
1

1

The Future of CMOS: More Moore or a New Disruptive
Technology?
Nazek El-Atab and Muhammad M. Hussain

King Abdullah University of Science and Technology, Integrated Nanotechnology Lab, Thuwal, 4700,
Saudi Arabia

For more than four decades, Moore’s law has been driving the semiconductor
industry where the number of transistors per chip roughly doubles every
18–24 months at a constant cost. Transistors have been relentlessly evolving
from the first Ge transistor invented at Bell Labs in 1947 to planar Si metal-oxide
semiconductor field-effect transistor (MOSFET), then to strained SiGe
source/drain (S/D) in the 90- and 65-nm technology nodes and high-κ/metal
gate stack introduced at the 45- and 32-nm nodes, then to the current 3D
transistors (Fin field-effect transistors (FinFETs)) introduced at the 22-nm node
in 2011 (Figure 1.1). In extremely scaled transistors, the parasitic and contact
resistances greatly deteriorate the drive current and degrade the circuit speed.
Thus, miniaturization of devices so far has been possible due to changes in
dielectric, S/D, and contacts materials/processes, and innovations in lithography
processes, in addition to changes in the device architecture [1, 2].

The gate length of current transistors has been scaled down to 14 nm and below,
with over 109 transistors in state-of-the-art microprocessors. Yet, the clock speed
is limited to 3–4 GHz due to thermal constraints, and further scaling down the
device dimensions is becoming extremely difficult due to lithography challenges.
In addition, further scaling down the complementary metal-oxide semiconductor
(CMOS) technology is leading to larger interconnect delay and higher power den-
sity [3]. The complexity of physical design is also increasing with higher density
of devices. So, what is next?

A promising More-than-Moore technology is the 3D integrated circuits (ICs)
which can improve the performance and reduce the intra-core wire length,
and thereby enable high transfer bandwidth with reduced latencies and power
consumption, while maintaining compact packing densities [4]. Alternative
technologies that could be promising for new hardware accelerators include
resistive computing, neuromorphic computing, and quantum computing.

Resistive computing could lead to non–von Neumann (VN) computing and
enforce reconfigurable and data-centric paradigms due to its massive parallelism
and low power consumption [5]. Moreover, humans can easily outperform cur-
rent high-performance computers in tasks like auditory and pattern recognition
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Figure 1.1 Intel innovation in process technology for the past decade. Source: www.intel.in.

and sensory motor control. Thus, neuromorphic computing can be promising for
emulating such tasks due to its energy and space efficiency in artificial neural net-
work applications [6]. Quantum computing can solve tasks that are impossible by
classical computers, with potential applications in encryptions and cryptography,
quantum search, and a number of specific computing applications [7].

In this chapter, four main technologies are discussed: FinFET, 3D IC, neuro-
morphic computing, and quantum computing. The state-of-the-art findings and
current industrial state in these fields are presented; in addition, the challenges
and limitations facing these technologies are discussed.

1.1 FinFET Technology

Over the past four decades, the continuous scaling of planar MOSFETs has
provided an improved performance and higher transistor density. However,
further scaling down planar transistors in the nanometer regime is very difficult
to achieve due to the severe increase in the leakage current Ioff. In fact, as the
channel length in planar MOSFETs is reduced, the drain potential starts to affect
the electrostatics in the channel and, consequently, the gate starts to lose control
over the channel, which leads to increased leakage current between the drain and
source. A higher gate-channel capacitance can relieve this problem using thinner
and high-κ gate oxides; however, the thickness of the gate oxide is fundamentally
restricted by the increased gate leakage and the gate-induced-drain leakage
effect [8–10].

An alternative to planar MOSFETs is the multiple-gate FETs (MuGFETs) which
demonstrate better electrostatics and better screening of the drain from the gate
due to the additional gates covering the channel [11–14]. As a result, MuGFETs
show better performance in terms of subthreshold slope, threshold voltage (V t)
roll-off, and drain-induced barrier lowering (DIBL). Another alternative to planar
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Figure 1.2 TEM image of Intel’s 14-nm transistors with sub-40-nm fin pitch. Source:
www.techinsights.com.

bulk MOSFETs is fully depleted silicon on insulator (FDSOI) MOSFETs, which
reduce leakage between drain and source due to the removal of the substrate right
below the channel [15]. The performance of the FDSOI MOSFETs is comparable
with the double-gate field-effect transistors (DGFETs) in terms of SS, low junc-
tion capacitance, and high Ion/Ioff ratio. Yet, the DGFETs have better scalability
and can be manufactured on bulk Si wafers instead of silicon-on-insulator (SOI)
wafers, which makes them more promising [16].

FinFETs or tri-gate FETs, which have three gates, have been found to be the
most promising alternatives to MOSFETs due to their enhanced performance
and simplicity of the fabrication process, which is compatible with and can be
easily integrated into standard CMOS fabrication process (Figure 1.2) [17, 18].
In fact, an additional selective etch step is required in the FinFET fabrication pro-
cess in order to create the third gate on top of the channel. FinFET devices have
been explored carefully in the past decade. A large number of research articles
that confirmed the improved short-channel behavior using different materials
and processes have been published, as is shown in the following section. Next,
the industrial state of FinFETs, their challenges, and limitations are discussed.

1.1.1 State-of-the-Art FinFETs

1.1.1.1 FinFET with Si Channel
In the semiconductor industry, silicon is the main channel material. The first
FinFET technology (22-nm node) was produced by Intel in 2011. The second Fin-
FET generation (14-nm node) published by Intel used strained Si channel [19].
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The gate length was scaled from 26 to 20 nm in the second FinFET generation,
which was possible due to new sub-fin doping and fin profile optimization. With
a V DD of 0.7 V, the saturation drive current is 1.04 mA μm−1 and the off current
is 10 nA μm−1 for both nMOSFET (NMOS) and pMOSFET (PMOS). The SS is
∼65 mV/decade, while the DIBL for N/PMOS is ∼60/75 mV V−1. High-density
static random access memory (SRAM) having 0.0588 μm2 cell size are also
reported and fabricated using the 14-nm node. More recently, a research group
from Samsung published a 7-nm CMOS FinFET using extreme ultraviolet
(EUV) lithography instead of multiple-patterning lithography. This resulted in a
reduction of the needed mask steps by more than 25%, in addition to providing
smaller critical dimension variability and higher fidelity. The FinFET presented
in this work consumes 45% less power and provides 20% faster speed than in the
previous 10-nm technology. The reported SS is 65 and 70 mV/decade, and the
DIBL is 30 and 45 mV V−1 for NMOS and PMOS, respectively. A 6T high-density
and high-current SRAM memory has also been demonstrated using the 7-nm
FinFET, and the results show a reduction in the bit line capacitance by 20% as a
result of the reduction in the parasitic capacitance.

