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Introduction

1.1 Non-Newtonian Fluids

Fluids that show a departure from Newtonian behavior are termed as non-
Newtonian fluids. When the flow behavior of a material follows the basic law of
viscosity proposed by Isaac Newton, then it is said to depict Newtonian behavior.
The constitutive equation for Newtonian fluids, which show constant viscosity
without any yield stress and/or elastic component, is given as

𝜏 = 𝜇�̇� (1.1)

where 𝜏 is the shear stress, �̇� is the shear rate, and the constant 𝜇 is termed
as the Newtonian viscosity. In general, for determining velocity distributions
and stresses, incompressible Newtonian fluids at constant temperature can
be characterized by two material constants, namely, the shear viscosity 𝜇 and
the density 𝜌. Once these quantities are measured, the velocity distribution
and the stresses in the fluid, in principle, can be found for any flow situation.
In other words, different isothermal experiments on a Newtonian fluid would
yield a single constant material property, namely, its viscosity 𝜇 whose units
are milliPascals seconds (mPa s). Some examples of the commonly known
Newtonian fluids are water (𝜇 ≈ 1 mPa s), coffee cream (𝜇 ≈ 10 mPa s), olive oil
(𝜇 ≈ 102 mPa s), and honey (𝜇 ≈ 104 mPa s).

Any material that does not behave rheologically in accordance with the
described behavior is termed as a non-Newtonian fluid. Detailed discussions
relating to non-Newtonian fluids are available in a number of books (Wilkinson,
1960; Skelland, 1967; Astarita and Marrucci, 1974; Darby, 1976; Schowalter, 1977;
Dealy and Wissbrun, 1990; Macosko, 1994; Shenoy and Saini, 1996; Larson, 1998;
Shenoy, 1999; Morrison, 2001; Chhabra and Richardson, 2008; Goodwin and
Hughes, 2008; Irgens, 2013; Mezger, 2014; Osswald and Rudolph, 2015) as well
as other review articles (Becker, 1980; Rosen, 1979; Rudraiah and Kaloni, 1990).

Non-Newtonian fluids can depict elastic, viscous, or viscoelastic behavior and
exhibit one of the following features:

a) Time-dependent viscosities at fixed shear rates;
b) Shear-rate- dependent viscosities in certain shear rate ranges with or without

the presence of an accompanying elastic solid-like behavior;
c) Yield stress with or without the presence of shear-rate- dependent viscosities.
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Purely elastic materials deform elastically upon the application of stresses such
that the deformation is reversible and the energy of deformation is fully recover-
able when the stresses are released. In purely viscous materials, any mechanical
energy input into the system by the application of stresses is dissipated in the form
of heat and cannot be recovered by releasing the stresses. Viscoelastic materials
show response to deformation that lies in varying extent between those of purely
elastic and purely viscous materials.

In reality, the same material can behave as purely elastic or purely viscous or
viscoelastic during the deformation process. It is the time scale that decides how
the material would behave rheologically. The relationship between the time scale
of deformation to which a material is subjected and the time required for the
material to respond determines whether the material behavior is elastic, viscous,
or viscoelastic. The ratio of characteristic time for the material to respond to the
time scale of deformation is defined as the Deborah number by Reiner (1949,
1960, 1964)

De =
𝜆c

𝜆s
(1.2)

where 𝜆c is the characteristic time and 𝜆s is the time scale of deformation.
The characteristic time, 𝜆c, for any material can be defined as the time required

for the material to reach 63.2% or [1 − (1∕e)] of its ultimate retarded elastic
response to a step change.

If De > 1.0, elastic effects are dominant; whereas if De < 0.5, viscous effects
prevail. For any values of Deborah numbers other than these two given extremes,
the material would depict viscoelastic behavior.

1.1.1 Non-Newtonian Viscous Behavior

Materials that show non-Newtonian behavior without an elastic response are said
to depict non-Newtonian viscous behavior. Thixotropic, rheopectic, pseudoplas-
tic, dilatant, Bingham plastic, and pseudoplastic with yield stress behaviors are
manifestations of non-Newtonian viscous behavior.

