Contents

Preface *xi*

1	The History/Development of Single Particle Nanocatalysis 1
1.1	History of Single Particle Nanocatalysis Based on Single Molecule
	Fluorescence Microscopy 2
1.2	History of Single Particle Nanocatalysis Based on (Localized) Surface
	Plasmon Resonance 3
1.3	History of Single Particle Nanocatalysis Based on Scanning
	Electrochemical Microscopy 4
1.4	History of Single Particle Nanocatalysis Based on Vibrational
	Spectroscopies 5
	References 6
2	Single Molecule Nanocatalysis Reveals Catalytic Kinetics and
-	Thermodynamics of Individual Nanocatalysts 9
2.1	Single Molecule Enzymology 9
2.1.1	Single Molecule Michaelis–Menten Kinetics in the Absence of
	Dvnamic Disorder 9
2.1.2	Single Molecule Michaelis–Menten Kinetics with Dynamic
	Disorder 13
2.1.3	Randomness Parameter 20
2.1.4	Single Molecule Michaelis-Menten Kinetics for Fluorogenic Reaction
	in the Absence of Dynamic Disorder 21
2.2	Physical Models for Kinetic and Dynamic Analysis of Single Molecule
	Nanocatalysts 23
2.2.1	Langmuir–Hinshelwood Mechanism for Noncompetitive
	Heterogeneous Catalysis 23
2.2.1.1	Langmuir–Hinshelwood Mechanism for Product Formation 24
2.2.1.2	Two-Pathway Model for Production Dissociation 27
2.2.1.3	Overall Turnover Rate 29
2.2.2	Langmuir-Hinshelwood Mechanism for Competitive Heterogeneous
	Catalysis 30
2.3	Comparison Between Michaelis-Menten Mechanism and
	Noncompetitive Langmuir–Hinshelwood Mechanism 31

v

vi Contents

- 2.4 Michaelis–Menten Mechanism Coupled with Multiple Product Dissociation Pathways 32
- 2.4.1 Product Dissociation Process 32
- 2.4.2 Product Formation Process 33
- 2.5 Application of Langmuir–Hinshelwood Mechanism to Oligomeric Enzymes *35*
- 2.6 Applications of Competitive/Noncompetitive Langmuir–Hinshelwood Models in Single Molecule Nanocatalysis 35
- 2.6.1 Applications of Noncompetitive Langmuir–Hinshelwood Models in Single Molecule Nanocatalysis 35
- 2.6.1.1 Single Molecule Nanocatalysis on Single Au Nanoparticles 35
- 2.6.1.2 Single Molecule Photocatalysis on Single TiO₂ Nanoparticles 38
- 2.6.2 Applications of Competitive Langmuir–Hinshelwood Models in Single Molecule Nanocatalysis *41*
- 2.6.2.1 Single Pt Nanocatalyst Behaves Differently in Different Reactions 41
- 2.6.2.2 Single Molecule Nanocatalysis at Subparticle Level 42
- 2.7 Single Molecule Nanocatalysis Reveals the Catalytic Thermodynamics of Single Nanocatalysts 44
 Abbreviation 46
 References 46
- 3 Combination of Traditional SMFM with Other Techniques for Single Molecule/Particle Nanocatalysis 49
- 3.1 Introduction of SMFM-Based Single Particle Nanocatalysis Analysis Method 49
- 3.2 SMFM Combining with Electrochemical Techniques 49
- 3.3 SMFM Combining with AFM 57
- 3.4 Conclusion 60 Abbreviations 60 References 60
- 4 Optical Super-Resolution Imaging in Single Molecule Nanocatalysis 63
- 4.1 History and Principle of Different Optical Super-Resolution (SR) Techniques 63
- 4.1.1 History of Optical Super-Resolution (SR) Techniques 63
- 4.1.2 Principle of Optical Super-Resolution (SR) Imaging 65
- 4.1.2.1 Super-Resolution Imaging with Spatially Patterned Excitation 65
- 4.1.2.2 Localization Microscopy: Super-Resolution Imaging Based on Single Molecule Localization 66
- 4.2 Application of Super-Resolution Imaging in Single Particle Catalysis 68
- 4.2.1 Layered Double Hydroxide (LDH) 69
- 4.2.2 Zeolites 69
- 4.2.2.1 Super-Resolution Imaging on Zeolites 69
- 4.2.2.2 Depth Profiling with Super-Resolution Imaging on Zeolites 74