1.1.1.2 FinFET with High-Mobility Material Channel
The III–V materials gained growing attention for adoption as the channel
material due to their promising characteristics such as high mobility, small
effective mass, and, therefore, high injection velocity, in addition to near-ballistic
performance. The first InGaSb pFET was demonstrated by Lu et al. [20], where a
fin-dry etch technique was developed to obtain 15-nm narrow fins with vertical
sidewalls. An equivalent oxide thickness (EOT) of 1.8 nm of Al2O3 was used as
the gate oxide. The authors also demonstrated Si-compatible ohmic contacts
that yielded an ultralow contact resistivity of 3.5× 10−8 Ω cm2. Devices with
Lg = 100 nm and different fin widths (W f) were demonstrated. The results show
that with W f = 100 nm, gm of 122 μS μm−1 is achieved; while with W f = 30 nm,
gm of 78 μS μm−1 is obtained.

Moreover, FinFETs with strained SiGe have lately attracted much interest
due to their potential advantages such as higher mobility, built-in strain, and
improved reliability with respect to conventional Si-based FETs. Very recently,
a group of researchers at IBM demonstrated high-Ge-content strained SiGe
FinFETs with replacement high-κ (HK)/metal gate (RMG). A long-channel
subthreshold swing (SS) as low as ∼68 mV/decade was reported [21]. This value
is very competitive with other SiGe or Ge FinFETs with RMG process flow,
where the reported SS values are in the range of 80–100 mV/decade [22]. In
addition, a very high pFET hole mobility 𝜇eff = 235 cm2 V−1s−1 was shown in a
multi-fin device with average fin width of 4.6 nm and EOT of 7 Å which could be
very promising for the sub-5-nm node FinFETs. Finally, in the same work, SiGe
FinFETs with gate lengths Lg = 25 nm were fabricated using a gate-first flow. At
a V DD = 0.5 V, the devices showed DIBL = 40 mV, SSlin/SSsat = 77/86 mV/decade
and Ion = 430 μA μm−1 at target high performance Ioff = 100 nA μm−1, which are
among the largest reported values at such gate lengths (Figure 1.3).

In another work by Lei et al. [23], conducted in collaboration with Taiwan
Semiconductor Manufacturing Co. (TSMC), the first GeSn FinFET device on
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Figure 1.3 Transfer and output characteristics of high-Ge-content SiGe FinFETs with LG 25 nm
with gate first flow. Source: Hashemi et al. 2017 [21]. Reused with permision of IEEE.

a GeSnOI substrate was demonstrated with a channel length of 50 nm and
W Fin = 20 nm, and 4 nm HfO2 was used as the gate oxide. The novel substrate
was fabricated by the growth of high-quality GeSn by chemical vapor deposition
(CVD) followed by a low-temperature process flow to get the GeSnOI. The GeSn
pFET yielded the lowest SS of 79 mV/decade, the highest transconductance
gm of 807 μS μm−1, and the highest hole mobility of 208 cm2 V−1 s−1 (N inv of
8× 1012 cm−2).

1.1.1.3 FinFET with TMD Channel
For sub-5-nm nodes, a body with sub-3-nm thickness is required to maintain
good channel control. Most channel materials like the conventional Si or
III–V face limitations in terms of mobility, quantum capacitance, or process at
such ultrathin body (UTB) thickness. Advanced two-dimensional transition-
metal dichalcogenide (TMD) is very promising in UTB thickness due to its sub-
nanometer monolayer UTB thickness potential in addition to its good transport
characteristics in nanometer thickness [24]. Chen et al. demonstrated the first
4-nm-thick TMD body FinFET with back gate control [25]. The main processes
in the fabrication of the TMD FinFET is the compatibility of the CVD growth of
TMD with CMOS processing, in addition to the reduction of the contact resis-
tance by hydrogen plasma treatment of MoS2. The V t of this FinFET device can
be adjusted dynamically by applying bias on the back gate. The front gate device
showed an on/off current ratio over 105 with Ion of 200 μA μm−1 for V dd = 1 V.

1.1.1.4 SOI versus Bulk FinFET
Bulk FinFETs are built on bulk-Si wafers, which are less expensive and have a
lower defect density than do SOI wafers, while maintaining a better heat transfer
rate to the Si substrate with respect to SOI FinFETs. The first Intel FinFET was a
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bulk FinFET. Lee [1] studied the 14-nm node FinFET technology and compared
bulk and SOI FinFET in terms of scalability, heat dissipation, and parasitic capac-
itance. Lee showed that both 14-nm FinFETs with bulk and SOI substrates have
the same I–V characteristics when the same geometry and doping concentra-
tion are used. Therefore, both devices have similar scalability. Moreover, the fins
in bulk FinFETs are easily depleted, which allows for the reduction of the S/D to
fin body junction capacitance to values that are lower than in the case of SOI Fin-
FETs. Finally, to increase the heat transfer rate in SOI FinFETs, the buried oxide
should be made thinner than 20 nm, which could have a negative impact on the
device performance such as an increase in the parasitic capacitance.

Finally, it is worth mentioning that there are many other factors that affect
the performance and reliability of FinFET devices, such as the materials used for
metal gate/gate oxide, the shape of the fins (trapezoidal versus rectangular), the
spacing between the fins, the fin edge roughness, choice of FET structure (lateral,
vertical), and so on, which are not discussed in this chapter.

1.1.2 Industrial State

In 2011, Intel was the first company to use the 22-nm bulk FinFETs in mass pro-
duction of central processing units (CPUs), which is 18% and 37% faster at 1
and 0.7 V, respectively, than Intel’s 32-nm transistors [26]. Intel reported at the
International Electron Devices Meeting (IEDM) that these 3D tri-gate transis-
tors have a saturation current that exceeds 2 mA μm−1. Several companies then
followed Intel and announced the production of 3D transistors such as Samsung,
TSMC, and Global Foundries. In 2015, Samsung announced the first production
of the 14-nm FinFET-based transistors for mobile applications followed by the
first mass production of the 10-nm FinFET (10LPE) in October 2016. Samsung
was able to show improvements in power (40% lower power consumption than
their 14-nm FinFETs), performance (27% higher performance), and scalability of
the 3D tri-gate transistors (30% higher area efficiency).

However, at the 10-nm node, only three companies were capable of manufac-
turing such transistors: Samsung, Intel, and TSMC (Global Foundries excluded).
Moreover, the geometries of the transistors produced at the leading manufac-
turers are different. For instance, the 10-nm FinFETs produced at TSMC and
Samsung are denser than Intel’s 14-nm FinFETs; however, they are closer to Intel’s
14-nm FinFETs than they are to the Intel’s 10-nm (the metal pitch in the Sam-
sung’s 10-nm is just 1 nm shorter than Intel’s 14-nm).

