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Biomolecular simulations are becoming routine in structure-based drug design
and related fields. This chapter briefly presents the history of molecular simu-
lations, basic principles and approximations, and the most common designs of
computational experiments. I also discuss statistical analysis of simulation results
together with possible limits of accuracy.

The history of computational modeling of molecular structure and dynamics
goes back to 1953, to the work of Rosenbluth and coworkers [1]. It introduced
the Markov chain Monte Carlo as a method to study a simplified model of the
fluid system. Atoms of the studied system were perfectly inelastic and the system
was two-dimensional (2D) instead of three-dimensional (3D), so the analogy with
real molecular systems was not perfect. The first molecular dynamics simulation
(i.e. modeling of motions) on the same system was done by Alder and Wainwright
in 1957 [2] using perfectly elastic collision between 2D particles. The first molecu-
lar simulation with specific atom types was done by Rahman in 1964 [3]. Rahman
used a CDC 3600 computer to simulate dynamics of 864 argon atoms modeled
using Lennard-Jones potential. The first simulation of liquid water was published
by Rahman and Stillinger in 1971 [4].

Another big milestone was the first biomolecular simulation. McCammon,
Gelin, and 2013 Nobel Prize winner Karplus simulated 9.2 ps of the life of the
bovine pancreatic trypsin inhibitor (BPTI, also known as aprotinin) in vacuum
[5]. The simulation was performed during the CECAM (Centre Européen de
Calcul Atomic et Moléculaire) workshop “Models of Protein Dynamics” in
Orsay, France on CECAM computer facilities [6]. It was one of the first works
showing proteins as a dynamic species with fluid-like internal motions, even
though in the native state.

Biomolecular simulations have undergone a huge progress in terms of accu-
racy, size of simulated systems, and simulated times since their pioneer times.
However, the question arises whether this progress is enough for their practical
application in drug discovery, protein engineering, and related applied fields. To
address this issue, let me present here the concept of the hype cycle [7] developed
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by Gartner Inc. and depicted in Figure 1.1. According to this concept, every new
invention starts by a Technology Trigger. Visibility of the invention grows until it
reaches the Peak of Inflated Expectations. At this point, failures of the invention
start to dominate over its benefits and the invention falls into the phase of Trough
of Disillusionment. From this phase a new and slower progress starts in the phase
of Slope of Enlightenment toward the Plateau of Productivity. Biomolecular sim-
ulation passed the Technology Trigger and Peak of Inflated Expectations as many
expected that biomolecular simulation would become routine and an inexpensive
alternative to experimental testing of compounds for biological activity. Now, in
my opinion, biomolecular simulations are located on the Slope of Enlightenment
with a slow but steady progress toward the Plateau of Productivity.

1.1 Design of Biomolecular Simulations

Biomolecular simulations can follow different designs. I use the term design to
describe the setup of the simulation procedure chosen in order to answer the
research hypothesis. There are three major designs of molecular simulation. The
first design starts from a predicted structure of the molecular system, which we
want to evaluate, for example, a protein–ligand complex predicted by a simple
protein–ligand docking. I refer to this as the evaluative design (Figure 1.2). The
research hypothesis is: Does the predicted structure represent real structure? The
basic assumption behind this design is that an accurately predicted structure of
the system, for example, an accurately modeled structure of the complex, is lower
in free energy than an inaccurately predicted one. The system therefore tends to
be stable in a simulation starting from an accurately modeled structure and tends
to be unstable in a simulation starting from an inaccurate structure. The evalua-
tive design can be represented by the study of Cavalli et al. [8]. This study was pub-
lished in 2004, and simulated times are therefore significantly shorter (typically
2.5 ns) than those available today. Nevertheless, the same length of simulations
can be used today with much higher throughput in terms of the number of tested
compounds or their binding poses; therefore, the study is still highly actual. Dock-
ing of propidium into human acetylcholine esterase (Alzheimer disease target) by
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Figure 1.2 Schematic illustration of designs of biomolecular simulations. Horizontal
dimensions correspond to coordinates of the system, and contours correspond to the free
energy.

the program Dock resulted in the prediction of 36 possible binding poses (clusters
of docked binding poses). Six of them were then subjected to 2.5-ns simulation.
Evolution of these systems was analyzed in terms of root-mean-square deviation
(RMSD). Binding poses with high stability in simulations were similar to experi-
mentally determined binding poses for a homologous enzyme.

The second design is referred to as refinement design (Figure 1.2). It uses an
assumption similar to the evaluative design, i.e. that molecular simulations tend
to evolve from high-free energy states to low-free energy states. In the refinement
design, it is hoped that the dynamics can drive the system from the predicted
structure, even though incorrectly predicted, to global free energy minimum, the
correct structure, or at least close to it. Naturally, shorter simulation times are
necessary to demonstrate correctness or incorrectness of a model by the evalua-
tive design. Longer simulation times are necessary to drive the system from the
incorrect to the correct state by the refinement design. In the previous paragraph,
I used the study of Cavalli et al. from 2004 [8] as an example of evaluative design.
I can present the refinement design on the work published by the same author
11 years later [9]. They used unbiased simulation to predict the binding pose of
picomolar inhibitor 4′-deaza-1′-aza-2′-deoxy-1′-(9-methylene)-immucillin-H
in human purine nucleoside phosphorylase. They carried out 14 simulations
(500 ns each) of the system containing the trimeric enzyme, 9 ligand molecules
(to increase its concentration) placed outside the protein molecule, solvent, and
ions. From these simulations, 11 evolved toward binding with a good agreement
with the experimentally determined structure of the complex. RMSD from
the experimentally determined structure of the complex dropped during these
simulations from approximately 6 to 0.2–0.3 nm.

