Contents

Preface xvAbout the Editor xvii

1 Introduction of Mass Spectrometry and Ambient Ionization Techniques 1

Yiyang Dong, Jiahui Liu, and Tianyang Guo

- 1.1 Evolution of Analytical Chemistry and Its Challenges in the Twenty-First Century *1*
- 1.2 Historical Overview of Mass Spectrometry and Its Role in Contemporary Analytical Chemistry 5
- 1.3 Desorption/Ionization in Mass Spectrometry 12
- 1.3.1 Electronic Ionization (EI) 13
- 1.3.2 Chemical Ionization (CI) 14
- 1.3.3 Fast Atom/Ion Bombardment Ionization (FAB) 15
- 1.3.4 Electrospray Ionization (ESI) 16
- 1.3.5 Matrix Assisted Laser Desorption/Ionization (MALDI) 18
- 1.3.6 Field Desorption (FD) or Field Ionization (FI) 19
- 1.3.7 Plasma Desorption (PD) (ICP, LTP, DART) 19
- 1.4 Ambient Ionization and Direct Analysis in Real Time 21
- 1.4.1 Ambient Ionization 21
- 1.4.2 Direct Analysis in Real Time 24
- 1.4.2.1 Mechanisms 24
- 1.4.2.2 Parameters 27
- 1.4.2.3 Devices 29
 - References 30

2 DART Mass Spectrometry: Principle and Ionization Facilities 43

David Rondeau

- 2.1 Introduction 43
- 2.2 Metastable Gas Stream Formation 43
- 2.3 Ionization Mechanisms in Positive DART 45
- 2.3.1 Generation of Primary Ions by Ambient Air Ionization 46
- 2.3.2 Formation of the Protonated Molecules 50

- 2.3.3 Formation of the Ammonium Adducts 54
- 2.3.4 Formation of the Radical Cations and Their Fragments 55
- 2.3.5 Matrix Effects in DART Due to Sample Solvents 59
- 2.4 Ionization Mechanisms in Negative DART 65
- 2.4.1 Generation of Primary Ions by Ambient Air Ionization 65
- 2.4.2 Formation of Deprotonated Molecules 68
- 2.4.3 Formation of Radical Anions 69
- 2.4.4 Formation of Anionic Adducts 70
- 2.5 Some Parameters Affecting the DART Mass Spectra 71
- 2.5.1 Substitution of Helium by Nitrogen or Argon 71
- 2.5.2 The Temperature of the Gas Stream 75
- 2.5.3 The Internal Energy of Ions in DART-MS 76
- 2.6 Conclusion 78 References 78

3 Sampling and Analyte Enrichment Strategies for DART-MS 81 Wen Ma, Xianjiang Li, and Huwei Liu

- 3.1 Dilution Strategy for Sticky Sample Analysis 81
- 3.2 Purification Strategy for Eliminating the Matrix Interference 82
- 3.2.1 Liquid Phase Extraction 82
- 3.2.2 Solid Phase Extraction (SPE) 86
- 3.2.3 Solid Phase Microextraction (SPME) 87
- 3.3 Derivatization Strategy to Decrease Polarity and Enhance Volatility 89
- 3.4 Conclusions 91 References 91

4 Optimization of DART and Mass Spectrometric Parameters 97 Guohua Wu and Wushuang Li

- 4.1 Introduction 97
- 4.2 Effect of Working Gas Type, Gas Flow Rate, and Its Temperature 98
- 4.2.1 Gas Type 98
- 4.2.2 Gas Flow Rate 99
- 4.2.3 The Working Gas Temperature of DART Ionization Source 100
- 4.3 Effects of Grid Electrode Voltage and Sampling Speed 102
- 4.3.1 Effect of Grid Electrode Voltage 102
- 4.3.2 Effect of Sampling Speed 103
- 4.4 Effect of the Sampling Mode *104*
- 4.4.1 Sampling Methods 104
- 4.4.2 Position and Angle of the DART Ion Source 105
- 4.5 Effect of Ion Mode 106
- 4.6 Effect of Solvent Type and Reagents *108*
- 4.7 Summary 109 References 109

- 5 Interfacing DART to Extend Analytical Capabilities 115
 - Yiding Zhang, Shuting Xu, and Yu Bai
- 5.1 Introduction 115
- 5.2 Interfacing DART with Different Separation Techniques 116
- 5.2.1 Solid Samples 116
- 5.2.2 Gaseous Samples 118
- 5.2.3 Liquid Samples 119
- 5.2.3.1 Liquid Chromatography 119
- 5.2.3.2 Capillary Electrophoresis 123
- 5.3 Techniques of Interfacing DART with Other Analytical Techniques *125*
- 5.3.1 Surface Plasmon Resonance 125
- 5.3.2 Ion Mobility Spectrometry 126
- 5.4 Conclusion and Perspectives 129 References 129

