>
<td>254, 255</td>
</tr>
<tr>
<td>rhodamine B</td>
<td>50, 111, 142, 143, 269, 270</td>
</tr>
<tr>
<td>route-specific targeting drug delivery</td>
<td>163</td>
</tr>
<tr>
<td>scale-up</td>
<td>14, 16, 21, 22, 27</td>
</tr>
<tr>
<td>Scanning Electron Microscope (SEM)</td>
<td>83, 84, 85, 96, 97, 111, 112, 113, 114, 126, 127, 128, 129, 130, 131, 205, 206, 227, 228, 239, 243, 255, 256</td>
</tr>
<tr>
<td>Schiff base</td>
<td>177</td>
</tr>
<tr>
<td>sealing performance</td>
<td>253, 276–277</td>
</tr>
<tr>
<td>selective adsorption</td>
<td>55, 68, 75</td>
</tr>
<tr>
<td>selective detection</td>
<td>268, 270, 289</td>
</tr>
<tr>
<td>selective permeability</td>
<td>5</td>
</tr>
<tr>
<td>self-regulated drug delivery</td>
<td>136</td>
</tr>
<tr>
<td>self-regulated permeability</td>
<td>253–264</td>
</tr>
<tr>
<td>sequential shear-induced emulsifications</td>
<td>35</td>
</tr>
<tr>
<td>sextuple-component triple emulsions</td>
<td>22, 27, 28, 30, 31</td>
</tr>
<tr>
<td>shape angle</td>
<td>203, 204</td>
</tr>
<tr>
<td>shear-induced generation of controllable multiple emulsions</td>
<td></td>
</tr>
<tr>
<td>controllable double emulsions</td>
<td>16</td>
</tr>
<tr>
<td>controllable emulsion droplets</td>
<td>12</td>
</tr>
<tr>
<td>controllable monodisperse single emulsions</td>
<td>14</td>
</tr>
<tr>
<td>controllable quadruple-component double emulsions</td>
<td>22</td>
</tr>
<tr>
<td>controllable triple emulsions</td>
<td>19</td>
</tr>
<tr>
<td>inner droplet number</td>
<td>11</td>
</tr>
<tr>
<td>microchannel wettability</td>
<td>12</td>
</tr>
<tr>
<td>multicomponent multiple emulsions</td>
<td>27</td>
</tr>
<tr>
<td>sequential bulk emulsification</td>
<td>11</td>
</tr>
<tr>
<td>T-junction geometries</td>
<td>12</td>
</tr>
<tr>
<td>volume fractions</td>
<td>11</td>
</tr>
<tr>
<td>sheath flow</td>
<td>224, 225, 226, 236</td>
</tr>
<tr>
<td>shell permeability</td>
<td>143</td>
</tr>
<tr>
<td>shell thickness</td>
<td>40, 41, 110, 158, 175, 237, 238, 239</td>
</tr>
<tr>
<td>shrunken state</td>
<td>99, 137, 141, 146, 174, 189, 205, 275, 281</td>
</tr>
<tr>
<td>silicone oil (SiO)</td>
<td>37, 38, 40, 41, 44, 45, 46, 47, 48, 50</td>
</tr>
<tr>
<td>single emulsions</td>
<td>4, 12, 13, 14–16, 31, 39, 41, 42, 43, 46, 50, 51, 63, 79, 81, 103, 111, 124, 132, 133</td>
</tr>
<tr>
<td>site-specific targeting drug delivery</td>
<td>145</td>
</tr>
<tr>
<td>size-classification</td>
<td>206</td>
</tr>
<tr>
<td>Index</td>
<td>Page(s)</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>size distributions 4, 14, 15, 57, 58, 63, 64, 70, 71, 82, 93, 94, 96, 112, 123, 125, 131, 133, 134, 139, 140, 145, 163</td>
<td>312</td>
</tr>
<tr>
<td>size-match 206</td>
<td></td>
</tr>
<tr>
<td>size monodispersity 11, 40, 71, 134, 187</td>
<td></td>
</tr>
<tr>
<td>smart core-shell microcapsules</td>
<td></td>
</tr>
<tr>
<td>alcohol-responsive burst release 171</td>
<td></td>
</tr>
<tr>
<td>core-shell chitosan microcapsules</td>
<td></td>
</tr>
<tr>
<td>direction-specific thermo-responsive burst release 168</td>
<td></td>
</tr>
<tr>
<td>fabrication 177</td>
<td></td>
</tr>
<tr>
<td>K⁺-responsive burst release 174</td>
<td></td>
</tr>
<tr>
<td>nanoparticles 166</td>
<td></td>
</tr>
<tr>
<td>oil-soluble substances 162</td>
<td></td>
</tr>
<tr>
<td>pH-responsive burst release 176</td>