The last design introduced here is referred to as equilibrium design (Figure 1.2).
In this design, we hope that the simulation is sufficiently long (or sampling is
sufficiently enhanced) to explore all relevant free energy minima and to sample
them according to their distribution in the real system. Naturally, the equilib-
rium design requires longest simulation times or highest sampling enhancement
from all three simulation designs. As an example I can present the study by D.E.
Shaw Research [10]. The authors simulated systems containing the protein FK506
binding protein (FKBP) with one of six fragment ligands, water, and ions. They



6 1 Predictive Power of Biomolecular Simulations

carried out 10-μs simulations for each ligand. The dissociation constant of a com-
plex can be calculated from its association kinetics as KD = koff/kon. Weak binding
(high KD) together with reasonably fast binding kinetics therefore implies that
unbinding is also sufficiently fast. For this reason, microsecond timescales were
enough to observe multiple binding and unbinding events for millimolar ligands.
The fragments identified by these simulations as relatively strong binders can be
selected and combined into larger compounds with higher affinity in the manner
of fragment-based drug design [11]. Fragment-based drug design and molecu-
lar dynamics simulation seem to be a good combination. Fragment-based design
requires testing of a low number of weak ligands. This is good, since biomolecular
simulations are computationally expensive. Reciprocally, weak binding enables
to use molecular dynamics simulations in available timescales. Moreover, unlike
some experimental methods of fragment-based drug design, molecular simula-
tions provide binding pose prediction that can be used to combine fragments.

The three designs described are not without pitfalls. Most of these pitfalls are
caused by limitations of simulated timescales. It is often difficult or impossible
to simulate timescales long enough to destabilize the structure in the evalua-
tion design, reach the global free energy minimum in the refinement design, or
obtain the equilibrium distribution in the equilibrium design. This problem can
be addressed by enhanced sampling techniques discussed later in this chapter.

The main problem of the evaluative design is that many correct structures of
proteins or protein–ligand complexes are relatively flexible. It is therefore diffi-
cult to decide whether high flexibility (in terms of RMSD or ligand displacement)
indicates a wrong model or not.

This is not the only problem of biomolecular simulation designs. Figure 1.2
shows three minima A, B, and C. Even an incorrect model A may be separated
by a large energy barrier from the structure B and from the correct structure C.
This can make A stable in the timescales of an evaluative simulation. Similarly,
when a refinement simulation evolves from structure A to structure B and stays
there, it is not guaranteed that B is the correct structure. Finally, even if a perfect
equilibrium sampling is reached between A and B, the unexplored structure C
can still exist.

1.2 Collective Variables and Trajectory Clustering

When the system is fully sampled and equilibrium distribution of states is
achieved in the equilibrium design, it is possible to calculate a free energy profile
of the studied system. For this it is necessary to classify states along the trajectory.
In other than equilibrium design, it is necessary to monitor the progress of
the simulation. These analyses often employ the concept of collective variables
(CVs). A CV is a parameter that can be calculated from the atomic coordinates
of the studied system. It can be calculated in every simulation snapshot, so it
can be viewed as a function of time (i.e. s(t)). It has to be chosen so that its
value changes with the progress of the simulated process. Finally, CVs should
be relevant to the experiment. There are simple CVs such as distances between
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atoms or geometrical centers or 3-point (valence) and 4-point (torsion) angles.
RMSD from the reference structure often used to monitor stability during
simulation is also an example of CV. Other more sophisticated CVs include
those specifically developed for studying intermolecular interactions [12] and
protein folding [13], principal component analysis (PCA), and related methods
[14, 15], machine-learning-based CVs [16–18], and others.

Once values of some CV (or CVs) are calculated for all snapshots along the tra-
jectory, it is possible to calculate one-dimensional (1D), 2D, or multidimensional
histograms. These histograms can be expressed in energy units as estimated free
energy surface:

F(s) = −kT log(P(s)) (1.1)

where F is a (relative) free energy surface, s is a multidimensional vector of CVs,
P is its probability distribution (histogram), k is the Boltzmann constant, and T
is temperature. Calculation of an accurate free energy surface requires complete
sampling of all relevant states of the simulated system. Its accuracy is addressed
later.

A discontinuous alternative to CVs is trajectory clustering. Cluster analysis of
simulation coordinates (usually preprocessed by fitting to a reference structure
to remove translational and rotational motions) makes it possible to place each
simulation snapshot to a certain cluster. Similar to CVs, it is possible to estimate
free energy surface as

Fi = −kT log(Pi) (1.2)

where Fi and Pi are free energy and probability, respectively, of the ith cluster.
Several clustering algorithms, general as well as tailored for molecular simula-
tions, have been tested in the analysis of molecular simulations. Several packages
and tools have been developed for trajectory clustering, namely, the gmx cluster
from Gromacs package [19], Gromos tools [20], CPPTRAJ from Amber package
[21], and stand-alone packages Bio3D (for R) [22], MDAnalysis (for Python) [23]
and MDTraj (for Python) [24]. Many of these tools make it possible to analyze
trajectories in terms of both clusters and CVs. Popular algorithms for trajec-
tory clustering are nonhierarchical K-means [25], K-medoids [26], and Gromos
algorithm by Daura and coworkers [27]. Hierarchical methods can be used for
a tree-based representation of free energy surfaces [28], but they are often used
together with nonhierarchical methods to reduce the number of clusters.

A key question in application of nonhierarchical clustering methods, such as
the K-means or K-medoids algorithm, is the choice of the value of K – the
number of clusters. This question is general, not related only to the analysis
of molecular dynamics trajectories. Interestingly, the solution of this problem
by “Clustering by fast search and find of density peaks,” was developed by
molecular scientists, namely, by Laio and Rodriguez, and became widely used
in nonmolecular sciences [29]. This method automatically chooses a suitable
number of clusters on the basis of density of points.