6 Application of DART-MS in Foods and Agro-Products

Analysis 133

Canping Pan and Lei Wang

- 6.1 Introduction 133
- 6.2 Applications of DART-MS in Agriculture and Food Science 134
- 6.2.1 DART-MS in Pesticide Residue Analysis 134
- 6.2.1.1 Fast Screening Purposes 134
- 6.2.1.2 Screening Highly Hazardous Pesticides in Agrochemical Formulations *140*
- 6.2.1.3 Quantitative MRM Residue Method 147
- 6.2.2 Veterinary Drug Residue Detection 148
- 6.2.3 Fast Detection of Melamine in Milk 149
- 6.2.4 Detection of Mycotoxins in Cereals 150
- 6.2.5 Food Component Rapid Analysis 151
- 6.2.6 Contaminations in Food Contact Materials (FCMs) 156
- 6.3 Conclusion 156 References 157
- 7 Application of DART-MS for Industrial Chemical Analysis 163 Qiang Ma
- 7.1 Application on Household Items *163*
- 7.1.1 Polydimethylsiloxane (PDMS) Analysis in Articles for Daily Use 163
- 7.1.2 Identification of Sulfides in Drywall 165
- 7.1.3 Phosphoric Acid Esters Screening in Aqueous Samples 168
- 7.2 Application on Food Packaging Safety and Quality Control 172
- 7.2.1 Identification of PDMS in Food Packaging Materials 172
- 7.2.2 Identification of Polymer Additives in Food and Food Packaging 175
- 7.2.3 Identification of Residue Primary Aromatic Amines (PAAs) in Food Packaging Materials *176*
- 7.3 Application on Pharmaceutical Products 177
- 7.3.1 Toxic Glycols Identification 177

x Contents

7.3.2	Identification of Active Ingredients in Chinese Herbal Medicines 17	<i>'</i> 9
7.4	Application on Cosmetics Quality Control 182	-
7.4.1	Screening of Glucocorticoids Illegal Addition 182	
7.5	Application on Other Industrial Chemical Fields 184	
7.5.1	Ink Discrimination on Questioned Document 184	
7.5.2	Ionic Liquids Identification 189	
7.6	Conclusions 190	
	References 190	
8	Application of Direct Analysis in Real Time Coupled to Mass	
0	Spectrometry (DART-MS) for the Analysis of Environmental	
	. , ,	
	Contaminants 193	
	Maxime C. Bridoux and Sébastien Schramm	
8.1	Introduction 193	
8.2	Screening and Quantitative Analysis of Pesticides 194	
8.3	Flame Retardants DART-MS Analysis 204	
8.3.1	Organophosphorus Flame Retardants (OPFRs) 204	
8.3.2	Brominated Flame Retardants (BFRs) 207	
8.4	Use of DART-MS for the Analysis of Personal Care Products	
0.4	,	
	(PCPs) 210	
8.4.1	Screening of Organic UV Filters in Water 210	
8.4.2	Screening of Phthalic Acid Diesters 211	
8.4.3	HPLC-DART-MS Analysis of Parabens 211	
8.5	Use of DART-MS for the Analysis of Aerosols 212	
8.5.1	Online DART for Aerosols Analysis 212	
8.5.2	Offline DART Methods 213	
8.5.3	Advantages and Limitations of DART-MS for Aerosols	
0.0.0	Characterization 213	
8.6		
	Miscellaneous Environmental Application of DART-MS 214	
8.7	Conclusions 215	
	References 216	
_		
9	Application of DART-MS in Clinical and Pharmacological	
	Analysis 223	
	Yue Li	
9.1	Introduction 223	
9.2	Sample Preparation 224	
9.3	Applications of DART-MS 225	
9.3.1	Rapid Determination of Small Organic Compounds in Biological	
9.5.1		
	Samples 225	
9.3.1.1	Analysis of a Bitter Herbal Medicine Gentiana scabra Root	
	Extract 225	
9.3.1.2	Simultaneous Determination of 3-Chlorotyrosine and 3-Nitrotyrosine	e
	in Human Plasma 226	
9.3.1.3	Rapid Screening for Methamphetamine,	
	3,4-Methylene-dioxymethamphetamine, and Their Metabolites in	
	Urine 227	
	UTINE 227	

- 9.3.2 Newborn Screening for Phenylketonuria 227
- 9.3.3 DART-MS Analysis of Skin Metabolome Changes in Ultraviolet B-Induced Mice 228
- 9.3.4 Application in Detection of Breast Cancer 231
- 9.3.5 Transmission Mode DART-MS for Fast Untargeted Metabolic Fingerprinting 232
- 9.3.6 Applications of Confined DART Ion Source for Online *In vivo* Analysis of Human Breath 233
- 9.3.6.1 Real-Time Analysis of Exhaled Breath 234
- 9.3.6.2 Real-Time Monitoring of Oral Anesthetic Drug 235
- 9.4 Challenges and Limitations 236
- 9.5 Recent Advancements 237 References 238

10 DART-MS Applications in Pharmaceuticals 241 Karina G. Putri, Qianwen Wu, and Young P. Jang

- 10.1 Pharmaceutical Analysis *241*
- 10.2 Quality Assurance 243
- 10.3 Illegal Active Pharmaceutical Ingredients and Counterfeit Drugs 244
- 10.4 Drug Development 247 References 251
- 11 Application of DART-MS in Natural Phytochemical Research 255