In addition, some foundries use a hybrid node while others execute full node
shrinking, which results in different geometries. In hybrid node shrinking, a new
structure for the transistor (or a smaller transistor) is used (front end of line
(FEOL)) but employing a set of design rules established previously for connect-
ing transistors together (back end of line (BEOL)). In full node shrinking, both
FEOL and BEOL are shrinking. In fact, TSMC and Samsung used the hybrid
nodes at 16/14 nm where they introduced the new FinFET structure, while Intel
is the only company executing full node shrinking with every new technology. It
is worth noting that hybridized nodes allow the foundries to tackle a single set of
challenges since the whole design process is not fully scaled down at once.
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During Intel’s Technology and Manufacturing Day 2017, Intel announced the
mass production of its 10-nm process which used self-aligned quad patterning
(SAQP) for the first time. Intel’s 10-nm technology showed 45% less power
consumption and 25% better performance than their 14-nm transistors with a
minimum gate pitch of 54 nm (versus 70 nm for Intel’s 14 nm) and a metal pitch of
36 nm (versus 52 nm for Intel’s 14 nm). Also, Intel’s 10-nm density is 2.7× higher
than the previous node (new density of 100.8 mega transistors mm−2), with 25%
taller (53-nm fin height) and more closely spaced fins (34-nm fin pitch).

Saumsung’s 10 nm uses triple-patterning technology with a 68-nm contacted
gate pitch, 51-nm metal pitch, dual-depth shallow trench isolation (STI) with a
single dummy gate (ref Common Platform Alliance Paper which was presented
in 2016), while TSMC’s 10-nm used quad-patterning technology which allows a
double increase in density compared to their 16-nm technology. TSMC claimed a
poly pitch of 64 nm and a metal pitch of 42 nm with 35% less power consumption
and 15% higher performance than their 16-nm technology.

In June 2017, Global Foundries announced the mass production of its 7-nm
FinFET technology which offers 40% improvement in performance with volume
production ramping in the second half of 2018. The initial production ramp of
the 7-nm technology employs triple and quadruple patterning technology using a
193-nm excimer laser. Global Foundries will introduce EUV to its manufacturing
process to accelerate the production ramp and improve the yield.

TSMC announced recently that its 7-nm FinFET will offer around 25% speed
enhancement or a 35% power reduction over its 10-nm FinFETs, while Samsung
announced the addition of the 8- and 6-nm process technologies to its current
process roadmap with an aim of improving the cost competitiveness over its 10-
and 7-nm technologies. It is also worth noting that Samsung’s 7-nm will be its
first technology to use EUV lithography.

1.1.3 Challenges and Limitations

The introduction of the FinFET technology has enabled the gate length scaling
down to 7 nm with a 48-nm contacted poly pitch (CPP) due to improved device
electrostatics [27]. The improved performance has been achieved through the
“Fin Effect” boost (effective fin width/fin pitch) which increased the drive cur-
rent for a certain capacitive load. However, the restrictions on the fin thickness
are being rapidly approached, which would lead to a faster scaling in S/D sizes
versus the contacted gate pitch. An increasing “Fin Effect” will thus result, which
in combination with a plateau in the gate length would put pressure on the con-
duction path from contacts to S/D. In a work conducted by a group of researchers
from Global Foundries and IBM, current contact resistivity of ∼2× 10−9 Ω cm2

[28] will significantly deteriorate the performance of FinFETs below 40-nm CPP,
while fully ohmic contacts with resistivity of ∼1× 10−10Ω cm2 [29] might push
the CPP to below 30 nm. The work concluded that in order to further improve
the performance and power consumption in future CMOS in the 30–40 nm CPP,
industry will face pressure to use new device architectures or scaling choices [2].

Another challenge is that sub-5-nm nodes would need sub-3-nm body thick-
ness for maintaining good channel control [25]. However, most of the channel
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materials such as Si, Ge, and other III–V materials face fabrication, mobility, and
quantum capacitance challenges at such small body thicknesses [30]. In addition,
a group of researchers from IBM have fabricated test structures to unambigu-
ously observe quantum confinement effects. The structures included fins with
40-nm fin pitch, 20-nm Lg, and 4- to 30-nm W Fin. The measurements showed
performance/mobility degradation, increase in series resistance, increase in
variability, DIBL, and in V t of NMOS/PMOS as the W Fin is reduced [31], which
confirms the challenges to be faced when further scaling down the FinFET
technology.

Wavy FinFET has been proposed by Fahad et al. [32] as a promising structure
for the high-performance technology node. The wavy transistor integrates 2D
UTBs with the fin structure which maximizes the chip area utilization resulting in
higher density, higher gain, and back bias capability. The structure was simulated
using the 2013 International Technology Roadmap for Semiconductors (ITRS)
specifications for the 7-nm node with UTB thickness of 2.5 nm and fin thickness
of 6.8 nm. The authors reported an improved SS and DIBL performance of the
wavy channel with 109% higher non-normalized ON-state drive performance as
opposed to conventional FinFETs.

1.2 3D Integrated Circuit Technology

3D integration technology can denote either 3D packaging or 3D IC, which can
be defined in different ways. In general, in 3D packaging, the vertical stacks are
achieved via traditional methods of interconnects such as wire bonding and flip
chip [33, 34]. However, in 3D IC, interconnections between different stacking lay-
ers are formed via through-silicon-vias (TSVs) [35]. Die stacking can be achieved
by connecting separately manufactured dies or wafers vertically through one of
three integration schemes: die-to-die, die-to-wafer, and wafer-to-wafer. The con-
tacts (mechanical and electrical) can be achieved using either microbumps or by
wire bonding as used in system-in-package (SIP) and package-on-package (POP)
devices. Even though SIP is sometimes referred to as a 3D stacking technology,
it is better referred to as a 2.5D technology. Another approach is to integrate dies
horizontally on a silicon substrate using interposers. The benefits of using inter-
posers are several: (i) lower communication power consumption due to the short
communication distance between dies, (ii) the possibility of stacking separately
manufactured dies from heterogeneous technologies to get the best out of all
technologies, and (iii) enhanced yield and cost of the system due to the ability of
fabricating and testing the smaller dies separately before integrating them into a
silicon substrate instead of fabricating very large dies with much lower yield. The
most promising approach of 3D integration is the monolithic approach, where
active layers are vertically grown on top of each other and interconnects are made
through TSVs which provide the densest connectivity.

There are several topics related to 3D integration that have recently gained a
lot of attention in research. In the following, the main research topics with cor-
responding state-of-the-art technology are presented, followed by the industrial
state and the main challenges of this technology.
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1.2.1 Research State

1.2.1.1 Thermal Management
The biggest obstacle to the commercialization of 3D IC is the thermal manage-
ment problem. As a matter of fact, the very thin thickness of chips in the 3D IC
(<50 μm) in addition to the very high density of devices results in an increase
in the temperature of the dies which are not close to the heat sink, and thereby
deteriorating the performance of the system. In the past few years, research
addressing thermal problems in 3D IC has gained growing attention. Goplen
et al. reported that TSVs can act as a vertical path for heat flow [36]; therefore,
thermal TSVs in addition to signal TSVs can be used to vertically transfer the
heat and thereby reduce the die temperatures [37, 38]. Another study done by
Lee et al. [39] showed that the heat transfer is directly proportional to the size
of the via islands. In addition, it was found that a large number of TSVs can
lead to routing congestion in the 3D ICs; thus, in addition to being expensive
to fabricate, an optimization algorithm is needed to find the needed number of
TSVs and their locations in order to be able to reduce the temperature of the
dies. Moreover, Furumi et al. [40] proposed new cooling architectures for 3D ICs
based on thermal sidewalls, interchip plates, and a bottom plate (thermal SIB).
The experimental results conducted using a 3D thermal solver show that the
thermal SIB can reduce the temperature in a 3D IC by over 40% when compared
with structures that used a conventional heat sink only.

