Contents

Preface xv

Part I Fundamentals 1

1	Introduction to Laser-Induced Transfer and Other Associated		
	Processes 3		
	Pere Serra and Alberto Piqué		
1.1	LIFT and Its Derivatives 3		
1.2	The Laser Transfer Universe 5		
1.3	Book Organization and Chapter Overview 8		
1.4	Looking Ahead 12		
	Acknowledgments 13		
	References 13		
2	Origins of Laser-Induced Transfer Processes 17		
	Christina Kryou and Ioanna Zergioti		
2.1	Introduction 17		
2.2	Early Work in Laser-Induced Transfer 17		
2.3	Overview of Laser-Induced Forward Transfer 19		
2.3.1	Transferring Metals and Other Materials with Laser-Induced Forward		
	Transfer (LIFT) 21		
2.3.2	Limitations of the Basic LIFT Technique 22		
2.3.3	The Role of the Donor Substrate 22		
2.3.4	Use of a Dynamic Release Layer (DRL)-LIFT 24		
2.3.5	LIFT with Ultrashort Laser Pulses 25		
2.4	Other Laser-Based Transfer Techniques Inspired by LIFT 27		
2.4.1	Matrix-Assisted Pulsed Laser Evaporation-Direct Write		
	(MAPLE-DW) Technique 27		
2.4.2	LIFT of Composite Matrix-Based Materials 27		
2.4.3	Hydrogen-Assisted LIFT 28		
2.4.4	Long-Pulsed LIFT 28		
2.4.5	Laser Molecular Implantation 29		
2.4.6	Laser-Induced Thermal Imaging 30		

v

vi Contents

- 2.5 Other Studies on LIFT *31*2.6 Conclusions *31*
 - References 32

3 LIFT Using a Dynamic Release Layer 37

- Alexandra Palla Papavlu and Thomas Lippert
- 3.1 Introduction 37
- 3.2 Absorbing Release Layer Triazene Polymer 40
- 3.3 Front- and Backside Ablation of the Triazene Polymer 42
- 3.4 Examples of Materials Transferred by TP-LIFT 43
- 3.5 First Demonstration of Devices: OLEDs and Sensors 47
- 3.5.1 Organic Light Emitting Diode (OLEDs) 47
- 3.5.2 Sensors 49
- 3.6 Variation of the DRL Approach: Reactive LIFT 52
- 3.7 Conclusions and Perspectives 54 Acknowledgments 55 Conflict of Interest 55 References 55
 - References 55

4 Laser-Induced Forward Transfer of Fluids 63

Juan M. Fernández-Pradas, Pol Sopeña, and Pere Serra

- 4.1 Introduction to the LIFT of Fluids 63
- 4.1.1 Origin 64
- 4.1.2 Principle of Operation 65
- 4.1.3 Developments 66
- 4.2 Mechanisms of Fluid Ejection and Deposition 67
- 4.2.1 Jet Formation 67
- 4.2.2 Droplet Deposition 69
- 4.3 Printing Droplets through LIFT 72
- 4.3.1 Role of the Laser Parameters 72
- 4.3.2 Role of the Fluid Properties 76
- 4.3.3 Setup Parameters 76
- 4.4 Printing Lines and Patterns with LIFT 78
- 4.5 Summary 81 Acknowledgments 82 References 82

5 Advances in Blister-Actuated Laser-Induced Forward Transfer (BA-LIFT) 91

- Emre Turkoz, Romain Fardel, and Craig B. Arnold
- 5.1 Introduction 91
- 5.2 BA-LIFT Basics 93
- 5.3 Why BA-LIFT? 94
- 5.4 Blister Formation 97
- 5.4.1 Dynamics of Blister Formation 97
- 5.4.2 Finite Element Modeling of Blister Formation *102*

- 5.5 Jet Formation and Expansion *105*
- 5.5.1 Computational Fluid Dynamics Model 106
- 5.5.2 Effect of the Laser Energy 108
- 5.5.3 Effect of the Ink Film Properties 111
- 5.6 Application to the Transfer of Delicate Materials *113*
- 5.7 Conclusions 117 References 117
- 6 Film-Free LIFT (FF-LIFT) 123