- 4.2.3 Metal Nanoparticles 76
- 4.2.4 Supported Metal Nanocatalysts 79
- 4.2.5 Semiconductors as Photo(electro)catalysts 80
- 4.2.5.1 Active Site/Facet Mapping 82
- 4.2.5.2 Photogenerated Charge Separation 82
- 4.2.5.3 Design a Photo(electro)catalyst 84
- 4.2.6 Electrocatalysts 86
- 4.2.7 Imaging the Chemical Reactions 87
- 4.2.7.1 Kinetic Studies of Single Molecule Fluorogenic Reactions 87
- 4.2.7.2 SR Imaging of the Single Molecule Reactions on Different Surfaces 89
- 4.2.8 Other Applications of SR Imaging Technique 91
- 4.3 Summary 92 Abbreviations 92
 - References 93

5 Scanning Electrochemical Microscopy (SECM) for Single Particle Nanocatalysis 107

- 5.1 Brief Review of Scanning Electrochemical Microscopy (SECM) 107
- 5.2 Principles of SECM 109
- 5.2.1 Preparation of Nanoelectrodes 111
- 5.2.1.1 Fabrication Method 1: Electron Beam Lithography 111
- 5.2.1.2 Fabrication Method 2: Glass-Coated Electrode 113
- 5.2.2 Operation Modes of SECM 113
- 5.2.2.1 Collection Mode 113
- 5.2.2.2 Feedback Mode 117
- 5.3 Preparation of Single Nanoparticle Samples for Electrocatalytic Studies *118*
- 5.3.1 "Jump-to-contact" Method for Preparing Single Nanoparticles Based on Tip-Induced Deposition of Metal *119*
- 5.3.2 Electrochemical Methods of Preparing and Characterizing Single-Metal NPs *120*
- 5.3.2.1 Direct Electrodepositing of Single-Metal NPs on a Macroscopic Substrate *121*
- 5.3.2.2 Mechanical Transfer of the Nanoparticle from the Tip 123
- 5.3.2.3 Anodization of Tip Material 124
- 5.3.2.4 Single-Nanoparticle Formation on Ultramicroscopic Substrate 124
- 5.3.3 Determining Electroactive Radii of the Substrate 125
- 5.4 Examples of Typical Experimental Data Analysis Process 127
- 5.4.1 Pt NPs/C UME/Proton Reduction 128
- 5.4.2 Water Oxidation on $IrO_x NP$ 130
- 5.4.3 Hydrogen Evolution Reaction (HER) at the Pd NP 133
- 5.4.4 Screening of ORR Catalysts 137
- 5.5 Summary 141 Abbreviations 141 References 142

- 6 Surface Plasmon Resonance Spectroscopy for Single Particle Nanocatalysis/Reaction 145
- 6.1 Bulk, Surface, and Localized Surface (Nanoparticle) Plasmons 145
- 6.2 SPR on Single Particle Catalysis at Single Particle Level 146
- 6.2.1 Principle of SPR Sensing 146
- 6.2.2 Experimental Method of SPR on Single Particle Catalysis 149
- 6.2.3 Application: Electrocatalysis of Single Pt Nanoparticles Based on SPR *150*
- 6.3 LSPR on Single Particle Catalysis/Reaction at Single Particle Level 150
- 6.3.1 Principle of LSPR Sensing 150
- 6.3.1.1 Electron Injection and Spillover 152
- 6.3.1.2 Plasmon Coupling 153
- 6.3.1.3 Plasmon Resonance Energy Transfer 153
- 6.3.2 Experimental Method of LSPR on Single Particle Catalysis 154
- 6.3.2.1 Dark-field Microscopy 154
- 6.3.2.2 Experimental Strategies 155
- 6.3.3 Application of LSPR Spectroscopy to Single Particle Catalysis/Reaction *156*
- 6.3.3.1 Application 1: Direct Observation of the Changes of the Single Nanoparticle Itself *156*
- 6.3.3.2 Application 2: Direct Observation of Surface Catalytic Reactions on Single Gold Nanoparticles by Single Particle LSPR Spectroscopy 159
- 6.3.3.3 Application 3: Indirect Observation of Catalytic Reactions by Single-Nanoparticle LSPR Spectroscopy *161*
- 6.3.3.4 Application 4: Indirect Observation of Chemical Reactions by Plasmon Resonance Energy Transfer 165
- 6.3.3.5 Application 5: Observation of Electrochemical/Catalytic Reactions on Single Gold Nanoparticles by Single Particle LSPR Spectroscopy 166 Abbreviations 174 References 175
- 7 X-ray-Based Microscopy of Single Particle Nanocatalysis 181
- 7.1 History of X-ray Microscopy 181
- 7.1.1 History of the Setups for X-ray Absorption Fine Structure (XAFS) *182*
- 7.1.2 Evolution of X-ray Source Based on Synchrotron Light Sources 185
- 7.2 Apparatus for Micrometer-Resolved XAFS Spectroscopy 186
- 7.2.1 Soft X-rays and Hard X-rays 187
- 7.2.2 Microprobes 188
- 7.2.3 How the X-ray Beam is Shaped? 191
- 7.2.3.1 X-ray Beam Optimization: Energy Selection 192
- 7.2.3.2 X-ray Beam Optimization: Harmonic Rejection 194
- 7.3 Spatially Resolved X-ray Microprobe Methods 196
- 7.3.1 Full-Field Transmission X-ray Microscopy (TXM) 196
- 7.3.2 Zernike Phase Contrast X-ray Microscopy 197
- 7.3.3 Scanning Transmission X-ray Microscopy (STXM) 198