1.2.1.2 Through-silicon-vias
Using TSVs in 3D ICs and 3D packaging is very promising since it allows higher
integration density, higher clock rate, and lower power dissipation [41]. In addi-
tion, TSVs are used in the 2.5D through-silicon interposers which enable the
integration of heterogeneous dies on a silicon substrate. However, the fabrica-
tion of TSVs can be challenging: the etch process of the high-aspect-ratio TSVs
should lead to scallop-free Si [26] and the Cu-filled TSV should be void-free [42].
This is in addition to challenges related to Cu protrusion affecting the BEOL reli-
ability [43], thinning of TSV wafer [44], revealing of the backside of the TSV, and
the bonding process [45]. In general, TSV fabrication requires the following steps:
patterning of the via, etching the via, depositing the dielectric liner, metallization,
and, finally, chemical-mechanical planarization (CMP) for planarization [46].

Currently, scaling down the TSVs is driven by the need to lower the thermal-
mechanical stress in addition to its effect on the BEOL performance. The depth
of the TSVs is limited, constrained by the wafer thinning (usually fixed at 50 μm).
For a higher aspect ratio TSV (beyond 10 : 1), using the physical vapor deposition
(PVD) barrier and seed process might lead to non-conformal films. IMEC and
Lam Research Corp developed a low-cost process for getting conformal depo-
sition of a very thin barrier and seed layer in high-aspect-ratio TSVs. The pro-
cess consists of depositing a highly conformal thin oxide liner using atomic layer
deposition (ALD), followed by the ALD deposition of the WN barrier, electroless
plating NiB seed, and, finally, filling the TSV with copper using electrochemical
deposition (ECD) [47]. Tokyo Electron Limited also reported another method to
deposit highly conformal barrier and seed layers using electroless plating of Cu on
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Figure 1.4 FIB-SEM after ECD-Cu filling on Eless-Cu/CoWB layers of 5× 50 μm TSV. Source:
Tanaka et al. 2015 [48]. Reused with permission of IEEE.

CoWB followed by Cu filling the TSV using ECD. Figure 1.4 shows the 5× 50 μm
TSV reported by Tokyo Electron Limited [48].

Another innovative metallization process was developed by Aveni (previously
known as Alchimer). This metallization method is based on molecular engineer-
ing, where the film is grown molecule by molecule and can be applied in industry.
First, a barrier layer is deposited by grafting and the NiB compound is used to
make a Cu diffusion barrier which maintains the resistivity levels such that Cu
can fill the high-aspect-ratio TSV using electrografting without the need for a
cupper seed layer. The final fill process results in large, uniform, and high-purity
grains of Cu, which could increase the yield due to eliminated voids, shorts, and
opens [49].

1.2.1.3 Bonding in 3D IC
As already mentioned, the most important aspect of 3D IC is the ability to inte-
grate heterogeneous dies fabricated at different foundries without performance
degradation. The integration can be achieved either through wafer-on-wafer
(WoW) bonding, chip-on-wafer (CoW) bonding, or chip-on-chip (CoC) bonding
(Figure 1.5) [50]. WoW is the most preferred bonding due to its precise alignment
[51]; more specifically, Cu metal-to-metal thermocompression bonding is the
most favored among all bonding methods as it provides excellent electrical con-
ductivity and mechanical strength after bonding [52]. During the thermocom-
pression of Cu—Cu bonding, interdiffusion of Cu atom and grain growth across
the bonding interface takes place. However, the main challenge to this process
is to achieve it at low pressure and low temperature in order to avoid damaging
the devices underneath or cause any reliability issues. But the Cu—Cu bonding
process requires high temperature and pressure (or either of them) as native
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Figure 1.5 Assembly die stacking process flow: (a) CoS and (b) CoW. Source: https://amkor
.com/.

oxide can be easily grown on the Cu surface, which inhibits the Cu interdiffusion
and degrades the bonding quality [53]. Therefore, achieving high-quality Cu—Cu
bonding at low temperature and pressure is needed in 3D IC.

Researchers have worked on several ways to avoid the surface oxidation of Cu
and to remove the already grown native oxide. Shigetou et al. reported a bond-
ing method based on surface-activated bonding (SAB). First, the native oxide is
removed using argon bombardment at ultra-high vacuum (UHV), and then the
bonding takes place at room temperature using a SAB flip-chip bonder [54]. How-
ever, the need for UHV increases the complexity of the process, and as a result
becomes unattractive for manufacturing. Also, different chemistries have been
proposed to do wet etching/cleaning of the native oxide such as hydrochloric acid
[55], citric acid [56], sulfuric acid [57], and acetic acid [58]. Although some wet
etching chemistries succeeded in removing the native oxide, immersing the wafer
in such chemistries for a prolonged time might lead to etching the Cu and deteri-
orating the performance of the devices underneath. In another work conducted
by Tan et al., a self-assembled monolayer (SAM) of alkane thiol, an organic mono-
layer, is deposited on the Cu surface to passivate it; and then the SAM is desorbed
before the Cu—Cu bonding [59]. The use of the SAM passivation layer protected
the Cu from growing native oxide, and the SAM removal process can be done at
250 ∘C [60]. However, all passivation based on SAM are not CMOS compatible.

In a work addressing this problem, a 3-nm Ti layer was used instead to passivate
the Cu surface at 160 ∘C and 2.5 bar [61]. However, the Ti materials are challeng-
ing to be used in the damascene process; in addition, Ti can oxidize if exposed
to air for more than two days, which is not favorable for the 3D IC process. In
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a continuation to this work, it has been reported that a 3-nm of manganin alloy
passivation layer deposited at 150 ∘C and low pressure led to a strong Cu—Cu
bonding of 5 kN force, in addition to being damascene compatible.

1.2.1.4 Test and Yield
Every additional manufacturing step introduces a risk for defects and complicates
the testing of the system. Yield is based on test results, and the cost is based on the
test, yield, and throughput. 3D high yield is challenging to achieve, which is why
the wire bonding of “known good dies” in 3D packages first found its application
in mobile devices.

Any 3D IC process would be considered feasible only if its manufacturability
yield is high. A group from Xilinx Inc. reported the key challenges faced during
fabricating a 28-nm 3D IC with chip-on-wafer-on-substrate process [62]. During
the initial ramp stage, most of the observed failures were related to the assembly
at the interposer level such as open microbumps, opens and shorts in the inter-
poser metal line, and TSV opens. Another failure mode is the deterioration of
the transistors during the assembly of the 3D IC. The group developed a failure
analysis technique based on a closed loop feedback, which resulted in improved
yields.