Salvatore Surdo, Alberto Diaspro, and Martí Duocastella

- 6.1 Introduction 123
- 6.2 Rheological Considerations in Traditional LIFT of Liquids *125*
- 6.2.1 The Challenges behind the Preparation of a Thin Liquid Film 125
- 6.2.1.1 The Role of Spontaneous Instabilities 126
- 6.2.1.2 The Role of External Instabilities 128
- 6.2.2 Technologies for Thin-Film Preparation 129
- 6.2.3 Wetting of the Receiver Substrate 130
- 6.3 Fundamentals of Film-Free LIFT 131
- 6.3.1 Cavitation-Induced Phenomena for Printing 131
- 6.3.2 Jet Formation in Film-Free LIFT 132
- 6.3.3 Differences with LIFT of Liquids 134
- 6.4 Implementation and Optical Considerations 135
- 6.4.1 Laser Source *135*
- 6.4.2 Forward (Inverted) versus Backward (Upright) Systems 136
- 6.4.3 Spherical Aberration and Chromatic Dispersion 137
- 6.5 Applications 138
- 6.5.1 Film-Free LIFT for Printing Biomaterials 139
- 6.5.2 Film-Free LIFT for Micro-Optical Element Fabrication 140
- 6.6 Conclusions and Future Outlook 141 References 142

Part IIThe Role of the Laser–Material Interactionin LIFT147

- 7 Laser-Induced Forward Transfer of Metals 149 David A. Willis
- 7.1 Introduction, Background, and Overview 149
- 7.2 Modeling, Simulation, and Experimental Studies of the Transfer Process 151
- 7.2.1 Thermal Processes: Film Heating, Removal, Transfer, and Deposition *151*
- 7.2.2 Parametric Effects 153
- 7.2.2.1 Laser Fluence and Film Thickness 154
- 7.2.2.2 Donor-Film Gap Spacing 156
- 7.2.2.3 Pulse Width 157

7.2.3 7.2.4 7.3 7.4	Droplet-Mode Deposition 160 Characterization of Deposited Structures: Adhesion, Composition, and Electrical Resistivity 163 Advanced Modeling of LIFT 165 Research Needs and Future Directions 167			
7.5	Conclusions 169 References 170			
8	LIFT of Solid Films (Ceramics and Polymers) 175 Ben Mills, Daniel J. Heath, Matthias Feinaeugle, and Robert W. Eason			
8.1	Introduction 175			
8.2	Assisted Release Processes 176			
8.2.1	Optimization of LIFT Transfer of Ceramics via Laser Pulse Interference 176			
8.2.1.1	0 1 7			
8.2.1.2				
8.2.2 8.2.3	LIFT Printing of Premachined Ceramic Microdisks 180 Spatial Beam Shaping for Patterned LIFT of Polymer Films 181			
8.3	Shadowgraphy Studies and Assisted Capture 184			
8.3.1	Shadowgraphic Studies of the Transfer of Ceramic Thin Films 184			
8.3.2	Application of Polymers as Compliant Receivers 186			
8.4	Applications in Energy Harvesting 188			
8.4.1	LIFT of Chalcogenide Thin Films 189			
8.4.2	Fabrication of a Thermoelectric Generator on a Polymer-Coated			
	Substrate 190			
8.5	Laser-Induced Backward Transfer (LIBT) of Nanoimprinted Polymer 193			
8.5.1	Unstructured Carrier Substrate 195			
8.5.2	Structured Carrier Substrate 195			
8.6	Conclusions 197			
	Acknowledgments 197			
	References 197			
9	Laser-Induced Forward Transfer of Soft Materials 199 Zhengyi Zhang, Ruitong Xiong, and Yong Huang			
9.1	Introduction 199			
9.2	Background 200			
9.3	Jetting Dynamics during Laser Printing of Soft Materials 201			
9.3.1	Jet Formation Dynamics during Laser Printing of Newtonian Glycerol			
	Solutions 202			
9.3.1.1	Typical Jetting Regimes 202			
9.3.1.2	Jetting Regime as Function of Fluid Properties and Laser Fluence 204			
9.3.1.3	Jettability Phase Diagram 206			
9.3.2	Jet Formation Dynamics during Laser Printing of Viscoelastic Alginate			
0 2 2 1	Solutions 208			
9.3.2.1 9.3.2.2	Ink Coating Preparation and Design of Experiments 208 Typical Jetting Regimes 209			
7.3.2.2	Typical Jetting Regimes 209			