<td></td>
</tr>
<tr>
<td>smart hydrogel microvalves 267, 268, 279, 289</td>
<td></td>
</tr>
<tr>
<td>smart-membrane-in-chip 253, 264</td>
<td></td>
</tr>
<tr>
<td>smart microvalve-in-a-chip</td>
<td></td>
</tr>
<tr>
<td>cell culture 279</td>
<td></td>
</tr>
<tr>
<td>microvalve-integrated micro-heat-exchanging system 273</td>
<td></td>
</tr>
<tr>
<td>pollution warning 287</td>
<td></td>
</tr>
<tr>
<td>real-time online detection of trace Pb2+ 281</td>
<td></td>
</tr>
<tr>
<td>sealing performance 276</td>
<td></td>
</tr>
<tr>
<td>selectivity and repeatability of the Pb2+ detection platform 284</td>
<td></td>
</tr>
<tr>
<td>sensitivity of the Pb2+ detection platform 283</td>
<td></td>
</tr>
<tr>
<td>temperature self-regulation 277</td>
<td></td>
</tr>
<tr>
<td>thermo-responsive switch performance 274</td>
<td></td>
</tr>
<tr>
<td>wastewater 289</td>
<td></td>
</tr>
<tr>
<td>smart-microvalve-integrated microchips 267</td>
<td></td>
</tr>
<tr>
<td>sodium acrylate 217</td>
<td></td>
</tr>
<tr>
<td>sodium alginate (Na-alginate) 132, 241</td>
<td></td>
</tr>
<tr>
<td>sodium dodecyl sulfate (SDS) 38, 41, 44, 45, 46, 47, 50, 191, 192, 193</td>
<td></td>
</tr>
<tr>
<td>solvent diffusion 123, 125, 158</td>
<td></td>
</tr>
<tr>
<td>solvent evaporation 3, 68, 69, 169, 195, 196</td>
<td></td>
</tr>
<tr>
<td>solvent quality 204</td>
<td></td>
</tr>
<tr>
<td>soybean oil (SO) 38, 56, 57, 62, 63, 91, 132, 138, 147, 163, 168, 169, 170, 178, 179, 190, 195, 196, 212, 256</td>
<td></td>
</tr>
<tr>
<td>soybean oil containing emulsifier PGPR 90, 62</td>
<td></td>
</tr>
<tr>
<td>specific surface area 5, 79, 83, 108, 117, 118, 192</td>
<td></td>
</tr>
<tr>
<td>spider-silk-like Ca-alginate microfibers 241, 242, 243, 244, 246, 247</td>
<td></td>
</tr>
<tr>
<td>spider-silk-like microfibers 241–248</td>
<td></td>
</tr>
<tr>
<td>fabrication 241</td>
<td></td>
</tr>
<tr>
<td>magnetic-guided patterning and assembling 244</td>
<td></td>
</tr>
<tr>
<td>morphological characterization 242</td>
<td></td>
</tr>
<tr>
<td>water collection ability 246</td>
<td></td>
</tr>
<tr>
<td>spider-web-like structures 224, 247, 248</td>
<td></td>
</tr>
<tr>
<td>spreading coefficient 36, 37, 38, 39, 41, 42, 43, 45, 46</td>
<td></td>
</tr>
<tr>
<td>square glass tubes 12</td>
<td></td>
</tr>
<tr>
<td>squirting cucumbers 166</td>
<td></td>
</tr>
<tr>
<td>stable microscale phase interfaces 3</td>
<td></td>
</tr>
<tr>
<td>star-shaped microchannels 268, 269, 270</td>
<td></td>
</tr>
<tr>
<td>stimuli-responsive controlled-release systems 145</td>
<td></td>
</tr>
<tr>
<td>stimuli-responsive hydrogel microparticles 55, 75</td>
<td></td>
</tr>
<tr>
<td>stimuli-responsive hydrogel shell</td>
<td></td>
</tr>
<tr>
<td>stimuli-responsive microcapsules 144</td>
<td></td>
</tr>
<tr>
<td>stimuli-responsive microparticles 55</td>
<td></td>
</tr>
<tr>
<td>stimuli-responsive smart membranes 5, 264</td>
<td></td>
</tr>
<tr>
<td>stimuli-sensitive hydrogel microparticles/microgels 55</td>
<td></td>
</tr>
<tr>
<td>stress-strain curves 232</td>
<td></td>
</tr>
<tr>
<td>Sudan Black 236, 240, 241</td>
<td></td>
</tr>
<tr>
<td>Sudan III 163, 164, 195, 212</td>
<td></td>
</tr>
<tr>
<td>Sudan Red 139, 190</td>
<td></td>
</tr>
<tr>
<td>superparamagnetic nanoparticles 152</td>
<td></td>
</tr>
<tr>