1.2.2 Industrial State

Samsung is already using the monolithic approach to die stacking in 3D flash
memory and smart sensors. The first commercial prototype of 3D IC (microcon-
troller) dates back to 2004 when Tezzaron released it [63]. In 2006, Intel assessed
3D chip stacking in Pentium 4 [64]. In 2011, IBM announced the introduction of
the 3D chip production process [65]. Also, in 2012, Tezzaron released a prototype
for its multicore design, which includes 64 core 3D-MAPS (MAssively Parallel
processor with Stacked memory) (http://arch.ece.gatech.edu/research/3dmaps/
3dmaps.html)[66]. In 2013, a 128-Gb 3D NAND chip was introduced by Samsung
which has 2× transistor density, 50% lower power consumption, 2× data storage
speed, and 10× better retention characteristics compared to the planar version.

In 2015, Intel also introduced the 3D XPoint memory with 10× higher capacity
than DRAM and 1000× faster than NAND flash [67]. Moreover, NVIDIA
and AMD manufactured a high bandwidth memory (HBM) using 3D stacked
memories, which is already used in the AMD GPU based on the Fiji architecture
since 2015 (https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-
architecture-whitepaper.pdf). A high-performance RAM competing with HBM
is the hybrid memory cube (HMC), which was introduced in 2011 by Micron
and is based on DRAM stacked using TSVs (https://www.micron.com/products/
hybrid-memory-cube). SanDisk and Toshiba announced in 2015 the production
of the world’s first 3D NAND with 48 layers and using BiCS (Bit-Cost Scalable)
technology. The 3D NAND achieved 32 GB capacity with a storage of 3 bits per
transistor. The latest version is called BiCS3, which will have 64 layers and will
show a 40% larger capacity than the BiCS2, according to Toshiba.

Moreover, Micron reported the mass production of its 64-layer 3D NAND by
the end of 2017, while Western Digital began mass production of its 64-layer
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Figure 1.6 Picture of a microbump crack. Source: Yip et al. 2017 [68]. Reused with permission
of IEEE.

3D NAND flash chips in 2017 (https://www.anandtech.com/show/10274/the-
crucial-mx300-750gb-ssd-review-microns-3d-nand-arrives). Also, in early
2017, Intel announced the world’s first commercial solid-state drive (SSD) based
on 64-layer 3D NAND with a capacity of 512 GB (https://www.anandtech.com/
show/11571/the-intel-ssd-545s-512gb-review-64layer-3d-tlc-nand-hits-retail).

1.2.3 Challenges and Limitations

Several challenges face the commercialization of 3D IC or 3D packaging. In a
work done by Intel, it was found that yield estimates modeled using traditional
methods can be pessimistic by as much as 50%. New analytical models have to be
established to take into consideration other effects such as defect clustering and
systematic defects introduced by equipment and handling issues during man-
ufacturing. Moreover, it has been reported that the electrical performance of
3D IC with TSVs is affected due to the structure of the TSV with microbumps.
TSV and microbump structures lead to local mechanical stress and strain due to
the mismatch in the coefficient of thermal expansion (CTE) of Si, Cu TSV, and
microbump (Figure 1.6) [68]. Moreover, crystal defects and stress can be induced
in the Si chip as it is thinned down to less than a couple of tens of micrometers.
Also, the gettering layers used to avoid the contamination of the metal and crystal
defects can be removed from the Si chip as it is thinned down.

1.3 Neuromorphic Computing Technology

The flexibility of the VN architecture for “stored program” has led to enormous
improvements in system performance for more than five years. However, since
miniaturizing devices have slowed down in the past years, the energy and time
used to transport data between memory and processor has become difficult,
especially for data-centric applications such as real-time pattern recognition
where state-of-the-art VN systems try hard to meet the performance of a human
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being. The human brain outperforms advanced processors on many tasks such
as unstructured data classification due to its parallel architecture connecting
low-power neurons and synapses which act as computing and adaptive memory
elements, respectively. The human brain performance is actually inspiring for
novel non–VN computing models needed in future computing systems.

Even though designing neural circuits using electronic components dates back
to the implementation of retinas [69] and perceptrons [70], modern research
about very-large-scale integration (VLSI) technology using the nonlinear current
characteristics began in the mid-1980s through collaboration between Richard
Feynman, Carver Mead, Max Delbrück, and John Hopfield [71]. In fact, Mead
tried to imitate the gradual synaptic transmission in the retina using the analog
properties of transistors rather than operating them as digital switches. Mead was
able to demonstrate that neuromorphic circuits using analog transistors instead
of digital ones can match the physical properties of the proteic channels in neu-
rons [72], leading to the need for a much smaller number of transistors to emulate
neural systems.

In the neural system, neurons are connected to many other neurons, and they
pass electrical and chemical signals to each other via synapses. These connections
are either strengthened or weakened through a process called spike-timing-
dependent plasticity (STDP), which is biologically observed [73, 74]. STDP
changes depending on the timing between spikes (action potentials) within the
input neuron (presynaptic) and output neuron (postsynaptic). In long-term
potentiation (LTP), causal spiking strengthens synapses; while in long-term
depression (LTD), the synaptic strength is weakened by causal spiking [75]. The
change in the weight of synapses, also called synaptic plasticity, explains how the
brain learns and memorizes [76].

Neuromorphic computing technology is considered a promising candidate
for implementing applications such as self-learning, recognition of patterns,
gestures, and speech using energy-efficient/low-power spiking networks. How-
ever, the progress in this technology faces two main challenges: (i) the lack of
a full understanding of how the brain works and (ii) the lack of agreement on
which technology can achieve synaptic and neural circuits with the best balance
between cost, performance, and power consumption. Currently, a great deal
of research is being conducted on different technologies for neuromorphic
computing including mathematical and machine learning algorithms, neu-
romorphic datasets, field programmable gate array (FPGA) codes, photonic
neuromorphic signal processing, nonvolatile memory (NVM) solutions, and so
on. In this chapter, NVM for neuromorphic computing is discussed. In addition,
the current industry state of neuromorphic computing, its challenges, and
limitations are discussed.

1.3.1 State-of-the-Art Nonvolatile Memory as a Synapse

Around 1011 neurons and 1014 synapses exist in the human brain. In order to be
able to implement brain-like processing architectures without using large and
expensive areas on the silicon wafer, highly scalable and low-power memory
devices are needed.
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Different NVM devices have different physical properties and switching
behaviors, and thus can be used to emulate synapses in different ways. For
instance, when synapses are connected or not, an on/off NVM response would
be sufficient; and this can be achieved using conductive-bridging random access
memory (CBRAM). In other cases, synaptic weights are needed; therefore, an
NVM with adjustable conductance would be required and this can be achieved
using phase change memory (PCM) or memristor/resistive-random access
memory (RRAM). In the following, the different types of NVM used to emulate
synapses are briefly explained with state-of-the-art examples from the literature.