The result of a CV-based analysis of a molecular trajectory is a one-, two-,
or multidimensional probability distribution or a free energy surface. The
result of cluster analysis is a list of clusters with representative structures or
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Figure 1.3 Alternative representations of free energy relationships (schematic views).

centroids and with corresponding probabilities or free energies. Alternatively,
it is possible to represent clusters in graph-based or tree-based representations.
The graph-based representation [30] shows free energy minima as graph nodes.
Connection of two nodes by edges usually indicates that a transition between
these nodes is kinetically favorable. The tree-based representation [28] shows
free energy minima as nodes and transitions as branches. Finally, the Markov
chain model is another elegant way to represent free energy surface. This
approach is presented in Chapter 4. Different representations of free energy
relationships in molecular systems are depicted in Figure 1.3.

1.3 Accuracy of Biomolecular Simulations

The predictive power of molecular simulations depends on their accuracy. The
accuracy is influenced by accuracy of simulation methods, molecular mechan-
ics (MM) potentials (also referred to as force fields, mathematical models used
to calculate potential energy, and forces based on atomic coordinates) and on
completeness of sampling of all relevant states of the studies system. Accuracy of
simulation methods has been assured by the development of sophisticated ther-
mostats, barostats, and electrostatics models in the past decades. Application of
these models and methods nowadays avoids most simulation artifacts. Nowadays
one of the few important method-related artifacts in biomolecular simulations
is self-interaction in the periodic boundary condition because many researchers
tend to minimize the simulated system to increase the simulation speed.

The second ingredient in biomolecular simulations is the MM force field. Excit-
ing quantum mechanical (QM) or mixed QM/MM simulations are not discussed
here. Force fields have been the subject of intensive development focused on their
accuracy. Evaluation of the accuracy of molecular simulations is not trivial. For
example, force field accuracy can be simply tested by comparing energies cal-
culated by the force field and by an accurate reference method, for example, by
some quantum chemistry method. However, this evaluation approach is tricky.
Individual bonded and nonbonded force field terms differ significantly in their
magnitudes. For example, a small change in a bond angle can be associated with
high change of energy. In contrast, formation of non-covalent interactions is usu-
ally associated with much lower energy changes. Both these terms can contribute
differently to overall accuracy of predictions made by molecular simulations. As
a result, a force field that seems to be inaccurate by comparison of energies may
be, in fact, pretty accurate in practical application and vice versa.
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Figure 1.4 Improvement of force fields over time. Each force field was evaluated in three
simulation tasks and awarded 0–2 points per task depending on the agreement with
experimental data. Low scores indicate good agreement with experiments. Source: Taken from
Lindorff-Larsen et al. [31], Creative Commons Attribution License.

The progress in accuracy of MM potential can be illustrated by Figure 1.4
from the work of Lindorff-Larsen et al. [31]. These authors systematically tested
MM potentials for proteins developed from 1998 to 2011. These potentials
were tested by very long simulations of a folded protein and protein folding
process. Each potential was given a score from 0 to 6 depending on agreement of
simulations with experimental data (0 for the best agreement). Figure 1.4 shows
a steady progress in accuracy, with no major accuracy issues in two force fields
published in 2010 and 2011. This progress fits well into the picture of the hype
cycle with a slow but steady and systematic improvement in the field in the Slope
of Enlightenment.

One problematic feature of most MM force fields is the absence of polarizabil-
ity. Conventional force fields model atoms as charged points. In reality, charge
distribution changes dynamically as a response to the environment. Polarizable
versions of CHARMM [32] and special AMOEBA force fields [33] were devel-
oped.

Main developers of protein force field also develop compatible general force
fields for ligands, either under the same title (such as OPLS3 [34]) or under an
alternative name (General Amber Force Field, or GAFF [35], for the Amber force
field series or CHARMM General Force Field, or CGenFF [36] for the CHARMM
force field series). Some force field developers also provide online tools for gener-
ation of force field parameters for an uploaded compound in mol2 or pdb format,
such as CGenFF web [36] and SwissParm [37] for CHARMM or LigParGen [38]
for OPLS-AA. A web-based graphical user interface for CHARMM, known as
CHARMM-GUI [39], also provides this functionality, besides other features such
as membrane setup for membrane protein simulations.

When comparing protein and general molecule force fields, the situation
is not so bright for general molecules. General druglike molecules are much
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more diverse than 20 amino acid residues. Therefore, at least early force fields
for general small molecules contained utterly erroneous terms, for example,
wrong hybridization types. Evolution of general force fields corrected most of
these errors; nevertheless, development of force fields applicable for all druglike
molecules is challenging and these force fields are still inaccurate for many
classes of compounds.

Systematic evaluation of force fields by comparison of energies calculated by
force fields and by quantum chemistry methods for optimized structures [40]
revealed that most problematic molecules are flexible multitorsion molecules or
molecules with unusual conjugation of double bonds; however, the relationship
between the structure and force field inaccuracy is not clear.

Also, modeling of interactions between a protein and a ligand can be affected
by ligand force field inaccuracies or incompleteness. Widely discussed in this
context is a halogen bond C—X· · ·A, where X is a halogen (usually other than
fluorine) and A is a conventional hydrogen bond acceptor, typically oxygen [41].
It has been shown that this type of bond is common in recognition of druglike
molecules [42]. Classical D—H· · ·A hydrogen bond is modeled by most force
fields as a combination of electrostatic attraction and van der Waals repulsion
between H and A. Since halogens in organic molecules as well as hydrogen bond
acceptors are partially negatively charged, interactions between these two groups
are rather repulsive. The origin of the halogen bond is in unusual distribution of
electrons, referred to as sigma hole, in halogens bound in organic molecules. This
phenomenon is usually not modeled by conventional force fields. A new atom
type of halogen bond donor atoms has been introduced into the ligand version of
optimized potentials for liquid simulations (OPLS) force field and this force field
was successfully applied in computational prediction of binding free energies of
HIV reverse transcriptase inhibitors [42].