<td>supramolecular host-guest complexes 68</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>surface wettability</td>
<td>13, 37, 47, 48, 51,</td>
</tr>
<tr>
<td></td>
<td>205</td>
</tr>
<tr>
<td>surfactant bilayers</td>
<td>109, 110</td>
</tr>
<tr>
<td>sustained drug release</td>
<td>143, 151</td>
</tr>
<tr>
<td>swelling ratios</td>
<td>101, 151, 152</td>
</tr>
<tr>
<td>swollen state</td>
<td>57, 99, 137, 140, 141,</td>
</tr>
<tr>
<td></td>
<td>143, 144, 146, 174, 182, 205,</td>
</tr>
<tr>
<td></td>
<td>261, 275</td>
</tr>
<tr>
<td>symmetry breaking</td>
<td>187, 191, 194</td>
</tr>
<tr>
<td>synergistic delivery systems</td>
<td>11</td>
</tr>
<tr>
<td>synergistic drug delivery</td>
<td>224</td>
</tr>
<tr>
<td>synergistic encapsulation</td>
<td>235–241, 248</td>
</tr>
<tr>
<td>synergistic release</td>
<td>212–218</td>
</tr>
<tr>
<td>tannic acid (TA)</td>
<td>55–61, 56</td>
</tr>
<tr>
<td>tap water pipeline</td>
<td>288</td>
</tr>
<tr>
<td>temperature- and ethanol-responsive</td>
<td>smart membrane</td>
</tr>
<tr>
<td>ethanol-responsive self-regulation</td>
<td>260</td>
</tr>
<tr>
<td>nanogel-containing smart membrane</td>
<td>255</td>
</tr>
<tr>
<td>reversible and repeated</td>
<td>thermo/ethanol-responsive self-regulation 263</td>
</tr>
<tr>
<td>temperature-responsive self-regulation</td>
<td>257</td>
</tr>
<tr>
<td>temperature-dependent volume change</td>
<td>140, 147, 155, 198, 206</td>
</tr>
<tr>
<td>temperature-dependent volume phase transition</td>
<td>149</td>
</tr>
<tr>
<td>temperature regulation</td>
<td>145, 224, 230–235, 248</td>
</tr>
<tr>
<td>temperature-responsive permeability</td>
<td>self-regulation</td>
</tr>
<tr>
<td></td>
<td>260</td>
</tr>
<tr>
<td>temperature-responsive sub-microspheres</td>
<td>123, 145, 146, 147, 148, 149, 150, 152, 154,</td>
</tr>
<tr>
<td></td>
<td>155, 156, 157, 158</td>
</tr>
<tr>
<td>temperature-responsive volume change</td>
<td>73, 155</td>
</tr>
<tr>
<td>temperature self-regulation</td>
<td>277–281</td>
</tr>
<tr>
<td>template-directed synthesis</td>
<td>105</td>
</tr>
<tr>
<td>tensile strength</td>
<td>231</td>
</tr>
<tr>
<td>terephthalaldehyde</td>
<td>178</td>
</tr>
<tr>
<td>terephthalaldehyde-crosslinked chitosan</td>
<td>hydrogel shell</td>
</tr>
<tr>
<td></td>
<td>176</td>
</tr>
<tr>
<td>tetramethylammonium hydroxide</td>
<td>164</td>
</tr>
<tr>
<td>thermal energy</td>
<td>233, 234</td>
</tr>
<tr>
<td>thermal stability</td>
<td>227, 230, 231</td>
</tr>
<tr>
<td>thermo-driven crawling movement</td>
<td>188–194</td>
</tr>
<tr>
<td>thermo-driven locomotion</td>
<td>189, 193, 194</td>
</tr>
<tr>
<td>thermo-driven soft microcrawlers</td>
<td>188</td>
</tr>
<tr>
<td>thermo-induced shrinking</td>
<td>process 100</td>
</tr>
<tr>
<td>thermo-regulation</td>
<td>235</td>
</tr>
<tr>
<td>thermo-responsive burst release</td>
<td>168–171</td>
</tr>
<tr>
<td>thermo-responsive hydrogel microvalve</td>
<td>268, 269, 270, 272</td>
</tr>
<tr>
<td>thermo-responsive phase transition</td>
<td>58, 60, 61, 65</td>
</tr>
<tr>
<td>thermo-responsive PNIPAM shell</td>
<td>165</td>
</tr>
<tr>
<td>thermo-responsive</td>
<td>poly(N-isopropylacrylamide) (PNIPAM) hydrogel microvalve 270</td>
</tr>
<tr>
<td>thermo-responsive polymer</td>
<td>55</td>
</tr>
<tr>
<td>thermo-responsive swelling behaviors</td>
<td>100</td>
</tr>