1.3.1.1 Phase Change Memory
In PCM, the state of the memory, whether programmed/SET or erased/RESET,
depends on the difference in electrical resistivity between the amorphous and
crystalline phases of the “phase change materials” leading to low (RESET) and
high conductance (SET), respectively [77, 78] (Figure 1.7a).

PCM is attractive for neuromorphic applications where “device history” is
needed, since the SET state can be achieved gradually by applying repetitive
pulses to crystallize the phase of the plug in the device, resulting in a high-
resistance state [84]. However, the RESET process can be only done sharply, since
it involves melt and quench. The STDP can be implemented using a two-PCM
approach: when an input neuron spikes, it outputs a signal (read pulse) and
enters the LTP mode for a period of time tLTP. If the postsynaptic neuron spikes
during this period, a SET pulse is then sent to the LTP synapse. If not, then the
LTD synapse is programmed, as shown in Figure 1.8a,b.

Suri et al. demonstrated that by adding a thin HfO2 layer to the Ge2Sb2T5
(GST)–based PCM, their synaptic performance can be improved [85, 86]. The
addition of the interface layer affects the nucleation and growth activation
energies, and thereby the crystallization kinetics, resulting in an increased
dynamic range. In a later work, the authors developed a circuit model including
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Figure 1.7 (a) Phase change memory (PCM) depends on the large difference in electrical
resistivity between the amorphous (low-conductance) and crystalline (high-conductance)
phases of so-called phase change materials [79, 80]. (b) Conductive-bridging RAM is based on
the electrochemical formation of conductive metallic filaments through an insulating solid
electrolyte or oxide [81]. (c) The conductive filaments in a filamentary RRAM are chains of
defects through an otherwise insulating thin-film oxide [82]. Source: Reused with permission
from [83].
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Figure 1.8 (a) Implementation of STDP with two-NVM-per-synapse scheme. Due to abrupt
RESET in PCM devices, LTD and LTP are implemented with SET switching in different devices,
with total weight of the synapse depending on the difference between these two
conductances. (b) Key spiking characteristics of spiking neural network: downstream spikes
depend on the time integration of continuous inputs, with synaptic weight change dependent
on relative spike timing. Source: Reused with permission from [83].

the electrical and thermal characteristics of both top and bottom contacts
with the PCM [79]. The authors showed that by enhancing the growth or
nucleation rate, the maximum conductance can be reached in fewer pulses.
They have also suggested that GST can offer more conductance states than
GeTe, since GeTe (growth-dominated) saturated in conductance faster than the
nucleation-dominated GST. Pattern learning and recognition was experimentally
shown by Eryilmaz et al. using a 10× 10 array of transistor-selected PCM cells
[80]. They have also shown that longer training leads to lower initial resistance
variation. Ambrogio et al. simulated larger networks of 28× 28 pre- and 1
postneuron transistor-selected PCM cells (45-nm node) [87]. With two layers,
the achieved MNIST (Modified National Institute of Standards and Technology)
digit recognition probability was 33% with an error of 6%; while with three layers
of networks, the recognition probability increased to 95.5% for 256 neurons with
an error of 0.35%. The authors also demonstrated the capability of their network
to learn new data in sequence and in parallel and forget previous data. Jackson
et al. achieved STDP schemes using programming energies below 5 pJ in 10-nm
pore PCM devices. Then, 100 leaky integrate-and-fire neurons were simulated.
The authors showed the successful prediction of the next item in a sequence of
four stimuli [88].

1.3.1.2 Conductive-Bridging RAM
Conductive-bridging random access memory (CBRAM) is based on the forma-
tion of conductive metallic filaments through an insulating solid electrolyte or
oxide (Figure 1.7b) [77, 78]. CBRAM is promising for future NVM due to its char-
acteristics such as extremely low power consumption (∼nW), fast speed (∼ns),
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and scalability to the nanometer range. However, the SET state in the CBRAM is
achieved abruptly as the formed filaments are quite conductive, leading to high
currents for neuromorphic devices. Integrate-and-fire neurons would need larger
capacitors.

STDP synaptic performance was achieved by Ohno et al. using an Ag2S atomic
switch [89]. The amplitude and widths of the pulses are found to affect the
short-term memory formation. Then, the authors experimentally demonstrated
the learning and forgetting mechanisms of two patterns using a 7× 7 array
of organic synapses [90]. Yu et al. demonstrated STDP with 1.5× 108 cycles
of depression and potentiation without noticeable degradation [91] using a
100× 100 nm CBRAM-based memristor device that is connected to integrate
and fire neurons. Using CBRAM devices as binary synapses and applying the
STDP learning rule, Suri et al. demonstrated the recognition and extraction of
real-time visual and audio patterns in an unsupervised manner [92]. Nonassocia-
tive and associative types of learning are shown in single Pt/Ge0.3Se0.7/SiO2/Cu
memristive device by Ziegler et al. [93]. Sillin et al. developed a numerical model
imitating the synapse-like properties of single atomic switches [94].

1.3.1.3 Filamentary RRAM
Filamentary resistive random access memory (F-RRAM) is similar to CBRAM;
however, the conductive filament in this device is due to a chain of defects in
an oxide once triggered by electrical field and/or local temperature increases
rather than by metallic atoms (Figure 1.7c) [81]. F-RRAM is attractive because
it requires metal-oxides, most of which are already used in CMOS fabrications,
such as HfOX, TiOX, WOX, TaOX, FeOX, and AlOX in addition to laminates of
such films. Adaptive synaptic changes leading to gradual memory have been
demonstrated in such materials. The structure of an F-RRAM is based on a
metal-insulator-metal structure which is CMOS compatible and highly scalable,
in addition to achieving very low energy consumption per synaptic operation
(sub-pJ), fast switching (<10 ns) [95], extremely small size (<10 nm), very low
currents (1 μA programming current), and multibit storage [96]. However, similar
to the CBRAM, the SET function is abrupt to the rapid formation of the filament.

A group of researchers at University of Michigan led by Prof. Wei Lu recently
demonstrated a prototype memristor network to experimentally process natu-
ral images using the sparse-coding algorithm. In this study, a 16× 32 sub-array
from the 32× 32 WOx–based memristor array was used, corresponding to a 2×
over-complete dictionary with 16 inputs and 32 output neurons and dictionary
elements. The dictionary elements were learned offline using a realistic memris-
tor model and an algorithm based on the “winner-take-all” (WTA) approach and
Oja’s learning rule. After training, they successfully experimentally reconstructed
grayscale images using the 16× 32 memristor crossbar [97]. Choi et al. demon-
strated a multilevel RESET switching with continuously increasing RESET volt-
ages in a GdOx-based F-RRAM but with rapid SET switching [98]. Yu et al. and
Wu et al. showed gradual switching in SET operation with constantly increasing
external currents, and in RESET with uninterruptedly increasing reset voltages in
TiN/HfOx/AlOx/Pt and TiN/Ti/AlOx/TiN RRAM devices, respectively [99, 100].
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Yu et al. used an F-RRAM with multilayer oxide-based Pt/HfOx/TiOx/HfOx/
TiOx/TiN to achieve hundreds of resistance states during the RESET [101, 102].
Sub-pJ energy per spike was obtained with 10-ns short pulses. Finally, the
multilevel resistance modulation was modeled using a stochastic model and was
applied to a visual system simulation; a two-layer neural network was simulated
using 1024 neurons and 16 348 oxide-based synapses, achieving up to 10%
tolerance to resistance variations. Piccolboni et al. recently demonstrated an
HfO2-based vertical resistive random access memory (VRRAM) technology,
each exhibiting two distinct states [103]. A stack of VRRAM devices forms a sin-
gle synapse, with one common select transistor, exhibiting gradual conductance
behavior. Simulation was used to demonstrate real-time auditory and visual
pattern recognition.