It is possible to improve the accuracy of an individual modeled molecule instead
of trying to improve the force field as a whole. Several approaches and tools
have been developed for this purpose. For example, it is possible to improve
CHARMM force fields using the Force Field Toolkit (ffTK) [43], which is a plu-
gin for a popular visual molecular dynamics (VMD) viewer [44]. Another effort
to improve accuracy of simulation of protein–ligand complexes is a repository
of ligand parameters. At the website www.ligandbook.org it is possible to find
parameters of approximately 3000 molecules in different force fields and for dif-
ferent program packages [45].

1.4 Sampling

The necessity to use femtosecond integration steps together with the fact
that each atom in a condensed biomolecular system interacts with another
approximately 5000 atoms (considering 2 nm as an interaction cutoff) causes
biomolecular simulations that are extremely computationally expensive. The
history of biomolecular simulations is tightly connected with availability of
computer power. The 1980s were characterized by the introduction of per-
sonal computers and a boom in academic supercomputers. The 1990s were
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characterized by parallelization, i.e. joining of inexpensive computers to larger
clusters. Other ideas, such as distributed computing projects using computer
power of volunteers’ PCs [46], use of GPUs [47], and special purpose computers
[48], were introduced later. As a result of the progress in computer power, the
first biomolecular simulations studied picosecond timescales, nanosecond sim-
ulations became available in the early 1990s, the first microsecond simulations
were carried out in the late 1990s, and the milliseconds milestone was reached
in around 2010. However, it must be kept in mind that these timescales were
typically reached for small molecular systems on cutting-edge hardware and at
the time of their publication were far from routine.

Sampling of a biomolecular system can be compared to the situation when a
department store manager wants to evaluate the “affinity” of customers to differ-
ent parts of the department store he manages. It is possible to choose a certain
customer and follow his or her route through the department store. It is then pos-
sible to calculate probability for individual departments as a ratio of time spent
in the department divided by the total time. It is also possible to use Eq. (1.1) to
express this probability as free energy (temperature is discussed later). However,
this approach, equivalent to the classical molecular dynamics simulation, is inef-
ficient because the customer may stay for a long time in some department and it
can take a very long time to sample all departments.

An alternative in the molecular world to running very long simulations is appli-
cation of enhanced sampling techniques. These techniques were designed to pro-
vide equivalent information as several orders of magnitude longer conventional
(unenhanced) simulations. There is a group of enhanced sampling techniques
that use a bias force or bias potential to accelerate the studied process. Other
methods use elevated temperature or other principles. Several hybrid sampling
enhancement methods combining multiple principles have been also developed.

Simulations using a bias potential or a bias force, further referred to as biased
simulations, include the umbrella sampling method [49], metadynamics [50],
steered molecular dynamics [51], local elevation [52], local elevation umbrella
sampling [53], adaptively biased molecular dynamics [54], variationally enhanced
sampling [55], flying Gaussian method [56], and others. These methods can be
divided into two groups depending on whether the bias potential or force is
static or dynamic.

The method known as umbrella sampling uses a static bias potential. In the
analogy to the department store presented, it is possible to represent it by
organizing sales in some unattractive departments and hiking prices in attractive
ones. This will make sampling much more efficient. Provided that it is possible
to quantify the effect of sales and price elevations, it is possible to calculate the
equilibrium probabilities (probabilities under condition of regular prices) from
sampling and from price modifications.

Umbrella sampling introduced by Torrie and Valleau in 1977 [49], originally in
connection with the Monte Carlo method, represents methods with a static bias
potential (some scientists use the term umbrella sampling as a synonym for any
simulation with a static bias potential). In the most common design, it is used
to enhance sampling along certain CVs (e.g. protein–ligand distance) to predict
the corresponding free energy surface. Umbrella sampling is done by running
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a series of simulations, each with a bias potential k(s− Si)2/2, where k deter-
mines strength of the bias potential, s is the CV, and Si (for ith simulation) ranges
from the initial S0 and the final state SN of the simulated process (e.g. bound and
unbound state) and is usually uniformly distributed. This potential forces the lig-
and to sample all states along the binding pathway. Free energy surface can be
calculated by, for example, weighted histogram analysis method (WHAM) [57]
or by the reweighting formula [58–60]. These methods are explained later; so,
briefly, it is possible to calculate unbiased sampling from the knowledge of the
biased sampling and the bias potential. An example of umbrella sampling in drug
discovery is the study of Bennion et al. [61]. They simulated permeation of drug
molecules through the membrane. They used a coordinate perpendicular to the
membrane as the CV. This CV was ranging from 0 to 10 nm in 0.1-nm windows
(i.e. 100 simulations). They correctly ranked tested compounds as impermeable;
low, medium or highly permeable; and in a good quantitative agreement with
parallel artificial membrane permeability assays (PAMPA).

Biased simulation with a time-dependent bias potential can be represented by
the metadynamics method [50]. In the department store example, it is possible
to carry out metadynamics using a device that, at regular intervals, releases some
stinky compound. Such a device must be installed onto a customer’s shopping
basket. If the customer stays for a long time in some department, the device
causes the stinky compound to accumulate there. This forces the customer to
escape the department and to visit other departments. This makes sampling
much more efficient. The free energy surface can be estimated from the amount
of the stinky compound, i.e. deep minima require a high amount of the stinky
compound.

In the molecular world, that application of metadynamics starts with choice of
CVs, typically two. The system is then simulated by conventional simulation for
1 or 2 ps. Then, values of CVs are calculated and recorded as S1. From this point,
a bias potential in the form of a Gaussian hill centered in S1 is added to the simu-
lated system. The system evolves for another 1 or 2 ps, then another hill is added
to S2, and so forth. The bias potential accumulates in certain free energy minima
until this minimum is flooded and the simulation can escape it. This allows for
complete sampling of the free energy surface. The free energy surface can be esti-
mated as the negative value of the bias potential [50, 62, 63], because the deeper
the free energy minimum, the more hills it needs to flood.