- 7.3.4 Photoemission Microscopes: PEEM, SPEM, and Nano-ARPES 198
- 7.3.5 Diffraction Microscopy 199
- 7.4 Applications of X-ray-Based Microscopes at Single-Nanoparticle Catalysis *199*
- 7.5 Summary 204 Abbreviations 204 References 205

8 Vibrational Spectroscopy for Single Particle and Nanoscale Catalysis 207

- 8.1 Enhanced Raman Spectroscopy 207
- 8.1.1 Principles of Enhanced Raman Spectroscopy 208
- 8.1.1.1 Interaction Between Light and Metal Nanostructure 208
- 8.1.1.2 Interaction Between Light and Molecules 209
- 8.1.1.3 Interaction Between Metal Nanostructure and Molecules 211
- 8.1.1.4 Hot Spots 213
- 8.1.2 Reactions Related to Enhanced Raman Spectroscopy 216
- 8.1.2.1 Model Chemical Reactions 216
- 8.1.2.2 Plasmon-Assisted Catalysis 217
- 8.1.2.3 Electrochemical Reactions 219
- 8.1.3 Surface-Enhanced Raman Spectroscopy 220
- 8.1.3.1 Remote Excitation SERS (Re-SERS) 220
- 8.1.3.2 Instrumentation for Raman Scattering Detection 221
- 8.1.3.3 SERS Substrate and Applications 222
- 8.1.3.4 Application of SERS on Single Particle Catalysis/Electrochemistry 228
- 8.1.4 Tip-Enhanced Raman Scattering 232
- 8.1.4.1 Configuration of TERS 233
- 8.1.4.2 Application of TERS on Electrochemistry and Catalysis at Nanoscale or Single Particle Level 236
- 8.2 Enhanced Infrared Spectroscopy 244
- 8.2.1 Principles of SEIRAS 244
- 8.2.2 Application of SEIRAS on Single Particle Nanocatalysis 247 Abbreviations 248 References 249

9 Other Techniques for Single Particle Nanocatalysis/Electrochemistry 255

- 9.1 Photoluminescence Spectroscopy for Single Particle Nanocatalysis 255
- 9.1.1 Photoluminescence of Au Nanoparticle 255
- 9.1.2 Applications of PL Spectroscopy for Single Particle Catalysis 257
- 9.1.2.1 Revealing Plasmon-Enhanced Catalysis by Single Particle PL Spectroscopy 257
- 9.1.2.2 Direct Observation of Chemical Reactions by Single Particle PL Measurement 258

x Contents

- 9.2 Nanoelectrodes and Ultra-microelectrodes for Single Particle Electrochemistry 260
- 9.2.1 Nanoelectrodes for Single Particle Electrocatalysis 261
- 9.2.2 Ultra-microelectrodes for Single Particle Electrochemistry 264
- 9.2.2.1 Stochastic Collision of Individual Nanoparticles with UME 264
- 9.2.2.2 Application of UME on Single-Nanoparticle Electrochemistry 267
- 9.3 Three-Dimensional Holographic Microscopy for Single Particle Electrochemistry 273
- 9.3.1 3D-Superlocalization of Nanoparticles by DHM 273
- 9.3.2 Application of DHM on Single Particle Electrochemistry 275
- 9.3.2.1 Deciphering the Transport Reaction Process of Single Ag Nanoparticles 276
- 9.3.2.2 Correlated DHM and UME to Reveal the Chemical Reactivity of Individual Nanoparticles 277
 Abbreviations 278
 References 278

Index 283