<tr>
<td>thermo-responsive swelling process</td>
<td>100, 101</td>
</tr>
<tr>
<td>thermo-responsive switch</td>
<td>274–278</td>
</tr>
<tr>
<td>thermo-responsive volume phase transitions</td>
<td>189</td>
</tr>
<tr>
<td>thermostatic control</td>
<td>267, 268–270, 272–281</td>
</tr>
<tr>
<td>thermo-triggered actuator</td>
<td>216</td>
</tr>
<tr>
<td>thermo-triggered burst release</td>
<td>162–171</td>
</tr>
<tr>
<td>thermo-triggered synergistic release</td>
<td>216</td>
</tr>
<tr>
<td>3D assembly</td>
<td>241–248</td>
</tr>
<tr>
<td>3D glass-capillary microfluidic device</td>
<td>15</td>
</tr>
<tr>
<td>3D microchannel</td>
<td>12</td>
</tr>
<tr>
<td>3D printing techniques</td>
<td>21</td>
</tr>
</tbody>
</table>
time-dependent deswelling ratio 172, 173
T-junction 4, 12, 13
genergies 4, 12
trace analytes detection 268
trace threat analytes 267, 268, 270
transition tube 16, 19, 20, 21, 62, 108, 124, 133, 201, 224, 226, 236, 241, 242
trans-membrane diffusional permeation 145
trans-membrane diffusion flux 259
triggered release 161, 191, 211, 216
3,4,5-trihydroxybenzoic acid ethyl ester 62
triple emulsions 12, 14, 16, 19–22, 27, 28, 29, 30, 31, 41, 43, 46, 212, 217–218
Trojan-horse-like microparticles 217–218
Trojan-horse-like structures 212
truncated-sphere shape 203, 204
tubular flows 223
tubular microfibers 5, 225, 226, 248
tunable pore size 105, 106
2D microchannel 12, 13
2D PDMS microfluidic device 15
two-stage glass capillary microfluidic device 108, 109, 224
two-step sequential emulsification 16

U
ultra-thin shell 35, 39, 40, 41, 49, 50
ultra-thin-shelled double emulsions 40
uniform hierarchical porous microparticles
enhanced protein adsorption 117
highly interconnected hierarchical porous structures 106
magnetic-guided oil removal 115
microdrop interfaces 106
microfluidic strategy 106
monodisperse emulsion drops 106
nanometer-sized pores 105
nanometer-sized pores and micrometer-sized pores 111
oil removal 114
porosities 105
porous polymeric microparticles 105
protein adsorption 116
W/O/W emulsions 108
UV-curable adhesive 14, 47, 270, 279
UV-initiated polymerization 68, 69, 108, 138, 140, 169, 196
UV-initiator 91
UV irradiation 63, 80, 81, 92, 93, 94, 133, 139, 163, 201, 202, 270, 271

V
vitamin B12 (VB12) 154
voidless microgel 89
voidless PNIPAM microspheres 192, 193
behaviors 57
kinetics 86, 89

W
wastewater 64, 68, 286, 288, 289
water collection 224, 241–248
water condensation 247
water-cooling 277, 278, 280, 281
water flux 275, 276, 277
water-in-oil-in-oil (W/O/O) double emulsion 38–39, 41, 43
water-in-oil-in-water-in-oil (W/O/W/O) droplets 19
water-soluble monomer 80
Weber number 15
wettability modification 12, 18, 25
wetting-induced droplet coalescence 37, 47
wetting-induced emulsion generation 44
droplet-triggered droplet pairing 44
monodisperse controllable double emulsions 38
monodisperse higher-order multiple emulsions 41
wetting-induced coalescing 37–38
wetting-induced droplet coalescing 47
wetting-induced spreading 36
wetting-induced spreading 36–47, 50
W/O emulsion droplets 57
W/O emulsions 44, 50, 92, 93, 95, 166
W/O/O double emulsions 39, 40, 43, 44, 45
(O1 + O2)/W/O quadruple-component double emulsions 169
W/O/W double emulsions 25, 124, 125, 127, 188, 201
\(x \)
X-shaped microchannels 256
\(y \)
Young’s modulus 244