The accuracy of metadynamics (and other biased simulations) is critically
dependent on the choice of CVs. Ideally, the CVs must account for all slow
degrees of freedom in the simulated system. Existence of some slow degree
of freedom not addressed by CVs may cause a significant drop of accuracy.
Imagine a simulation of protein–ligand interaction. Naturally, one of the CVs
for protein–ligand interaction modeling can be the protein–ligand distance to
accelerate binding and unbinding. The second CV should address other slow
motions. Imagine the situation that the entrance to the binding site may be
occasionally blocked by some amino acid side chain. If the site is blocked, the
ligand cannot move inside or outside the binding site. This leads to a huge
overestimation or underestimation of the predicted binding free energy.

An ideal solution to this problem would be a second CV that fully addresses
side chain motions. It is difficult to design such CVs due to the complexity of
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the molecular system because there could be multiple problematic side chains or
other degrees of freedom. Instead, most researchers rely on sampling. Simula-
tions in timescales of hundreds of nanoseconds or microseconds are usually not
long enough to simulate binding and unbinding events, but it is often sufficient
to sample such problematic degrees of freedom once binding and unbinding is
enhanced.

However, in classical metadynamics, this may cause the problem of hysteresis
in the predicted free energy surface due to altering overestimation of the bound
and unbound state. This problem can be addressed by well-tempered metady-
namics [64]. Well-tempered metadynamics is metadynamics with variable hill
heights. The height set by user is scaled by exp(−V bias(s)/kΔT), where ΔT is the
difference between sampling temperature and the temperature of the simulation.
Classical metadynamics corresponds to ΔT = infinity and unbiased simulation
to ΔT = 0. Flooding of the free energy surface in well-tempered metadynamics
slows down until its convergence. The free energy can be calculated as a
negative value of the bias potential scaled by (T +ΔT)/ΔT . The fact that the
biasing slows down reduces the hysteresis and increases the accuracy. For this
reason, well-tempered metadynamics replaced classical metadynamics in the
past decade. Well-tempered metadynamics, together with a funnel method
(described later), was used to simulate binding and unbinding and to accurately
predict binding free energies for ligands of GPCR, including cannabinoid CB1
[65], β2 adrenergic [66], chemokine CXCR3 [67], and vasopressin [68] receptors.

In the previous paragraph I assumed that a single CV cannot address all slow
degrees of freedom. However, it is possible to address many slow degrees of free-
dom by multiple CVs. It has been shown that metadynamics with more than two
or three CVs is not efficient [69]. A special variant called bias exchange metady-
namics [70] was developed to run metadynamics with multiple CVs. The system
is simulated in multiple (N) replicas (usually one per processor CPU), where N
is the number of CVs. Metadynamics biases a single CV in each replica (or there
could be some unbiased replicas). Occasionally (every few picoseconds) coordi-
nates are exchanged on the basis of an exchange criteria calculated from potential
energies and bias potentials in each system. This makes it possible to predict a
one-dimensional free energy surface for each CV. Calculation of a multidimen-
sional free energy surface requires a special reweighting procedure [71]. The bias
exchange metadynamics has been applied in predicting the binding mode of the
compound SSR128129E to fibroblast growth factor receptor [72].

Sampling can be also enhanced by elevated temperature. In the department
store example, it is possible to find an analogy between temperature and the
music played in the store. It has been shown experimentally that a tempo of
music in a supermarket influences the pace of shoppers [73]. It is therefore pos-
sible to enhance sampling by playing a fast-paced music. However, by this we
would obtain a different free energy surface from the normal music played in the
department store. For example, fast moving customers would prefer easy-to-find
departments and shelves and would ignore difficult-to-find ones.

Similarly, in a high-temperature molecular simulation, we would obtain a free
energy surface different from the normal temperature. Such a free energy sur-
face is usually not interesting. For example, the “native” structure of a protein
at a temperature higher than its melting temperature is the unfolded structure.
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There is a method that makes it possible to use elevated temperature to enhance
sampling and at the same time to obtain normal-temperature free energy sur-
faces. This method is known as parallel tempering and belongs to the family of
replica exchange methods. In the department store analogy, it would be necessary
to distribute radios with headphones to multiple customers. Customers would
listen to music differing in the tempo. In periodic intervals, their music would
be exchanged based on the special criteria. Normal-tempo free energy surface
would be obtained by the analysis of trajectories of only those customers who
listen to the normal-tempo music.

In a molecular system, it is possible to run parallel tempering by simulation
of multiple replicas of the system at different temperatures. These temperatures
are chosen so that the lowest is slightly lower than the normal temperature and
the highest is high enough to significantly enhance sampling. Replica exchange
attempts are evaluated usually every 1 or 2 ps. The potential energy of the ith
replica is compared with the potential energy of the i+ 1th replica. If the poten-
tial energy of colder replica is lower, the coordinates of replicas are swapped. If
not, the Metropolis criterion is calculated as exp((Ei −Ei+ 1)(1/kTi − 1/kTi+ 1)).
If a random number (with a uniform distribution from 0 to 1) is lower than the
Metropolis criterion, the coordinates in the replicas are also swapped. If the
simulated system adopts an unfavorable (high-energy) structure, it tends to be
exchanged for higher temperature replicas and to climb on the temperature lad-
der. There it can adopt some nice structure with low energy. Once this happens,
it would tend to descend on the temperature ladder. Structures sampled at the
temperature of interest can be analyzed by Eq. (1.1) to obtain the corresponding
free energy surface.

Parallel tempering is a very powerful method for folding of mini-proteins. It is
particularly suitable for simulation of small systems because large systems require
a huge number of replicas to reach reasonable exchange rates (with a low num-
ber of exchanges, the method would behave as a series of independent unbiased
simulations). I see the highest potential of parallel tempering in drug design in
combination with other sampling enhancement methods. Parallel tempering in
combination with metadynamics [74] has been applied to compare wild-type and
oncogenic mutants of the epidermal growth factor receptor [75].