- 9.3.2.3 General Observation of the Jetting Dynamics 212
- 9.3.2.4 Effects of Laser Fluence on Jetting Dynamics 212
- 9.3.2.5 Effects of Alginate Concentration on Jetting Dynamics 214
- 9.3.2.6 Jettability Phase Diagram 215
- 9.4 Laser Printing Applications Using Optimized Printing Conditions 218
- 9.5 Conclusions and Future Work 220 Acknowledgments 221 References 222
- 10 Congruent LIFT with High-Viscosity Nanopastes 227

Raymond C.Y. Auyeung, Heungsoo Kim, and Alberto Piqué

- 10.1 Introduction 227
- 10.2 Congruent LIFT (or LDT) 229
- 10.3 Applications 235
- 10.4 Achieving Congruent Laser Transfers 242
- 10.5 Issues and Challenges 245
- 10.6 Summary 246 Acknowledgment 247 References 247
- 11 Laser Printing of Nanoparticles 251 Urs Zywietz, Tim Fischer, Andrey Evlyukhin, Carsten Reinhardt, and Boris Chichkov
- 11.1 Introduction, Setup, and Motivation 251
- 11.2 Laser-Induced Transfer 252
- 11.3 Materials for Laser Printing of Nanoparticles 254
- 11.4 Laser Printing from Bulk-Silicon and Silicon Films 254
- 11.5 Magnetic Resonances of Silicon Particles 261
- 11.6 Laser Printing from Prestructured Films 261
- 11.7 Applications: Sensing, Metasurfaces, and Additive Manufacturing 263
- 11.8 Outlook 266 References 266

Part III Applications 269

12	Laser Printing of Electronic Materials	271
	Philippe Delaporte, Anne-Patricia Alloncle	e, and Thomas Lippert

- 12.1 Introduction and Context 271
- 12.2 Organic Thin-Film Transistor 272
- 12.2.1 Operation and Characteristics of OTFTs 272
- 12.2.2 Laser Printing of the Semiconductor Layer 275
- 12.2.3 Laser Printing of Dielectric Layers 277
- 12.2.4 Laser Printing of Conducting Layers 279

x Contents

- 12.2.5 Single-Step Printing of Full OTFT Device 279
- 12.3 Organic Light-Emitting Diode 281
- 12.4 Passive Components 285
- 12.5 Interconnection and Heterogeneous Integration 287
- 12.6 Conclusion 290 References 291

13 Laser Printing of Chemical and Biological Sensors 299 Ioanna Zeraioti

- 13.1 Introduction 299
- 13.2 Conventional Printing Methods for the Fabrication of Chemical and Biological Sensors *300*
- 13.2.1 Contact Printing Methods 301
- 13.2.1.1 Pin Printing Approach 301
- 13.2.1.2 Microcontact Printing (or Microstamping) Technique 302
- 13.2.1.3 Nanotip Printing 303
- 13.2.2 Noncontact Printing Methods 303
- 13.2.2.1 Photochemistry-Based Printing 303
- 13.2.2.2 Inkjet Printing Technique 304
- 13.2.2.3 Electrospray Deposition (ESD) 304
- 13.3 Laser-Based Printing Techniques: Introduction 305
- 13.3.1 Laser-Induced Forward Transfer 305
- 13.3.2 LIFT of Liquid Films 307
- 13.4 Applications of Direct Laser Printing 308
- 13.4.1 Biosensors 308
- 13.4.1.1 Background 308
- 13.4.1.2 Printing of Biological Materials for Biosensors 309
- 13.4.2 Chemical Sensors 316
- 13.5 Conclusions 319 List of Abbreviations 319 References 320
- 14 Laser Printing of Proteins and Biomaterials 329
- Alexandra Palla Papavlu, Valentina Dinca, and Maria Dinescu
- 14.1 Introduction 329
- 14.2 LIFT of DNA in Solid and Liquid Phase 332
- 14.3 LIFT of Biomolecules 333
- 14.3.1 Streptavidin and Avidin–Biotin Complex 333
- 14.3.2 Amyloid Peptides 337
- 14.3.3 Odorant-Binding Proteins 339
- 14.3.4 Liposomes 340
- 14.4 Conclusions and Perspectives 343
 Acknowledgments 343
 Conflict of Interest 343
 References 344