1.1.1.1 Thixotropic Behavior
In the case of materials showing thixotropic behavior, the shear rate is a func-
tion of the magnitude and duration of shear as well as a function, possibly of
the time lapse between consecutive applications of shear stress. These materi-
als exhibit a reversible decrease in shear stress with time at a constant rate of
shear and fixed temperature. The shear stress, of course, approaches some limit-
ing value.

1.1.1.2 Rheopectic Behavior
Materials showing rheopectic behavior exhibit a reversible increase in shear
stress with time at a constant rate of shear and fixed temperature. At any given
shear rate, the shear stress increases to approach an asymptotic maximum value.
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1.1.1.3 Pseudoplastic Behavior
In the case of materials showing pseudoplastic behavior, the shear rate at any
given point is solely dependent upon the instantaneous shear stress, and the dura-
tion of shear does not play any role so far as the viscosity is concerned. These
materials depict a decrease in viscosity with increasing shear rate and hence are
often referred to as shear-thinning materials.

1.1.1.4 Dilatant Behavior
Materials that show dilatant behavior depict an increase in viscosity with increas-
ing shear rate and hence are often referred to as shear-thickening materials.

1.1.1.5 Bingham Plastic Behavior
Materials exhibiting Bingham plastic behavior do not flow unless the stress
applied exceeds a certain minimum value, referred to as the yield stress, and
then show a linear shear stress versus shear rate relationship.

1.1.1.6 Pseudoplastic Behavior with Yield Stress
Materials that exhibit pseudoplastic behavior with yield stress have a nonlinear
shear stress versus shear rate relationship in addition to the presence of a yield
stress.

1.1.2 Non-Newtonian Viscoelastic Behavior

Materials that show non-Newtonian behavior with the added feature of elasticity
are said to depict non-Newtonian viscoelastic behavior. Such materials exhibit
rheological properties which lie in between those of elastic solids and viscous
liquids.

1.1.2.1 Highly Elastic Behavior
Viscoelastic materials have a certain amount of energy stored in them as strain
energy, thereby showing a partial elastic recovery upon the removal of a deform-
ing stress. At every instant during the deformation process, viscoelastic materials
try to recover completely from the deformed state but are unable to do so and lag
behind. The lag is a measure of the elasticity or so-called memory of the material.
In other words, by virtue of their viscoelastic nature, such materials have the abil-
ity to recoil. However, they do not return completely to their original state when
deformed because of their fading memory. Viscoelasticity allows such materials
to remember where they came from, but the memory of their recent configura-
tions are always much better than those of their bygone past, thus lending them
the characteristics of a fading memory.

The various types of non-Newtonian fluids along with typical examples are
summarized in Table 1.1.

1.1.2.2 Mildly Elastic Drag-Reducing Behavior
Fluids that show a near Newtonian viscous behavior accompanied by a mildly
elastic behavior fall in a different class known as drag-reducing fluids. In a
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Table 1.1 Various types of non-Newtonian fluids.

Fluid type Definition Typical examples

• Pseudoplastic • Fluids that depict a
decrease in viscosity with
increasing shear rate and
hence often referred to as
shear-thinning fluids

• Blood
• Filled polymer systems
• Pharmaceutical

preparations
• Polymer melts
• Polymer solutions
• Printing inks

• Dilatant • Fluids that depict an
increase in viscosity with
increasing shear rate and
hence often referred to as
shear-thickening fluids

• Aqueous suspension of
titanium dioxide

• Gum solutions
• Starch suspensions
• Wet sand

• Bingham plastics • Fluids that do not flow
unless the stress applied
exceeds a certain minimum
value referred to as the yield
stress and then show a
linear shear stress versus
shear rate relationship

• Certain asphalts and
bitumen

• Jellies
• Sewage sludges
• Thickened hydrocarbon

greases
• Tomato ketchup
• Toothpaste
• Water suspensions of

clay/fly ash/metallic oxides
• Pseudoplastic with a

yield stress
• Fluids that have a nonlinear

shear stress versus shear
rate relationship in addition
to the presence of a yield
stress