An interesting multiple replica method that enhances sampling by cloning
and merging replicas is WExplore [76]. This method simulates the system in a
constant number of replicas. When two or more replicas sample similar states,
they are merged. If a single replica samples some distant state, it is cloned. The
free energy method can be obtained from sampling and from cloning and merg-
ing history. This method was successfully applied in modeling of the interaction
between 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea
(TPPU) and its enzyme target epoxide hydrolase [77].

1.5 Binding Free Energy

So far I have presented methods that can be used for general prediction of free
energy relationships. Here I present special issues of modeling of protein–ligand
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Figure 1.5 Schematic representation
of funnel techniques and distance
field CV.
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interactions and molecular simulation methods especially suited for modeling
molecular recognition. An important issue of such simulations is the fact that
the entrance into the binding site usually represents only a small part of the
overall protein surface. It may seem like a good idea to enhance simulation of
protein–ligand binding by biasing the distance between the binding site and
the ligand. However, it may happen that the ligand chooses a wrong entrance
into the binding site. This significantly slows down the simulation and makes
the predicted free energy surface inaccurate. There are two major approaches
developed to address this problem. First, is the abovementioned application of
a funnel (Figure 1.5), first introduced as funnel metadynamics [78]. The ligand
is restrained into a funnel-shaped space outside the binding site by means of
an artificial potential. This prevents the ligand from exploring other entrances
into the binding site. The result of such a simulation is the free energy difference
between the bound state and the state when the ligand resides at the tip of the
funnel. A simple correction can be applied on this value to obtain the absolute
binding free energy, considering ligand concentration, volume of the system,
and the volume of the funnel [78]. The method has been successfully applied in
G protein–coupled receptor (GPCR) research [65–68].

An alternative to a funnel is a distance field (Figure 1.5) [79]. Instead of the
Euclidean distance between the binding site and the ligand, it is possible to
measure the shortest path from the binding site and the ligand without their
collisions. At the beginning, a three-dimensional grid is constructed in the
simulation box. For each point on the grid (except those inside the protein) a
collision-free distance between the binding site and the ligand is calculated.
Next, in the simulation it is possible to estimate this distance from grid points
close to the ligand position. This approach has been applied together with
Hamiltonian replica exchange simulation to study binding of 14-3-3ζ domains
with phosphopeptides [80].

The so-called Alchemistic methods can be used to predict binding free energy
without simulating the binding process. The term “Alchemistic” indicates that
some elements change into other elements, similarly to medieval alchemists
attempting to produce gold from inexpensive metals. These methods typically
do not provide absolute binding free energies. Instead, they make it possible to
predict an outcome of a modification of the ligand, for example, change of hydro-
gen to halogen, addition of a small group, or other minor modifications. More
complex modifications can be studied by combination of multiple Alchemistic
simulations.
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Alchemistic methods such as free energy perturbation, thermodynamic
integration, or Bennett acceptance ratio method use a series of nonphysical
processes to study a physical process. For example, it is possible to predict the
outcome of a replacement of a hydrogen atom in a ligand by chlorine, i.e. the
difference between binding free energy of the ligand L–Cl and the ligand L–H.
First, the complex protein – L–H is simulated and its force field parameters are
gradually changed (linearly or nonlinearly) into parameters of L–Cl; that is, the
increase in mass from 1 to 35.45, the increase in bond length from ∼1 to ∼1.8 Å,
etc. The response of energy of the system is monitored. This response makes it
possible to predict the free energy difference of a nonphysical (experimentally
unfeasible) process of changing of H to Cl on a protein-bound ligand. In addition,
it is possible to do the same calculation for an unbound ligand and to construct
a thermodynamic cycle comprising (i) binding of L–H to protein, (ii) change of
bound L–H to L–Cl, (iii) unbinding of L–Cl, and (iv) change of unbound L–Cl
to L–H. Despite the fact that two of these processes are nonphysical, the overall
free energy change of the thermodynamic cycle is zero. It is therefore possible to
predict ΔΔG (the difference of binding ΔG of L–Cl versus L–H). This can give
an answer to whether the change of H to Cl strengthens or weakens the binding
to the protein. A good example of application of Alchemistic simulation is the
campaign leading from a weakly binding docking hit to a picomolar inhibitor of
HIV integrase by Jorgensen’s group [81–84].

Finally, several methods have been developed to predict binding free ener-
gies from molecular simulations without simulating the binding process.
These methods assume that the affinity is determined by the strength of
non-covalent intermolecular interactions. The ligand is simulated as a com-
plex in the target and, in parallel, in a solvent. Non-covalent interactions are
monitored in both simulations and they are used to predict binding free energy
and the effect of ligand desolvation. Examples are linear interaction energy
[85] and methods combining MM with implicit solvent models (molecular
mechanics/Poisson–Boltzmann surface area (MM/PBSA) and molecular
mechanics/generalized born surface area (MM/GBSA)) [86]. Wright et al. used
the MM/PBSA and MM/GBSA method to predict binding free energies of
nine HIV-protease inhibitors approved for HIV treatment [87]. This study is an
example of replications in simulations. The authors used short simulations (4 ns)
done in 50 independent replicates for each molecule to obtain a robust model
with a good agreement with experiment.

1.6 Convergence of Free Energy Estimates

Experimental researchers use replication to assess and improve accuracy of their
predictions. In the spirit of the central limit theorem, measurements done in mul-
tiple replicates can be averaged to estimate the mean value. Standard deviation
or standard error of the mean can be used to assess the accuracy. Measurements
done in replicates are also used to statistically test research hypotheses.