Vikas Bajpai, Awantika Singh, Brijesh Kumar, and Kunnath P. Madhusudanan

- 11.1 Introduction 255
- 11.2 Direct Analysis in Real Time (DART) Mass Spectrometry 256
- 11.3 DART-MS Parameter Optimization for Phytochemical Analysis 256
- 11.4 Applications of DART-MS in Phytochemical Research 257
- 11.4.1 Qualitative Phytochemical Analysis 257
- 11.4.2 Cell Culture Analysis 261
- 11.4.3 Analysis of Volatiles 261
- 11.4.4 Species Identification 262
- 11.4.5 Metabolic Profiling and Multivariate Analysis 263
- 11.4.6 Quantitative Analysis 274
- 11.5 Hyphenated DART-MS Techniques for Phytochemical Analysis 276
- 11.5.1 GC and HPLC-DART-MS 276
- 11.5.2 TLC/HPTLC-DART-MS 276
- 11.5.3 Capillary Electrophoresis-DART MS 277
- 11.5.4 DART-IMS-MS 277
- 11.5.5 Other Coupling Techniques 277
- 11.6 Improving Sensitivity of DART-MS for Phytochemical Analysis 278
- 11.6.1 Solvents and Gases 278
- 11.6.2 Matrix Suppression 279
- 11.7 DART -MS as Process Analytical Technology 279
- 11.8 Future Perspective 280 References 280

xii Contents

- **12** Miscellaneous Applications of DART-MS 291 Yoshihito Okada
- 12.1 Introduction 291
- 12.2 Usefulness of Negative-Ion Mode 292
- 12.3 Application to Archeology and Conservation 293
- 12.4 Application by Using TLC 293
- 12.5 Application to Low Volatility, Chemical Warfare, and Homeland Security 294
- 12.6 Pheromone Profiles from Live Animals in Parallel with Behavior 295
- 12.7 Application to Distinction of Plants with Similarity 296
- 12.8 Application to Space 298
- 12.9 Application to Bituminous Coals 298
- 12.10 Application to Detection of Nicotine 298
- 12.11 Other Potential Applications of DART-MS 299
- 12.11.1 Instantaneous Screening for Counterfeit Drugs with No Sample Preparation [26-1] 299
- 12.11.2 Direct Analysis of Drugs in Pills and Capsules with No Sample Preparation [26-2] 300
- 12.11.3 Detection of Lycopene in Tomato Skin [26-3] 300
- 12.11.4 Distribution of Capsaicin in Chili Peppers [26-4] 302
- 12.11.5 Detection of Unstable Compound Released by Chopped Chives [26-5] 302
- 12.11.6 Rapid Detection of Fungicide in Orange Peel [26-6] 304
- 12.11.7 "Laundry Detective": Identification of a Stain [26-7] 304
- 12.11.8 Detection of the Peroxide Explosives TATP and HMTD [26-8] 306
- 12.11.9 Instantaneous Detection of Explosives on Clothing [26-9] 306
- 12.11.10 Rapid Detection and Exact Mass Measurements of Trace Components in a Herbicide [26-10] 308
- 12.11.11 Rapid Analysis of *p*-Phenylenediamine Antioxidants in Rubber
 [26-11] 308
 Acknowledgment 309
 References 309
- 13 Inherent Limitations and Prospects of DART-MS 313

Tim T. Häbe, Matthias Nitsch, and Gertrud E. Morlock

- 13.1 Aspects of Inherent Limitations of DART-MS 313
- 13.1.1 Gas Settings 314
- 13.1.1.1 Type of Gas 314
- 13.1.1.2 Gas Temperature 314
- 13.1.1.3 Gas Flow Rate 317
- 13.1.2 Voltage of Electrodes 317
- 13.1.3 Sample Introduction and Positioning 318
- 13.1.4 Detection System and Mass Range 318
- 13.1.5 Matrix Effects and the Need for Chromatography 319
- 13.1.6 Buffer and Salt Effects 321
- 13.1.7 Sample Carrier and Solvent 322
- 13.1.8 Humidity Effects 322

- 13.1.9 Use of Isotopically Labeled Standards 322
- 13.1.10 Dopant and Derivatization 323
- 13.2 DART versus Other Ambient Ion Sources 324
- 13.3 Prospects of DART-MS 326
- 13.3.1 Automation and Miniaturized DART-MS 326
- 13.3.2 Sample Preparation, Preconcentration, and Introduction 327
- 13.3.3 Ion Focusing and Flexible Ion Transportation 327
- 13.3.4 Quantitative Surface Scanning and Imaging by DART-MS 328
- 13.3.5 Hyphenation of Effect-Directed Analysis and DART-MS 331
- 13.3.6 Thermal Separations by Temperature Gradients 331
- 13.3.7 Aerosol, *in situ* and *in stillo* Chemical Reaction and Kinetic Monitoring 332
- 13.3.8 High Resolution and Data Analysis 332
- 13.4 Concluding Remarks 333 References 333

Index 345