• Heavy crude oils with high
wax content

• Filled polymer systems

• Thixotropic • Fluids that exhibit a
reversible decrease in shear
stress with time at a
constant rate of shear and
fixed temperature. The
shear stress, of course,
approaches some limiting
value

• Coal-water slurries
• Crude oils
• Drilling muds
• Filled polymer systems
• Mayonnaise
• Salad dressing
• Water suspensions of

bentonite clays
• Yoghurt

• Rheopectic • Fluids exhibit a reversible
increase in shear stress with
time at a constant rate of
shear and fixed
temperature. At any given
shear rate, the shear stress
increases to approach an
asymptotic maximum value

• Some clay suspensions

• Viscoelastic • Fluids that possess the
added feature of elasticity
apart from viscosity. These
fluids exhibit process
properties which lie
in-between those of viscous
liquids and elastic solids

• Filled polymer systems
• Polymer melts
• Polymer solutions

Source: Shenoy (1999). Reproduced with permission of Springer.
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number of practical fluid flow situations, energy losses near solid surfaces due to
turbulent friction are of very high magnitude. Mildly elastic drag-reducing fluids
are known to help in reducing the tremendous energy losses due to turbulent
skin friction. Various types of additives in the flowing fluid have been found
to be effective: (i) macromolecules like those of polymers, biological additives
or surfactants, and (ii) solid-particle suspensions containing solids like fine
grains or fibers. Most of the researchers in the field of drag reduction have
worked with fluids at room temperature because of the practical importance
of using drag reducers in ship-building industries, for fire-fighting operations,
oil-well-fracturing processes, and so on, where high temperatures are not
involved. The idea of using drag-reducing additives in central heating systems
was explored by Shenoy (1976) in order to study the effectiveness of drag
reducers at high temperatures. An epitome of the results of the tremendous
work done on drag reduction can be obtained in a number of reviews and reports
(Patterson et al., 1969; Lumley, 1969, 1973; Gadd, 1971; Darby, 1972; Hoyt, 1972;
Landahl, 1973; Fisher and Ash, 1974; Palyvos, 1974; Little et al., 1975; Virk, 1975;
White and Hemmings, 1976; Berman, 1978; Giesekus et al., 1981; Sellin et al.,
1982b; Shenoy, 1984b; Berman, 1986; Wilson, 1988; Singh, 1990).

1.2 Rheological Models

The constitutive equations, which relate shear stress with shear rate, involve the
use of two to five parameters. Many of these constitutive equations are quite cum-
bersome to use in heat transfer analyses and hence only those models that will
be used later in the text are presented here. For a broader understanding of vari-
ous other available models, one could refer to the section on rheological models
covered in the books of Shenoy and Saini (1996) and Shenoy (1999).

1.2.1 Non-Newtonian Viscous Behavior in Laminar Flow

1.2.1.1 Ostwald–de Waele Power-Law Fluid
For inelastic non-Newtonian fluids in laminar flow, the simple two-parameter
power-law model originally proposed by Ostwald (1925, 1926) and De Waele
(1923) and fully described by Reiner (1949) is the most popular and commonly
used. The equation for this model is given as

𝜏 = K �̇�n (1.3)

where K denotes the consistency index of the material, with higher values
representative of more viscous materials, and n is the power-law index giv-
ing a measure of the pseudoplasticity, with departure from unity showing
more pronounced shear-thinning or shear-thickening characteristics. The
power-law index n basically represents the slope of the 𝜏 versus �̇� curve in the
medium-to-high shear rate range.
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1.2.1.2 Sutterby Fluid
In this case, shear stress–shear rate data are described by

𝜏xy = −𝜇app�̇� (1.4)

with

𝜇app = 𝜇0

(
arcsinhB′�̇�

B′�̇�

)A′

(1.5)

In the limit of low shear rates �̇� → 0, this model predicts that 𝜇app → 𝜇0. At
higher shear rates, a shear-thinning viscosity 𝜇app decreasing with increasing �̇� is
predicted.