1.3.2 Research Programs and Industrial State of Neuromorphic
Computing

With the availability and advances in deep submicron CMOS technology,
developing brain-like structures on electronic substrates has recently received
growing attention, and large research projects on brain-like systems have
been launched internationally. Currently, the two largest programs in this field
worldwide are the SyNAPSE program (Systems of Neuromorphic Adaptive
Plastic Scalable Electronics) in the United States (started in 2009, (http://www
.artificialbrains.com/darpa-synapse-progra)) and the European Commission
flagship Human Brain Project (started in 2013 (http://www.humanbrainproject
.eu)). Funded by the Defense Advanced Research Projects Agency (DARPA), the
SyNAPSE program aims to emulate a mammalian brain in terms of power con-
sumption, size, and function using an electronic neuromorphic machine. Then,
robots with the intelligence of cats and mice would be built using such artificial
brains. The neuromorphic microprocessor should be able to simulate the activity
of 10 billion neurons and 100 trillion synapses using less than two liters of space
and 1 kW of power (http://www.artificialbrains.com/darpa-synapse-progra). A
project funded by DARPA’s SyNAPSE initiative is the “Cognitive Computing via
Synaptronics and Supercomputing” (C2S2) program, which is headed by IBM. A
remarkable outcome of this project is the “True North chip,” which is the largest
chip fabricated at IBM and the second largest CMOS chip worldwide. This
chip includes a 64× 64 network of cores for digital applications, 256 millions of
programmable synapses, and over 400 million bits of on-chip SRAM memory as
storage space for neuron and synapse parameters. The 28-nm CMOS technology
node with a die size of 4.3 cm2 is used to fabricate the 5.4 billion transistors
on the chip. The “True North chip” consumes 70 mW power (or 20 mW cm−2),
which is comparable to the cortex; however, the conventional CPU consumes at
least 3 orders of magnitude higher power (50–100 W cm−2) [104].

The Human Brain Project (HBP) is a European Commission (EC) flagship
project with goals of increasing world awareness about the fields of neuroscience
and brain-related medicine. This program has several subprojects, and one of
them (called SP9) aims to develop a neuromorphic computing system using (i)
physical brain-emulation models (with 200 000 neurons fabricated using 180-nm
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CMOS technology), (ii) real-time numerical models (with 18-Advanced Reduced
instruction set computer Machines (ARM) cores fabricated using the 130-nm
CMOS technology, and (iii) software tools to design, run, and record the perfor-
mance of the system [104]. The Blue Brain Project (launched in 2005 and led by
EPFL and IBM) aims to understand the structure and functionality of the brain
using simulations of the rodent and the brain. The simulations are conducted
using an IBM supercomputer (Blue Gene, 10TB) with 8K CPUs to simulate
artificial neural networks (http://bluebrain.epfl.ch/page-56882-en.html). Closely
related to this project is the BrainScaleS (brain-inspired multiscale computation
in neuromorphic hybrid systems), which is European funded. The BrainScaleS
project uses Petaflop supercomputers to run numerical simulations to emulate
and understand the brain-information processing. The hardware consists of the
HICANN (High Input Count Analog Neural Network) chip, which has 112K
synapses and 512 neuron circuits fabricated in a 180-nm CMOS technology
(http://brainscales.kip.uni-heidelberg.de). Another impressive neuromorphic
computing project is the SpiNNaker project [96], which consists of multiple
core chips with multi-ARM interconnected through a specific communication
technology. An 18-ARM9 CPU is included in each SpiNNaker package with a
DRAM memory of 128 Mbyte, and each ARM core can real- time simulate 1000
neurons. The current full SpiNNaker board consists of 47 packages with goals of
assembling 1200 boards with 90-kW power consumption.

1.4 Quantum Computing Technology

Yuri Manin and Richard Feynman independently reported that simulating
physics using quantum computers would be more beneficial than using classical
computers. Other than simulating physics, the question arose regarding whether
quantum computers could outperform classical computers in solving other
problems too. Paul Benioff and David Deutsch [105] later designed a layout
for the quantum computer, while P. Shor and L. Grover developed the first
algorithms that could run more efficiently on such quantum computers than on
classical ones [106, 107].

In classical computers, the unit of information is the bit, which exists in two
states: 0 and 1. The computations in such computers are a sequence of operations
known as gates which are applied to bits. The computer’s size and clock rate vary
with the physical medium in which the bits are stored; however, the computa-
tional power of the computer is not affected by the bits’ physical medium. Thus,
two computers with the same storage capacity (bits) and set of operations (gates)
are considered equivalent. In quantum computing, however, the unit of informa-
tion is called “qubit” and the relevant operations are the “quantum gates.” Unlike
the bit, the qubit can exist in the state |0>, |1> (labeled using Dirac’s “bra-ket”)
or a superposition of the two states. Different approaches are used to design
the physical medium of the qubit. Nevertheless, approaches based on semicon-
ductors are gaining growing attention since they can be produced easily using
lithography technology. The favored quantum degree of freedom in semiconduc-
tors is the spin since it does not interact with the environment. To be specific,
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silicon is an excellent candidate for spin qubits since it can be chemically purified,
resulting in long-spin coherence time (in the seconds range) [108–110].

Different schemes have been proposed to implement qubits and quantum
gates such as optics, ion traps, and nuclear spins in nuclear magnetic resonance
devices. All of these schemes face several challenges and are still under develop-
ment. Other researchers are focusing on developing advanced algorithms and
mathematical models to run quantum computers. In this chapter, the qubits
based on spins and superconducting materials are discussed.

1.4.1 Quantum Bit Requirement

The quantum bit implementation requires a system that can hold two states 0 and
1, and that can be initialized, acted on, and read [111]. Unlike the conventional
electronics where the bits are transferred through wires from the processor to the
memory, the qubits actually do not move; however, the control signals (logical
gates) are brought close to the qubits to operate on and control them. Like digital
electronics, an arbitrary logic can be implemented using a discrete set of logical
operations [112]. At least two qubits are needed to be acted on at the same time
by the set of operations, and the state of one qubit affects the state of the other.
Therefore, computation requires qubits that can be coupled in a scalable manner
and with high fidelity. Solid-state approaches are promising for the integration of
a large number.