- 15Laser-Assisted Bioprinting of Cells for Tissue Engineering349Olivia Kérourédan, Murielle Rémy, Hugo Oliveira, Fabien Guillemot, and
Raphaël Devillard
- 15.1 Laser-Assisted Bioprinting of Cells 349
- 15.1.1 The History of Cell Bioprinting and Advantages of Laser-Assisted Bioprinting for Tissue Engineering 349
- 15.1.2 Technical Specifications of Laser-Assisted Bioprinting of Cells 353
- 15.1.3 Effect of Laser Process and Printing Parameters on Cell Behavior 356
- 15.2 Laser-Assisted Bioprinting for Cell Biology Studies 358
- 15.2.1 Study of Cell-Cell and Cell-Microenvironment Interactions 358
- 15.2.2 Cancer Research 359
- 15.3 Laser-Assisted Bioprinting for Tissue-Engineering Applications 359
- 15.3.1 Skin 360
- 15.3.2 Blood Vessels 362
- 15.3.3 Heart 364
- 15.3.4 Bone 365
- 15.3.5 Nervous System 367
- 15.4 Conclusion 368 References 369
- 16 Industrial, Large-Area, and High-Throughput LIFT/LIBT Digital Printing 375

Guido Hennig, Gerhard Hochstein, and Thomas Baldermann

- 16.1 Introduction 375
- 16.1.1 State of the Art in Digital Printing 376
- 16.1.2 History of Lasersonic[®] LIFT 376
- 16.2 Potential Markets and their Technical Demands on Lasersonic[®] LIFT 377
- 16.2.1 Digital Printing Market Expectations and Challenges 377
- 16.2.2 Demands on a LIFT/LIBT Printing Unit for Special Printing Markets 378
- 16.3 Lasersonic[®] LIFT/LIBT Printing Method 379
- 16.3.1 LIFT for Absorbing and LIBT for Transparent Inks 379
- 16.4 Optical Concept and Pulse Control of the Lasersonic[®] Printing Machine 382
- 16.4.1 Ultrafast Pulse Modulation at High Power Level 382
- 16.4.2 Time Schemes 383
- 16.4.3 Data Flow 385
- 16.4.4 Ultrafast Scan of the Laser Beam 385
- 16.5 The Four-Color Lasersonic[®] Printing Machine 387
- 16.5.1 Large-Area, High-Throughput LIFT/LIBT Inline R2R Printing System 387

- 16.5.2 Printing Heads for Absorptive (Black) and for Transparent (Colored) Inks 388
- 16.5.3 Inking Units 390
- 16.5.4 Synthetic Approaches to the Absorption Layer of the LIBT Donor Surface 392
- 16.6 Print Experiments and Results 392
- 16.7 Discussion of Effects 397
- 16.7.1 LIFT Process with Continuous-Wave Laser Source and Fast Modulation *397*
- 16.7.2 Special Test Pattern to Study the Transfer Behavior at High Pixel Rate 399
- 16.8 Future Directions 401
- 16.9 Summary 402 Acknowledgments 403 References 403

17 LIFT of 3D Metal Structures 405

Ralph Pohl, Claas W. Visser, and Gert-willem Römer

- 17.1 Introduction 405
- 17.2 Basic Aspects of LIFT of Metals for 3D Structures 407
- 17.2.1 Ejection Regimes of Pure Metal Picosecond LIFT 408
- 17.2.1.1 Velocity of the Ejected Donor Material 409
- 17.2.1.2 Origin of Fragments in Cap-Ejection Regime 409
- 17.2.2 Droplet Impact and Solidification 411
- 17.3 Properties of LIFT-Printed Freestanding Metal Pillars 413
- 17.3.1 Reproducibility 414
- 17.3.2 Metallurgical Microstructure 416
- 17.3.3 Mechanical Properties 417
- 17.3.4 Electrical Properties 418
- 17.3.5 Inclined Pillars 420
- 17.4 Demonstrators and Potential Applications 420
- 17.5 Conclusions and Outlook 423 References 423

18 Laser Transfer of Entire Structures and Functional

Devices 427

Alberto Piqué, Nicholas A. Charipar, Raymond C. Y. Auyeung, Scott A. Mathews, and Heungsoo Kim

- 18.1 Introduction 427
- 18.2 Early Demonstrations of LIFT of Entire Structures 428
- 18.3 Process Dynamics 431
- 18.3.1 Lase-and-Place 432
- 18.4 Laser Transfer of Intact Structures 435
- 18.4.1 Laser Transfer of Metal Foils for Electrical Interconnects 436
- 18.5 Laser Transfer of Components for Embedded Electronics 437

- 18.6 Outlook 438
- 18.7 Summary 440 Acknowledgments 441 References 441

Index 445