1.2.1.3 Ellis Fluid
For this type of non-Newtonian inelastic fluid, shear stress–shear rate data are
correlated using the following expression for the apparent viscosity

u−1
app = 𝜇−1

0 [1 + (𝜏xy∕𝜏1∕2)𝛾
′−1] (1.6)

As in the case of the Sutterby model, the Ellis model too is a three-parameter
model and has the advantage of exhibiting a limiting viscosity (i.e., 𝜇0) in the limit
of zero shear rate and shear-thinning viscosity at higher shear rates.

1.2.1.4 Bingham Fluid
The Bingham fluid model is characterized by a yield stress 𝜏Y which, if exceeded,
makes the material flow like a viscous Newtonian fluid or else behave like a solid
at all values below critical stress. Hence, the equations for this fluid are as follows:

𝜏 = 𝜏Y + 𝜇P �̇� , |𝜏| > 𝜏Y (1.7a)
�̇� = 0, |𝜏| ≤ 𝜏Y (1.7b)

Here, 𝜇P is called plastic viscosity.

1.2.1.5 Herschel–Bulkley Fluid
This fluid model was developed by Herschel and Bulkley (1926) specifically for
describing pseudoplastic fluids with yield stress and is given as follows:

𝜏 = 𝜏Y + K �̇�n, |𝜏| > 𝜏Y (1.8a)
�̇� = 0, |𝜏| ≤ 𝜏Y (1.8b)

It can be seen that when yield stress is absent, this model is akin to the Ostwald–
de Waele power-law model, and when n = 1, represents the Bingham plastic
model.

1.2.2 Non-Newtonian Viscoelastic Behavior in Laminar Flow

Viscoelastic fluids described by the following constitutive equations are chosen
for use in the laminar flow heat transfer analyses without the presence of porous
media that are considered later in the text.

𝜏ij = 𝜇(Π̃)Bij
(1) + 𝜔(Π̃)Bi

(1)kBkj
(1)⋅ − 𝜆(Π̃)Bij

(2) (1.9)
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where

Bij
(1) = gim𝑣

j
⋅m + gjm𝑣i

⋅m (1.10)

Bij
(n+1) =

𝛿Bij
(n)

𝛿t
(1.11)

and the time derivative 𝛿∕𝛿t is defined as

𝛿Bij
(n)

𝛿t
=

𝜕Bij
(n)

𝜕t
+ 𝑣kBij

(n),k − 𝑣i
⋅mBmj

(n) − 𝑣
j
⋅mBim

(n) (1.12)

Π̃ represents the second invariant of Bij
(1) and 𝜇, 𝜔, and 𝜆 are functions of Π̃ only.

The use of such a constitutive equation for solution of boundary-layer flows of
elastic fluids has been well described by Denn (1967) and Kale et al. (1975). The
justification is essentially due to the fact that Equation (1.9) represents the behav-
ior of elastic fluids exactly in viscometric flows and that for the two-dimensional
boundary-layer flows the dominant terms in the rate of strain tensor are those
which appear in viscometric flows. The functions 𝜇 and 𝜆 may often be expressed
as power functions:

𝜇(Π̃) = K
[1

2
Π̃
](n−1)∕2

(1.13)

and

𝜆(Π̃) = M
[1

2
Π̃
](s−2)∕2

(1.14)

The form of 𝜔(Π̃) is unimportant since the terms in which it appears van-
ishes in two-dimensional flows where it will be used in the text. Note that with
𝜆(Π̃) = 𝜔(Π̃) = 0 and with 𝜇(Π̃) given by Equation (1.11), the Ostwald–de Waele
power-law behavior is represented.

There are a large number of available constitutive equations for viscoelastic
fluids, as outlined by Bird et al. (1977) and Middleman (1977). However, the
one used in heat transfer in porous media is the Oldroyd model for oscillatory
convection.