1.4.2 Research State

Quantum computers are able to solve problems related to chemistry, materials
science, and mathematics that are beyond the capabilities of any supercomputer.
The power of the quantum computers arises from the nature of the quantum bits
that can exist in both states 0 and 1 at the same time, which is called the quantum
superposition state. As a result, the computing power doubles with each addi-
tional qubit. Promising areas of research include superconducting circuits, elec-
tron spins in impurities, electron spins in semiconductor quantum dots, single
photons [113], trapped ions [114], single defects or atoms in diamond [115, 116]
and silicon [117], and so on, with single-qubit fidelities exceeding the threshold
needed for fault-tolerant quantum computing.

Here, the two most promising systems which are the most similar to current
solid-state circuits are discussed: superconducting circuits and electron spins in
semiconductor quantum dots. It is worth mentioning that both of these qubits
require cryogenic temperatures for operation, depend on analog control signals,
and use radio frequency (RF) circuits to read the qubit state.

1.4.2.1 Spin-Based Qubits
Spin qubits are based on the intrinsic properties of semiconductors, such as
electron spins trapped in the potential of chemical impurity or quantum dot.
Spins are indeed protected from charge noise as a result of the weak spin-orbit
coupling.
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Loss and DiVincenzo focused on semiconductor quantum dots patterned using
lithography. They reported the initialization of the ground state of the spin at low
temperatures and high magnetic fields, the control of the spin using the electron
spin resonance (ESR) toolbox, and the read based on the spin-to-charge conver-
sion process [118]. The electrical control of the overlap in wave function results
in an exchange coupling that can be tuned by the gate voltage. When combined
with ESR, a controlled-not (CNOT) gate can be implemented, which is an essen-
tial logic operation in the implementation of a quantum computer. This was first
demonstrated in GaAs quantum dots [119, 120]. Also, a high-fidelity two-qubit
gate was recently demonstrated in a silicon device [121].

In addition, latest experiments have reported that the lifetime of the electron
spin limits the high-fidelity readout of the qubits. Using a nanodevice, T. Watson
et al. reported the longest lifetime of any electron spin qubit (30 seconds). The
researchers engineered the electron wave function within phosphorous atom
quantum dots such that the spin relaxation is minimized. Due to the longer
lifetimes of the electron spin, the authors reported the readout of two sequential
qubits with 99.8% fidelities, which are above the surface-code fault-tolerant
threshold [122].

In another work, Veldhorst et al. reported the control over the spin states
of the qubits by applying voltages with GHz frequencies. The authors used a
phosphorous single-atom transistor with all epitaxial monolayer-doped gates
(Figure 1.9a,b) and pulsed spectroscopy with selective transport via excited
states which enabled the differentiation between the excited states of the single
P atom. [121]

1.4.3 Superconducting Circuits for Quantum Information

Superconducting quantum circuits consist of a high number of atoms (usually
aluminum) assembled with metallic wire/plate shapes and are based on the elec-
tric LC oscillator [121]. Two phenomena form the basis for the operation of the
superconducting qubits: (i) superconductivity, which is the frictionless flow of
electrical fluid through metals at low temperatures, and (ii) the Josephson effect,
which provides nonlinearity to the circuit without causing dephasing or dissi-
pation. The electron fluid motion around the circuit is denoted with the flux F
reaching the inductor, which acts as the center-of-mass position in a mass-spring
mechanical oscillator [123]. The Josephson tunnel junction converts the circuit
into an artificial atom which can be selectively excited from the ground state to
an excited state and used as a qubit. By changing the relative strengths of the
three energies associated with the capacitance, inductance and tunnel element,
different shapes of potential energies can be achieved. The performance of the
qubits has drastically enhanced as the fabrication, measurements, and materials
affecting coherence have been understood and enhanced. Moreover, other design
variations have been introduced such as quantronium [124], fluxonium [125], and
hybrid qubits [126], all of which are fabricated using the same materials but aim
to enhance the performance by lowering their sensitivity to decoherence mech-
anisms in the environment.
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Figure 1.9 Silicon two-qubit logic
device, incorporating SET readout
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Bac. Source: Devoret and Schoelkopf
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of Nature Publishing Group.

1.4.4 Industry State

In March 2017, IBM introduced two of its most powerful quantum computing
processors for the IBM Q to help researchers and scientists solve problems that
are not possible with today’s most powerful computer. The two new IBM quan-
tum processors include the following:

• A processor with 16 qubits which will enable solving of more complex experi-
mentations than the previous 5-qubit processor.

• A processor with 17 qubits which is the first commercial prototype from IBM.
This processor is the most powerful quantum processor invented by IBM to
date: it is at least 2× more powerful than what is available to users on the IBM
Cloud (https://phys.org/news/2017-05-ibm-powerful-universal-quantum-
processors.html).

Also, in October 2017, Intel announced its new 17-qubit chip, which was deliv-
ered to QuTech in the Netherlands. It is worth mentioning that these quantum
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computers still cannot compete with current classical computers; however, the
future is bright, especially with superconducting qubits (https://newsroom.intel
.com/press-kits/quantum-computing/).

Moreover, IBM and Intel are not the only two companies working on building
quantum computers. Google is also preparing a 50-qubit quantum computer,
which is going to be used to solve a scientific previously unsolvable problem.
Other companies working on creating quantum computers include Tigetti Com-
puting, which is a startup in Berkeley, CA, and Microsoft Corp ((https://www
.sciencealert.com/google-s-quantum-announcement-overshadowed-by-some-
thing-even-bigger) and (https://news.microsoft.com/features/new-microsoft-
breakthroughs-general-purpose-quantum-computing-moves-closer-reality/)).

In addition, the European Commission is funding a €1 billion flagship project
on quantum computing to launch in 2018 (https://ec.europa.eu/digital-single-
market/en/news/european-commission-will-launch-eu1-billion-quantum-
technologies-flagship).

1.4.5 Challenges and Limitations to Quantum Computing

Some of the challenges facing quantum computing technology are discussed in
this section. First of all, there is the need for quantum error correction since the
qubit states change in time in uncontrolled ways due to their interaction with the
environment (aka decoherence). The error probability calculated by the quan-
tum error correction algorithm must be below 1% (accuracy threshold for fault
tolerance) [123]. This would require additional qubits for encoding and decoding.
However, the number of qubits needed should be reduced; in fact, an estimated
number of qubits needed to compute a molecule reaches millions. Therefore, this
number should be brought down by several orders of magnitude.

Moreover, specific electronics should be built to produce the control signals,
and to store and process the output signals. These electronics include analog-to-
digital converters (ADCs), digital-to-analog converters (DACs), RF sources,
amplifiers, multiplexer circuits, digital data processing units, and so on. The
electronics need to be low cost (at $1.00 per qubit) and show high accuracy
(exceeding the 1% accuracy threshold by 2 orders of magnitude). In addition,
some electronics might require cryogenic temperatures to operate, which poses
a tight power budget. Also, qubits receive control signals from outside; therefore,
multiplexing strategies must be employed in the interconnect technology
between the qubits and the control and output electronics [127].
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