In principle, replications can also be used in biomolecular simulations; how-
ever, most researchers prefer prolonging their simulations rather than replicating
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them. It is possible to use experiment, such as nuclear magnetic resonance (NMR)
measurement, to determine a dissociation constant of a protein–ligand complex.
By a properly designed NMR experiment it is possible to determine concentra-
tions of the free ligand, free protein, and the protein–ligand complex (or at least
ratios of their concentrations). In the other words, it is possible to determine the
number of molecules in different states (free protein, free ligand, and free com-
plex) in the studied system at a certain moment.

Instead, biomolecular simulations study a single biomolecule as a sample of the
whole biomolecular system. They calculate how long the single studied system
spends in different forms. A dissociation constant of the protein–ligand complex
can be calculated as the ratio of times spent in the ligand-bound and the unbound
form. Both concepts, concentration and time ratios, can be generalized in the way
that both quantities are proportional to probabilities of states, i.e. dissociation
constant can be determined as the ratio of equilibrium probabilities of different
forms of the studied systems.

The main reason why replication is rarely used in biomolecular simulation is the
fact that it is difficult to generate independent starting conditions. Basic molec-
ular dynamics simulation is a deterministic method. Running two simulations
from the same starting coordinates with the same starting velocity vectors should
give identical trajectories. Random initialization by different starting velocities
usually does not provide the satisfactory level of independence. The second rea-
son is that many biologically interesting quantities, such as dissociation con-
stants, require sampling of multiple transitions between the relevant states of the
system.

Nevertheless, errors of some quantities of the molecular system can be calcu-
lated by a “standard” way used by experimental scientists who average results of
independent experiments. These quantities include temperature, pressure, mem-
brane surface tension, number of non-covalent interactions, experiment-related
properties (e.g. fluorescence resonance energy transfer (FRET), pair and radial
distribution functions or NMR quantities), molecular surface, forces acting on
selected molecular degree of freedom, and others. Calculation of these proper-
ties requires that the system exist only in one form whose property we want to
calculate or the transitions between forms are rapid enough.

Most interesting from the point of view of drug design is prediction of ther-
modynamic and kinetic quantities, especially association/dissociation constants
and binding/unbinding rates of protein–ligand complexes. Calculation of these
quantities requires sampling of multiple transitions between the forms of the
molecular system. The equilibrium constant of the transition from form A to B
can be predicted as the time spent in form B divided by the time spent in form A.
A 1-μs simulation with a single transition from A to B at ∼0.5 μs would give free
energy difference estimate around 0 kJ mol−1 (i.e.−kT log(0.5/0.5)). However, it is
possible that the system would have stayed in state B for another 100μs, so the real
free energy difference is approximately −13 kJ mol−1 (i.e. −kT log(100.5/0.5)). On
the other hand, a simulation with many A to B and B to A transitions provides
good confidence that the calculated binding free energy is accurate, at least in
terms of sampling.

This phenomenon can be addressed by a block analysis [88–91]. Simulation
trajectories are separated into M equivalently sized blocks with n = 1 to N , where
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M = N/n, N is the number of samples in the trajectory, and n is the number of
samples in a block. The calculated value, for example, the population of the state
B PB, is averaged in each ith block yielding ⟨PB⟩i. Next, standard deviation and
standard error (block standard error, BSE) is estimated for each value of n from⟨PB⟩i as

𝜎(P, n) =
√∑

(⟨PB⟩i − ⟨⟨PB⟩⟩)2

M − 1
(1.3)

BSE(P, n) = 𝜎(P, n)√
M

(1.4)

where ⟨⟨ ⟩⟩ is average across the block size n. This procedure can be demon-
strated on sampling of a model one-dimensional energy profile with two minima
at CV equal to approximately 3 (minimum A) and 7 (minimum B). These minima
have the same depth, so the free energy difference is 0 and equilibrium constant
is 1. It was sampled by the Monte Carlo method with CV profiles depicted in
Figure 1.6. The top profile shows sampling at low temperature with few A to B
and B to A transitions. A block analysis with n = 1–100 gives a divergent esti-
mate of BSE(P, n). The value for n = 1 corresponds to classical standard error
of the mean calculated for independent samples in many fields of experimental
sciences. This value is strongly underestimated due to autocorrelation of values
of the CV in the trajectory. If the system is in state A, it is highly probable that it
will be in state A in the next step or 10 steps later. The value of PB was calculated
as 0.503 (equilibrium constant 1.01). The block analysis shows that the value of
BSE(P, n) rises for n = 1–100 and is not convergent (extending n does not help;
data not shown). It would be therefore necessary to prolong the simulation in
order to obtain a convergent estimate of standard error. The situation is differ-
ent in the simulation at a higher temperature depicted in the bottom profile. The
PB was calculated as 0.453 and the number of A to B and B to A transitions was
higher. The result of the higher number of transitions is a convergent profile of
BSE. Highest BSE value (0.08) can be used as a standard error estimate, i.e. PB is
equal to 0.45± 0.08 (mean±BSE).
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Figure 1.6 Demonstration of block error analysis on sampling of a model energy profile.
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A similar analysis can be applied on biased simulations. The easiest free energy
estimation can be done from metadynamics simulations. In classical metady-
namics [50, 69], it is possible to use a negative value of the bias potential as an
estimate of the free energy surface [62, 63]. In well-tempered metadynamics, the
free energy can be predicted as a negative value of the bias potential scaled by a
constant factor ((T +ΔT)/ΔT). However, this approach does not provide an esti-
mate of its accuracy. Simple averaging of free energy differencesΔGA→B along the
simulation suffers the problem of autocorrelation in simulation trajectories. It is
possible to plot the profile ΔGA→B along a metadynamics simulation with a nice
convergence, but the converged ΔGA→B can be completely wrong due to a low
number of A to B and B to A transitions.