The constitutive equation for an Oldroyd (1950) fluid can be written as follows:

𝜏 + 𝜆RX �̇� = 𝜇0(�̇� + 𝜆RD�̈�) (1.15)

where 𝜇0 is the constant viscosity at low shear rate in the steady-state region,
that is, when �̇� = �̈� = 0. The constant 𝜆RX is a relaxation time, that is, if motion
suddenly stops, the shear stress will decay as exp(−t∕𝜆RX). 𝜆RD is called the retar-
dation time and reflects the decay of strain rate as exp(−t∕𝜆RD) when all stresses
are removed. When 𝜆RX and 𝜆RD are both equal to zero, the model describes a
Newtonian fluid. When only 𝜆RD is zero, the model reverts to the Maxwell (1867)
model. Thus, when stress is removed, the shear rate in a Maxwell fluid becomes
zero instantaneously; whereas in an Oldroyd fluid, it decays as exp(−t∕𝜆RD). This
marks the essential difference between the Oldroyd and Maxwell fluids.

It is often very difficult to separate out the effects of the viscous and elastic
behavior of viscoelastic fluids. However, the present state is quite different with
the introduction of highly elastic constant viscosity fluids by Boger (1977/78) and
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Choplin et al. (1983). Attempts have since been made to determine the exclusive
effect of elasticity on the heat transfer characteristics in porous media through
the use of elastic Boger fluids.

1.2.3 Non-Newtonian Viscous Behavior in Turbulent Flow

For inelastic non-Newtonian fluids in turbulent flow in smooth tubes, Dodge and
Metzner (1959) have provided a Blasius type of approximate equation for the
friction factor generalized Reynolds number as follows:

f = 𝛼

Re𝛽gen
5 × 103

≤ Regen ≤ 105 (1.16)

where 𝛼 and 𝛽 are functions of n for the case of power-law fluids and their values
for varying n are presented in Table 1.2.

Following the procedure of Skelland (1967), a suitable expression for the local
surface shear stress was obtained by Shenoy and Mashelkar (1978b) by proper
rearranging and adapting the equations for flow over a smooth flat plate at zero
incidence in a manner analogous to that used by Eckert and Jackson (1950) in the
Newtonian case as

𝜏0 = Ω𝜌1−𝛽𝛾
𝛽

1 𝛿
−𝛽nΛ2−𝛽(2−n)

1 (1.17)

where

Ω = 𝛼(0.817)2−𝛽(2−n)

2𝛽n+1 (1.18)

and

𝛾1 = 8n−1K
(3n + 1

4n

)n
(1.19)

Table 1.2 Values of 𝛼 and 𝛽 for varying values
of pseudoplasticity index n.

n 𝜶 𝜷

1.0 0.0790 0.250
0.9 0.0770 0.255
0.8 0.0760 0.263
0.7 0.0752 0.270
0.6 0.0740 0.281
0.5 0.0723 0.290
0.4 0.0710 0.307
0.3 0.0683 0.325
0.2 0.0646 0.349

Source: Dodge and Metzner (1959). Reproduced
with permission of John Wiley & Sons.
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For the Newtonian case

n = 1, 𝛽 = 0.25, Ω = 0.02332, 𝛾1 = 𝜇

𝜏0N = 0.02332𝜌Λ2
1

(
𝜇

𝜌𝛿Λ1

)1∕4

(1.20)

1.2.4 Mildly Elastic Drag-Reducing Behavior in Turbulent Flow

Drag-reducing fluids are known to be Newtonian in viscosity but exhibit mild
elasticity characterized by a relaxation time 𝜃fl. Detailed discussions on the
determination of relaxation times for drag-reducing fluids are available from
Argumedo et al. (1978) and Cho and Hartnett (1982). For such fluids, one
assumes the friction factor f to be a function of the Reynolds number Re and the
Deborah number De (which is the ratio of the fluid relaxation time 𝜃fl and the
characteristic process time 𝑣∕u∗2).

Thus, the modified form of Equation (1.2) using the appropriate characteristic
time and the appropriate time scale of deformation is written as

De = 𝜃flu∗2∕𝑣 (1.21)

where u∗ is the friction velocity and 𝑣 is the kinematic viscosity.
The choice of characteristic time scales for defining De has been discussed by

Astarita (1965), Seyer and Metzner (1969a), and Virk (1975). Reported experi-
mental studies on the determination of fluid relaxation times published by Seyer
and Metzner (1969a) show that 𝜃fl varies as �̇�−m, where m lies between 0.5 and
1.0. The general practice is to assume that m is equal to 1 so that the Deborah
number can be taken as a constant independent of shear rate knowing that u∗2∕𝑣
is directly proportional to wall shear rate. This assumption, although not truly
accurate, renders itself useful for the derivation of an approximate expression for
the wall shear stress in turbulently flowing drag-reducing fluids.

Assuming Deborah number to be independent of shear rate, Seyer and Metzner
(1969b) wrote an expression for friction factor for turbulent flow of drag-reducing
fluids as follows:

(2∕f )1∕2 = A0(1 − 𝜉0)2 ln Re f 1∕2

+ (1 − 𝜉0)2[B0 − A0 ln 2(2)1∕2] − 3.0 (1.22)

where the values of A0, B0, and 𝜉0 are given by Seyer and Metzner (1969b). A
straightforward manipulation of the equation, as done by Shenoy and Mashelkar
(1983), to obtain an explicit Blasius-type friction factor–Reynolds number rela-
tionship is given here:

f = 𝛼

Re𝛽
5 × 103

≤ Re ≤ 105

0 ≤ De ≤ 10 (1.23)

where 𝛼 and 𝛽 are functions of De for the case of drag-reducing fluids, and their
values for varying De are presented in Table 1.3.

It has been suggested by Virk et al. (1967) that the maximum drag reduction
that can be achieved in practice can be described by a unique asymptote given by
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Table 1.3 Values of 𝛼 and 𝛽 for varying values
of Deborah numbers De.

De 𝜶 𝜷

0 0.0790 0.250
1 0.0782 0.262
2 0.0787 0.271
3 0.0741 0.278
4 0.0726 0.285
5 0.0689 0.289
6 0.0655 0.292
7 0.0662 0.301
8 0.0687 0.312
9 0.0732 0.324
10 0.0762 0.334
≥ 20 0.420 0.550

Source: Shenoy and Mashelkar (1983). Reproduced
with permission of American Chemical Society.

𝛼 = 0.42 and 𝛽 = 0.55 in the abovementioned equation. In Table 1.2, these values
correspond to the limit De ≥ 20, which has been used to denote the maximum
drag reduction asymptote. As can be seen, the value of 𝛼 is almost constant for
1 < De < 10, but jumps by about 600% for a change of De from 10 to 20. Actu-
ally, this is due to the fact that around De = 20 and beyond it, the f versus Re
curve has a sudden change of slope and hence it is not only the value of 𝛼 but also
the value of 𝛽 that undergoes a sudden change. Detailed explanation of the maxi-
mum drag reduction asymptote and its uniqueness are available in the exhaustive
article of Virk (1975), which can be referred to for more details. Equation (1.23)
has been used when analyzing turbulent flow in horizontal pipes by Shenoy and
Mashelkar (1983), in curved tubes by Shenoy et al. (1980), in rotating straight
tubes by Shenoy (1986b), in annular ducts by Shenoy and Shintre (1986), and in
vertical tubes by Shenoy (1987).

Following the procedure of Skelland (1967), a suitable expression for the
local surface shear stress was obtained by Nakayama and Shenoy (1992a) from
Equation (1.23) as follows:

𝜏𝑤∕𝜌u2
c = Ω(𝜇∕𝜌uc𝛿)𝛽 (1.24)

where

Ω = 𝛼(0.817)2−𝛽∕2𝛽+1 (1.25)

Note that for the Newtonian case

𝛽 = 0.25, Ω = 0.02332 (1.26)
𝜏𝑤N∕𝜌u2

c = 0.2332(𝜇∕𝜌uc𝛿)1∕4 (1.27)