The problem can be addressed by block analysis also in biased simulations [92].
As an alternative to calculating free energy surface from the bias potential, it is
possible to calculate it from the combination of the bias potential and sampling.
Equilibrium (unbiased) probabilities can be predicted from biased sampling by
reweighting formula [58–60]:

P(S) =
∑

𝛿(s(t) − S) exp(+Vbias(t)∕kT)∑
exp(+Vbias(t)∕kT)

(1.5)

where S is a multidimensional vector of CVs and s(t) is the vector of CVs sampled
at time t. In other words, equilibrium probabilities from biased simulations
are calculated in the same way as from unbiased except that they are scaled
by the factor exp(+V bias(t)/kT). This is a generalization of Eq. (1.1), where
exp(+V bias(t)/kT) = 1 in the absence of the biased potential. Similarly, the
bias potential in a non-well-tempered metadynamics is constructed to make
sampling of all values of S with the same probability, i.e. 𝛿(s(t)− S) is constant.
This is true only if P(S) = exp(−F(S)/kT), i.e. F = −V bias. This idea can be
extended for well-tempered metadynamics. Prediction of P(S) using reweighting
formula makes it possible to analyze the data by block analysis to predict BSE.

The problem of reweighting formula is that it should be used together with
a static (time-independent) bias potential. The bias potential of metadynamics
is time-dependent. With caution it is possible to use reweighting formula and
considering the metadynamics bias potential as quasi-static. Alternatively, it is
possible to apply corrections developed by Tiwary and Parrinello [93].

Another possibility to predict the free energy surface is application of WHAM.
It should be noted that some researchers use the term umbrella sampling for any
biased simulation with a static bias potential. The same researchers would call
the reweighting formula in Eq. (1.5) as WHAM. However, most scientists use the
term umbrella sampling for biased simulations carried out in multiple windows,
where different bias potentials are used in each window and all windows cover
the whole range of the CV [57]. The pair of WHAM equations

P(S) =
∑

𝛿(s(t) − S)∑
exp([Fi − Vbias(t)]∕kT)

(1.6)

Fi = −kT log
∑

[P(S) exp(−Vbias(S)∕kT)] (1.7)
is solved iteratively to self-consistency to obtain P(S) and Fi. It can be intuitively
explained that the free energy is calculated in small fragments using reweighting
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formula for each window. Simultaneously, free energy shifts Fi of these fragments
are calculated. The whole free energy surface is reconstructed by merging frag-
ments of the free energy surface shifted by Fi. Block analysis has also been applied
in WHAM [94].

Prediction of kinetics of drug binding and unbinding has become attractive
for drug design [95]. Partially, this is because it is easier to sample a single drug
binding or single unbinding event compared to sampling of numerous binding
and unbinding events, so researchers make a virtue of necessity. Beside this,
numerous experimental results show that binding or unbinding kinetics can be
equivalently or even more useful in drug design compared to thermodynamics.
Prediction of kinetics from unbiased and biased simulations and assessment of
the accuracy of these predictions is not as developed as for thermodynamics, but
there are several examples of extraction of kinetic information from unbiased
simulations [96] or metadynamics [97, 98]. The Markov chain model made from
biomolecular simulations is presented in Chapter 4.

1.7 Future Outlook

The question is: What are the limits in the predictive power of biomolecular
simulations? In 1998, Xie and coworkers measured the rate of enzymatic reaction
at the single-molecule level using a special fluorescence microscopy technique
[99]. They found significant heterogeneity in kinetic parameters in individual
enzyme molecules (standard deviation of 70% for kcat). These heterogeneities
were explained by conformational heterogeneities. A similar heterogeneity
was observed in signaling by the β2 adrenergic receptor [100]. In other words,
individual enzyme or receptor molecules are highly heterogeneous in their
ligand-binding or catalytic properties not only in vivo but also in vitro. The
experimentally measured kinetic or thermodynamic parameters represent an
averaged value across all molecules in the system. Biomolecular simulations
study a single molecule. It is therefore natural that predicted parameters of
biomolecular simulation may differ from experimental results due to the
heterogeneity in target molecules. This problem can be, in principle, solved by
replication of simulations or by enhancement of sampling of degrees of freedom
associated with such heterogeneity, but none of these approaches is simple.

At the beginning of this chapter I introduced three designs of molecular simula-
tions: evaluative, refinement, and equilibrium. The examples of studies presented
later in this chapter follow almost always the equilibrium design. This can be
explained by the fact that biomolecular simulations in drug design are mostly the
domain of physical chemists. A typical physical chemist approaches the problem
from the bottom-up perspective. This starts with a precise development and tun-
ing of simulation methods, force fields, and sampling enhancement tools, walking
stepwise from simple systems to complicated ones. Other approaches in compu-
tational drug design such as protein–ligand docking or pharmacophore modeling
are the domain of chemoinformaticians. Chemoinformaticians are more open to
heuristic approaches. They typically train a model on a training set and validate
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it on a validation set of data. If the model helps distinguish between good and
bad ligands with statistical significance, it is acceptable for drug design, no mat-
ter how solid is its physical basis. I believe that more and more researchers will
use biomolecular simulations in such chemoinformatics spirit. Instead of tun-
ing methods on low number of systems, they will test practical impacts on large
numbers of systems. This is the area where evaluative and refinement design of
molecular simulations can be used.

Predictive power of biomolecular simulations is determined by availability of
computer power, partially because longer computational times provide better
sampling, partially because long computational times make it possible to iden-
tify and correct other limiting factors of biomolecular simulations, such as force
field inaccuracies. In the area of DNA sequencing, there has been an enormous
jump in performance due to introduction of parallel sequencing machines. The
question is whether we can expect a similar jump in biomolecular simulations or
whether we can expect evolution rather than revolution. Two emerging technolo-
gies have a certain potential to cause such a jump in performance of biomolecular
simulations; these technologies are machine learning and quantum computing.
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